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ABSTRACT
Behavior synthesis and optimization beyond the register transfer
level require an efficient utilization of the underlying platform fea-
tures. This paper presents a platform-based resource-binding ap-
proach using a distributed register-file microarchitecture (DRFM)
that makes efficient use of distributed embedded memory blocks
as register files in modern FPGAs. A DRFM contains multiple is-
lands, each having a local register file, a functional unit pool and
data-routing logic. Compared with the traditional discrete-register
counterpart, a DRFM allows use of the platform-featured on-chip
memory or register-file IP blocks to implement its local register
files, and this results in substantial saving of multiplexing logic
and global interconnects. DRFM provides a useful architectural
template and a direct optimization objective for minimizing inter-
island connections for synthesis algorithms. Based on DRFM, we
propose a novel binding algorithm focusing on the minimization
of the inter-island connections. By applying our approach, sig-
nificant reductions on multiplexors and global-interconnections are
observed. On the Xilinx Virtex II FPGA platform, our experimen-
tal results show a 2X logic area reduction and a 7.8% performance
improvement, compared with the traditional discrete-register-based
approach.

Categories and Subject Descriptors
B.5.2 [Hardware]: Design Aids—automatic synthesis

General Terms
Algorