
System-Level Power Estimation using an On-Chip Bus
Performance Monitoring Unit ∗

Youngjin Cho, Younghyun Kim, Sangyoung Park and Naehyuck Chang
Dept. of EECS, Seoul National University

{yjcho, yhkim, sypark, naehyuck}@elpl.snu.ac.kr

ABSTRACT
In this paper we propose an on-chip bus PMU which makes ac-
curate estimates of system power consumption from a first-order
linear power model by utilizing system-level activity information
exchanged on the on-chip bus. It can easily be customized for dif-
ferent on-chip and off-chip memory devices, and is not dependent
on a specific CPU core. We model memory devices using energy
state machines, describe them in XML, and use that description au-
tomatic synthesis of the PMU. We compare the short-term accuracy
of the proposed PMU with a cycle-accurate system-level power es-
timator, and assess its long-term accuracy with a real hardware pro-
totype. Experimental results show that the the power estimation
deviates less than 5% from real measurements.

1. INTRODUCTION
Power consumption has now become one of the most impor-

tant considerations in designing digital systems, so system design-
ers need to measure the power used by the system as well as its
performance. In a laboratory environment, a range of use of vari-
ous measurement equipment, and a specially designed prototyping
board that allows current probing, can be used to determine de-
tailed device- and system-level power consumption [1]. A more
advanced charge measurement scheme can even report the energy
consumption of each device during each cycle [2]. However, it is
not economic to incorporate precise current, voltage or charge mea-
surement devices into the final product, even if there is a specific
requirement for online power measurement.

Indirect power measurement using a PMU can significantly re-
duce the cost of power measurement. PMUs are composed of set of
counters (they are purely digital logic), and which makes them at-
tractive for low-cost in-system measurement. A PMU can produce
a reasonable estimate of the estimate of the power consumption of
a digital system because power consumption is strongly dependent
on the system activities. However, the accuracy of this method
of power estimation requires the capture of all the relevant system
activities and a correct model of the relationship between these ac-
tivities and the power consumption.

Existing PMUs can achieve acceptable accuracy in estimating
CPU power consumption. However, the current generation of PMUs
do not explicitly measure external memory references. Instead,
most PMU-based power estimation techniques rely on cache miss
counts to estimate memory power consumption [3, 4, 5, 6]. This
method has an average error of 70% in estimating the power con-
sumption of a straightforward SDRAM memory [3]. But, this is

∗This work is partly supported by the Brain Korea 21 Project and ETRI
SoC Industry Promotion Center, Human Resource Development Project for
IT SoC Architect. The ICT at Seoul National University provides research
facilities for this study.

not surprising because a single memory device can exhibit a power
consumption which differ by an order of magnitude or more be-
tween different types of operations, such as a page-miss single read
and a burst-mode read. This variability is exacerbated in the wide
range of heterogeneous memory devices including on-chip SRAM,
off-chip SDRAM (DDR or SDR), and NOR flash, which use com-
pletely different amounts of power. This make it infeasible to esti-
mate memory power accurately simply by counting the number of
cache misses. However, a poor estimate of memory power severely
compromises overall power estimation because memory devices
consume more power than the CPU in systems such as portable
devices [7].

We tackle these problems by introducing a PMU which resides
on the on-chip bus, and which aims to achieve accurate system-
level power estimation especially by taking range of memory de-
vices into account. To our knowledge, this is the first attempt to
estimate system-level power consumption by means of an on-chip
bus PMU. While conventional PMUs are not capable of recogniz-
ing the address map and different types of memory devices, our
PMU obtains this information by snooping the on-chip bus sig-
nals. The PMU has internal state estimators for different mem-
ory devices, and performance counters to capture the number of
state transitions and the amount of time that a memory remains
in each state. The associated power estimation software is thus
supplied with a complete energy annotation of all the states and
transitions that take place in the memory devices. This data is ob-
tained by cycle-accurate measurement. All the necessary informa-
tion for PMU synthesis is presented as an XML (extended markup
language) description. An SoC design is then based on predefined
memory controller IP, and an XML description is used to synthe-
size an on-chip bus PMU.

We have performed extensive assessment of the accuracy of the
proposed PMU. We verified the long-term average power consump-
tion by measuring power consumption of a specially designed pro-
totyping board running benchmark programs, and compared the
measured value with the estimates from PMU. Then we verified the
relative accuracy of measurement of short-term power variation,
which cannot be detected by digital multimeters, using a cycle-
accurate system-level energy simulator. The PMU achieves more
than 95% accuracy.

2. ON-CHIP BUS PMU FOR POWER ESTI-
MATION

2.1 Transaction-based CPU PMUs
In an early example of the use of a PMU to estimate energy con-

sumption [4], the number of active CPU cycles, active floating-
point unit cycles, L2 cache references, and external memory ac-

978-1-4244-2820-5/08/$25.00 ©2008 IEEE 149



Device
Select

On-chip bus
slave interface

Command
parser

Memory device
state estimator

Memory device
state estimator

Memory device
state estimator

Memory device
state estimator

Performance
counters

Performance
counters

Performance
counters

Performance
counters

Offset
address
/Data

Burst
length

Read/
write

Size/
Wrap8

Seq/
no-seq/

idle/
busy

Ready

On-chip bus signals

On-chip bus PMU

AMBA AHB

FIFO

Local 
variable
registers

PMU 
control

registers

Figure 1: Architecture of the proposed on-chip bus PMU.

cesses were counted by a PMU installed in a Pentium II micropro-
cessor. Estimating power consumption from these counter values
was shown to require a high level of abstraction, leading to elab-
orate parameter tuning. Later PMUs are basically similar to [4],
but use more accurate methods of estimation. In a somewhat dif-
ferent approach [5], analytical energy models of each component
of an UltraSPARC microprocessor including buses, memory cells
and I/O pads were combined. Another technique [6] focused more
closely on the CPU core and cache memory, giving more consid-
eration to the microarchitecture. Linear regression has also been
applied [8] to PMU-based energy estimation of a CPU core.

The accuracy of the tuned energy parameters has usually been
verified by multimeter measurements [4, 6, 8]. An online feedback
scheme [9] can be used to compensate for any error using energy
consumption information from a battery management unit.

Conventional PMUs estimate the energy consumption of mem-
ory from the number of cache misses [4, 5, 6]; but this transaction-
based approach is not very accurate. For example, a memory access
initiated by the CPU or cache generally results in a single off-chip
memory transaction. But one of those transactions often causes
multiple off-chip transactions, because of misaligned incremental
burst requests, burst requests that are too long to be supported by
the memory devices, and other similar factors.

Sometimes, the accuracy of measurement may be compromised
by the nature of the memory transactions. For instance, transaction-
based PMUs cannot distinguish a block erase command from a nor-
mal data write in a flash memory, but these operations are very
different, both in terms of energy consumption and execution time.
Such memory devices have multiple internal states, and state transi-
tions take place in response to the commands received. If the PMU
treats an erase command as a normal data transfer, its estimates of
power consumption will be wildly incorrect.

2.2 State-based on-chip bus PMUs
If a PMU is to understand the exact behavior of memory devices,

it must be aware of the system memory map and the types of mem-
ory devices on the map, which is orthogonal to the CPU, and this
places a basic restriction on the accuracy which can be expected
from a CPU PMU.

This handicap can be overcome if the PMU is located on the

XML parser

PMU IP generator

Automatic 
generated 
PMU IP

PMU XML
descriptions

DDR

Verilog
IP

PMU
XMLSDRAM

Verilog
IP

PMU
XMLNAND flash

Verilog
IP

PMU
XMLNOR flash

Verilog
IP

PMU
XML

IP database

DDR

NOR
flash

SoC
Controller
synthesis

PMU

CPU

PMU
synthesis

Memory
controller

Figure 2: PMU synthesis flow.

on-chip bus, over which almost all the information necessary for
system-level power estimation is exchanged. This information in-
cludes device select signals, device offset addresses, burst or single
access indicators, burst lengths, read or write indicators. A more
effective PMU for system-level performance and power estimation
must be aware of the IP of the memory system components. This
sort of PMU can also cooperate with an existing CPU PMU.

Figure 1 illustrates the proposed PMU architecture. Unlike the
conventional transaction-based PMUs described in Section 2.1, it
is composed of set of state machines that describe the internal be-
havior of each memory device. The PMU has a slave interface like
a normal slave on-chip bus devices. As most modern memory de-
vices accept pipelined memory transactions, the PMU also has a
command FIFO queue. Once a particular memory device has been
selected, the command parser triggers the associated state machine.
The commands are encoded in the data bus and address bus to suit
the particular memory devices. Other important signals such as
read/write, burst length, size (word, halfword, etc.), sequential/non-
sequential/idle/busy and ready are essential to help in correct pars-
ing and to achieve correct state transitions. The parser stores useful
values such as transfer size in the local variable registers. The PMU
synthesis method will be described in Section 2.3.

The performance counters are a set of N transition counters, de-
noted by C[Device,Ti] (1 ≤ i ≤ N), and a set of M state counters,
C[Device,S j] (1 ≤ j ≤ M). Transition counters record how many
transitions occur after a trigger (reset) for each transition i defined
in the state machine. State counters record the number of clock
cycles during which the state machine stayed in each state j. N is
the number of transitions and M is the number of states of the state
machine.The area overhead of these counters is not significant in
comparison with the size of the SoC; the area and power overhead
is described in more detail in Section 3.3.

At the end of each time period, the CPU reads the counters in
the PMU. The power consumption of each memory device is then
calculated using the power estimation equations which will be de-
scribed in Section 3.

2.3 PMU synthesis
To design the proposed on-chip bus PMU requires a level of

knowledge about the memory devices similar to that needed to de-
sign a memory controller IP, because synthesis of the on-chip bus

150



Table 1: Document type definition of the PMU XML

<!ELEMENT PMU (Parameters?,Variables?,StateMachine+)>
<!ATTLIST PMU deviceType CDATA #REQUIRED>
<!ELEMENT Parameters EMPTY>
<!ATTLIST Parameters

onchip_bus_FIFO_depth (0|1|2|3|4|5|6|7|8) 
counter_bitwidth CDATA "16" 
onchip_bus_signal_latch (ON|OFF) "OFF">

<!ELEMENT Variables (Variable+)>
<!ELEMENT Variable EMPTY>
<!ATTLIST Variable

name CDATA #REQUIRED
type CDATA #REQUIRED
bitwidth CDATA "32"  
initial CDATA "0">

<!ELEMENT StateMachine (State*)>
<!ELEMENT State (NextState*)>
<!ATTLIST State

name CDATA #REQUIRED
sid CDATA #IMPLIED
logging (ON|OFF) "ON">

<!ELEMENT NextState ( (Conditions | Automatic), Command?)>
<!ATTLIST NextState

did CDATA #IMPLIED
nextState CDATA #REQUIRED>

<!ELEMENT Conditions (#PCDATA)>
<!ELEMENT Automatic (#PCDATA)>
<!ATTLIST Automatic Unit (clk|ps|ns|us|ms|s) "clk">
<!ELEMENT Command (#PCDATA)>
<!ATTLIST Command when (TRUE|FALSE) "TRUE">

S1 S2

5 nJ

8 nJ

3 nJ 2 nJ

1 mW 5 mW

Figure 3: Energy state machine example.

PMU shares lots of design processes with synthesis of the memory
controller IP. We added an XML description of the memory device
state diagrams to the memory controller IP database as shown in
Figure 2. During the memory controller design process, a designer
can pick up the necessary memory controller IP from the IP design
database for the memory devices being used. At the same time, the
PMU generator creates the device state machine models from the
XML descriptions in the IP database.

Device controller IP vendors or users can easily create an XML
description from the controller hardware description or its simula-
tion model. We follow the DTD (document type definitions) file as
shown in Table 1. The root node tag, <PMU>, consists of vari-
able declarations, parameters and state machine descriptions. The
<Parameters> tag includes the options available in PMU synthe-
sis. The <Variable> tag allows a user to declare the local vari-
ables for user-defined state machines. The <PMU> tag contains
one or more <StateMachine> tags, and <StateMachine> consists
of a series of <State> tags. Each <State> tag consists of a set of
<NextState> tags, and each <NextState> tag has either a <Conditions>
tag for a conditional state transition or an <Automatic> tag for
autonomous state transitions which occur after a specified period.
The PMU synthesis program regards consecutive <Conditions>
and <Automatic> tags as OR-ed composite conditions. Option-
ally, it is possible to describe additional Verilog or SystemC sub-
routines using the <Command> tag.

3. PROPOSED METHOD OF POWER ES-
TIMATION

3.1 Energy state machine and cycle-accurate
energy measurement

Table 2: The characteristic parameters of the ARM926EJ-S
microprocessor (Tpmu = 1 ms).

Parameter Power weight (W)
α1 20.80e-6
α2 -0.10e-6
α3 140.80e-6
α4 190.80e-6
α5 1.30e-6

Pstatic 1.10e-3

Typically, the power consumption of a device is described as a
per-access energy or a per-mode power, which only denote the en-
ergy and power consumption for a particular operating frequency;
but these quantities are no longer valid if we vary the clock fre-
quency. However, an energy state machine separates dynamic en-
ergy and static power, and is therefore valid at any clock frequency
[10]. Figure 3 shows an example of a simple energy state machine.
Each transition (arc) is annotated with its dynamic energy, and each
state with a static power.

While an energy state machine is superior to the use of per-access
energy and per-mode power, it is hard to characterize the dynamic
energy and static power of a device using conventional power mea-
surement methods. But cycle-accurate energy measurement [2] can
distinguish between dynamic energy and static power.

3.2 PMU-based power estimation

3.2.1 Microprocessor
If a CPU comes with a PMU, there is no reason not to use it.

Therefore we estimate the CPU core power consumption using the
CPU PMU. We also use the relevant CPU PMU counters, such
as C[IEX ] (instructions executed), C[DDP] (data dependencies),
C[ICM] (instruction cache misses), C[IT M] (instruction TLB misses)
and C[DT M] (data TLB misses). We use a linear power model [3]
which assumes the following linear relations between the counter
values and power consumption:

PCPU = α1C[IFM]+α2C[DDP]+α3C[DT M]+α4C[IT M]
+α5C[IEX ]+Pstatic,

(1)

where α1, · · · ,α5 are power coefficients, and Pstatic is the static
power consumption of the processor. The power estimation soft-
ware periodically reads, resets and restarts the PMU counters, so
that PCPU is the average power consumption of the CPU for a pe-
riod Tpmu. The reference power measurement platform for verifica-
tion is equipped with a TI OMAP5912 based on the ARM9, which
does not have a CPU PMU. We therefore implemented a CPU PMU
for the ARM9 core in our in-house system-level simulator. The tar-
get environments will be shown in detail in Section 4.

3.2.2 DDR SDRAM
Various types of memory transactions are supported by the DDR

SDRAM, but we can significantly simplify the state transition dia-
gram if we abstract its interaction with a cache memory as shown in
Figure 4. The cache miss transactions are burst-mode transfers and
their extent depends on the cache line size. State diagram in Figure
4 is simpler than the actual implementation, which is determined
by the DDR SDRAM controller IP0.

The primary variation in the energy used by the DDR SDRAM
that appears in Figure 4 is caused by i) auto-refresh operations
(S17), ii) row misses and the resulting state transitions, which con-
sist of precharging and row address (S3→ S0→ S1) when active-
page mode is used, and iii) read or write operations (either S11 to

151



8 beat burst write

AR
<S17>

IDLE
<S0>

PREC
HG

<S3>

PRECH
G_ALL
<S4>

RAS
<S1>

ACT
<S2>

WR
<S5>

RD
<S11>

WR_
NOP

<S10>

RD_
DQ4

<S16>

WR_
DQ1
<S6>

RD_
NOP

<S12>

WR_
DQ4
<S9>

RD_
DQ3

<S15>

WR_
DQ2
<S7>

RD_
DQ1

<S13>

WR_
DQ3
<S8>

RD_
DQ2

<S14>

D27

D26 D0

D4

D1

D20D3

D22

D24

D5 D6

D12D11

D13

D15 D14

D8D9

D16

D10

D25

D23

D18

D17

D7

D21

D19

D2

8 beat burst read

Auto refresh

Figure 4: The power and energy state diagram of the DDR
SDRAM device.

Table 3: The static power and dynamic energy consumption
of the a Samsung Mobile DDR SDRAM K4X51163PC devices
(power: mW, energy: nJ).

State Static power Mode Static power
S0 5.03 S1 23.93
S2 12.66 S3 26.45
S4 7.62 S5, S6, S7, S8, S9, S10 17.02

S17 2.61 S11, S12, S13, S14, S15, S16 42.30

Transition Dynamic energy
D3, D4, D10, D16, D18, D23, D25 0.077

D0 6.30
D22+D5+D6+D7+D8+D9 5.83

D24+D11+D12+D13+D14+D15 13.46
D26 20.84
D2 3.14
D20 1.08

D1, D17, D21 0.18
D19 7.27

S16, or S5 to S10). When auto-precharge mode is used, a transition
from precharge to idle (S4 → S0) occurs after every burst mode
transfer. The proposed state-based PMU exactly tracks the DDR
SDRAM internal state transitions, and profiles the correct number
of state transitions as well as the number of cycles during which the
SDRAM remains in each state. The DDR SDRAM PMU shown in
Figure 4 has 18 state counters and 27 transition counters.

Table 3 shows the energy consumption coefficients for the Sam-
sung Mobile DDR SDRAM K4X51163PC considered in this paper.
All the energy values have been characterized by the cycle-accurate
energy measurement setup described in Section 3.1. These coeffi-
cients are incoperated into a power estimation software, which sim-
ply reads the DDR SDRAM performance counters and multiplies
the counts by the appropriate coefficients as follows:

P(DDR)(W ) =

 26X
i=0

Di ·C[DDR,Ti]×10−9

+
17X
j=0

S j ·C[DDR,S j]
fmem

×10−6

1A 1
Tpmu

,

(2)

where fmem is the memory clock frequency, Di and Si are coeffi-

D12

STDBY
<S1>

WP
Setup
<S2>

WP
Busy
<S3>

BP
Setup
<S4>

BP
Load1
<S5>

BP
Load2
<S6>

BP
Confirm

<S7>

ERASE
Setup
<S9>

ERASE
Busy

<S10>

D6 D8

D11
D13

WP: word programming
BP: buffered programming

D7

BP
Busy
<S8>

D9

D10

D1

D2

D3

D4 D5

Figure 5: The programming and erase state diagram of a NOR
flash memory device.

Table 4: The static power and dynamic energy consumption of
an Intel 28F256L18 NOR flash memory device (power: mW,
energy: nJ).

Mode Static power Mode Static power
S1 0.00 S2, S4 ,S5, S6, S7, S9 6.30

S3, S8 36.20 S10 39.80

Transition Dynamic energy Transition Dynamic energy
D1 2.73 D2 + D3 4.96
D4 2.18 D5 1.37
D6 2.19 D7 2.19
D8 2.19 D9 + D10 28.33
D11 4.26 D12 + D13 9.45

cients from Table 3, and C[DDR,Ti] and C[DDR,S j] are the i-th
transition and the j-th state counters of the DDR SDRAM PMU.

3.2.3 NOR flash
NOR flash memory has four primary types of transaction: read,

word programming, buffered programming and erase. Read re-
quests initiate an SRAM-like read operation, which takes little power
and is fast, although read requests also include the status regis-
ter reads, which are also associated with the other three types of
transaction. Write transactions transfer data from a CPU to a NOR
flash for word and buffered programming. However, write trans-
actions also include status register modifications that initiate erase
and programming operations. Consequently, misinterpretation of
NOR flash read and write transactions can result in huge errors in
power estimation. Table 4 summarizes the static and dynamic en-
ergy consumption of the Intel 28F256L18 NOR flash memory. To
support the state diagram in Figure 5, the PMU needs 13 transition
counters and 10 state counters. The energy used by a NOR flash
memory can be expressed in a way similar to (2). Note that the in-
ternal logic of the NOR flash in Figure 5 is not synchronized with
the memory bus clock, and thus fmem is not defined. The PMU
state machine is clocked by the PMU clock and we replace fmem
with fpmu for the NOR flash.

3.3 Gate count and power overhead of the on-
chip bus PMU

Table 5 shows the gate count and power overhead for the on-chip
bus PMU for DDR SDRAM, and NOR flash. The two dominant
area and power consumers are the AMBA AHB slave interface,
and the registers for the performance counters and local variables.
The three state machines require around 2k gates, and their power

152



Table 5: Dynamic and leakage power and gate counts of the
PMU for DDR SDRAM, and NOR flash, synthesized with the
Synopsys toolchain (process: 0.18 µm, number of counters: 128
(24 bits), dynamic energy: pJ, and static power: µW).

IP State machines Registers AHB slave IF
Ports 132 58 298
Nets 879 10730 106
Cells 534 10666 34

Gate count 2037 34160 2622
Dynamic energy 16.23 568.40 43.98

Static power 0.33 6.5 0.55

Table 6: Specification of the system-level energy simulator.
Component Feature

Simulator kernel • SystemC 2.2.0
CPU core • CPU core of SimIt-ARM 3.0

• ARM9TDMI, and XScale compatible
Cache memory • Level-1 I-cache • Level-1 D-cache

• Size: 16 KB • Size: 8 KB
• 4-way associative • 4-way associative
• Line size: 8 words • Line size: 8 words

System bus • AMBA advanced high-performance bus (AHB)
• AHB cycle-level interface (AHBCLI) [11]

compatible
• 32-bit address bus and 32-bit data bus
• Operating frequency: 96 MHz

DDR SDRAM • Samsung Mobile DDR SDRAM K4X51163PC
• Size: 512 Mb
• Bus width: 16 bits
• Operating frequency: 96 MHz (CL=3)

NOR flash • Intel 28F256L18 flash memory
• Size: 256 Mb
• Bus width: 16 bits
• Operating frequency: 48 MHz

DMA controller • Supports INCR16 burst transactions
• Internal FIFO size: 16 words

consumption is small. Adding more memory components requires
additional gates for the registers and state machines, in proportion
to the number of states and transitions. The gate count and esti-
mated power overhead is not significant in comparison with these
of an entire SoC.

4. PERFORMANCE EVALUATION

4.1 Experimental setup

4.1.1 Verification with a cycle-accurate simulator
We developed a system-level energy simulator using the tran-

saction-level modeling (TLM) facilities of SystemC. The compo-
nents of the simulator include an instruction set simulator (ISS), a
level-1 cache, an AMBA advanced high-performance bus (AHB),
and several other AMBA-compatible peripheral device modules.
All the modules of the simulator are coded in SystemC. The simu-
lator was based on a SimIt-ARM ISS [12], which was modified to
exhibit almost exactly the same instruction cycle times. The core
ISS is connected to the cache module of the main simulator kernel
by SystemC signals. The detailed specifications of each module are
summarized in Table 6.

The simulator and the PMU share the same memory energy model.
However, whereas the simulator sees every signal transition inside
the memory devices, the PMU estimates the memory state changes
from the AMBA AHB bus monitoring: this corresponds to the real
situation. Due to the limited extent to which the status of memory

Table 7: Accuracy of estimating the power consumption of a
microprocessor using a CPU PMU (mW).

BenchmarkMethod
Basic math MPEG4 decoder MP3 encoder

Measured 117.09 118.93 121.10
CPU PMU 118.75 120.20 118.73

RMS error (%) 1.6 2.47 5.21

devices can be observed, the PMU’s estimates of power consump-
tion naturally differ from that of the simulator. But we can use the
simulator to tune the PMU, so as to bring the estimates as close as
possible.

We verified the accuracy of the power estimates of the proposed
on-chip bus PMU using an in-house energy measurement platform
based on a TI OMAP5912. The board architecture is quite typical,
except for the special design of the power planes and memory sys-
tem configuration. We divided the power plane of the printed cir-
cuit board into many power islands for each memory device so that
we can measure their power consumption separately. This board
is designed to preserve signal integrity and to minimize side ef-
fects. The memory system includes SRAM, SDRAM, mobile DDR
SDRAM, NOR flash, NAND flash, and OneNAND flash. This
over-configuration is only done so that a wide range of measure-
ments can be made.

We hooked up a National Instrument data acquisition system to
each power island, and measured the power consumption over time,
while executing real benchmark programs. We then compared the
estimate made by our on-chip bus PMU with the result from the
full measurement system.

4.2 Experimental results

4.2.1 CPU power estimation
First, we compared the estimated CPU(ARM926) power with

the measured value. As in Section 3.2.1, we used a method of CPU
power estimation comparable to previous work [3] to make a fair
comparison. Table 7 shows around 2% to 5% RMS error between
the estimates and the measurements for three different benchmark
programs, which is quite satisfactory.

We compared the long-term average accuracy of power estimates
made by a CPU PMU and by the proposed on-chip bus PMU. Table
8 summarizes the results for three different benchmark programs.
As the CPU PMU is not capable of distinguishing SDRAM power
from NOR flash power, it can only report the total memory system
power. But, the on-chip bus PMU separately considers the SDRAM
and NOR flash power, and forms estimates which are within 1% to
4% of the measured values.

Figure 6 shows the power consumption waveforms for an MP3
encoder, measured by a DAQ, and estimated by our on-chip bus
PMU, and by a CPU PMU. Figure 6(c) shows that the CPU PMU
is inaccurate because it misses most of the power peaks caused by
memory accesses.

4.2.2 Comparison between a CPU PMU and the pro-
posed on-chip bus PMU

Next, we assessed the accuracy with which the proposed PMU
estimates dynamic power consumption. Because a DAQ is unable
to capture changes occurring over a few microseconds, we com-
pared the PMU’s results with those of the cycle-accurate simulator.
Table 9 compares the RMS (root-mean square) errors between the
CPU PMU and the on-chip bus PMU, and shows the superior ac-
curacy of the on-chip bus PMU.

153



80

0

40

100 3002000
Time (ms)

Po
w

er
 (m

W
)

(a) DAQ

SDRAM

NOR

100 3002000
Time (ms)(b) On-chip bus PMU

Po
w

er
 (m

W
) 80

0

40

SDRAM

100 3002000
Time (ms)

Po
w

er
 (m

W
)

(c) CPU PMU

80

0

40

SDRAM+ NOR

NOR

Figure 6: Long-term average power comparison between a
CPU PMU and the proposed on-chip bus PMU (MP3 encoder).

Table 8: Long-term average power estimation accuracy (mW).

MemoryBenchmark Method
SDRAM NOR Sum

Error (%)

Measured 13.31 0.02 13.33
Basic math CPU PMU N/A N/A 17.52 31.43

Proposed 13.86 0 13.86 3.98
Measured 30.56 3.62 34.18MPEG4
CPU PMU N/A N/A 28.27 17.29decoder
Proposed 31.54 3.80 35.34 3.39
Measured 22.92 0.66 23.58MP3
CPU PMU N/A N/A 21.86 7.29encoder
Proposed 23.28 0.61 23.89 1.31

Figure 7 shows the differences between the power estimation
waveforms for the CPU PMU and the on-chip bus PMU. Due to
the limited extent to which the on-chip bus PMU can observe the
memory state, there are still some missing peaks. Nevertheless, the
results for the on-chip bus PMU are greatly superior to those for
the CPU PMU. Note that the RMS error is somewhat exaggerated
because it measures temporal mismatches, as well as mismatches
of magnitude.

5. CONCLUSIONS
We have reported what we believe is the first attempt to achieve

accurate system-level power estimation by means of an on-chip
bus PMU, for a range of memory devices. While existing CPU
PMUs estimate the energy consumption of memory by counting
cache miss transactions, this new PMU traces the internal behavior
of memory devices exactly to give a much better estimate of power
consumption.

We have verified the proposed PMU using a system-level en-
ergy simulator and a real hardware prototyping board. Our PMU
exhibits less than 5% average error compared with the real mea-
surements. This is 6 to 10 times more accurate than conventional
CPU PMU-based approaches. Automatic synthesis of a PMU to
support DDR SDRAM, and NOR flash from an XML description
requires 39K equivalent gate count.

40

0

80

Time (ms)
5 100

Po
w

er
 (m

W
)

(a) Simulator

SDRAM

NOR

Time (ms)
5 100

40

0

80

Po
w

er
 (m

W
)

(b) On-chip bus PMU

SDRAM

NOR

Time (ms)
5 100

40

0

80

Po
w

er
 (m

W
)

(c) CPU PMU

SDRAM+NOR

Figure 7: Short-term dynamic power change comparison be-
tween a CPU PMU and the proposed on-chip bus PMU (MP3
encoder).

Table 9: Short-term power estimation RMS error (%).
BenchmarkMethod

Basic math MPEG4 decoder MP3 encoder
CPU PMU 28.11 31.90 49.79
Proposed 2.63 17.91 18.14

6. REFERENCES
[1] J. Flinn and M. Satyanarayanan, “PowerScope: A tool for profiling

the energy usage of mobile applications,” in WMCSA ’99, p. 2, 1999.
[2] N. Chang, K. Kim, and H. G. Lee, “Cycle-accurate energy

consumption measurement and analysis: case study of
ARM7TDMI,” in ISLPED ’00, pp. 185–190, 2000.

[3] G. Contreras and M. Martonosi, “Power prediction for Intel
XScaler processors using performance monitoring unit events,” in
ISLPED ’05, pp. 221–226, 2005.

[4] F. Bellosa, “The benefits of event: driven energy accounting in
power-sensitive systems,” in SIGOPS EW ’00, pp. 37–42, 2000.

[5] I. Kadayif, T. Chinoda, M. Kandemir, N. Vijaykirsnan, M. J. Irwin,
and A. Sivasubramaniam, “vEC: virtual energy counters,” in PASTE
’01, pp. 28–31, 2001.

[6] R. Joseph and M. Martonosi, “Run-time power estimation in high
performance microprocessors,” in ISLPED ’01, pp. 135–140, 2001.

[7] I. Choi, H. Shim, and N. Chang, “Low-power color TFT LCD
display for hand-held embedded systems,” in ISLPED ’02,
pp. 112–117, 2002.

[8] W. L. Bircher, M. Valluri, J. Law, and L. K. John, “Runtime
identification of microprocessor energy saving opportunities,” in
ISLPED ’05, pp. 275–280, 2005.

[9] S. Gurun and C. Krintz, “A run-time, feedback-based energy
estimation model for embedded devices,” in CODES+ISSS ’06,
pp. 28–33, 2006.

[10] H. Shim, Y. Joo, Y. Choi, H. G. Lee, and N. Chang, “Low-energy
off-chip sdram memory systems for embedded applications,” IEEE
TECS, vol. 2, no. 1, pp. 98–130, 2003.

[11] AMBA AHB Cycle Level Interface (AHB CLI) Specification, 2003.
http://www.arm.com/products/solutions/ahbcli.html.

[12] W. Qin, “Simit-ARM.” http://simit-arm.sourceforge.net/.

154


	MAIN MENU
	Go to Previous Document
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print

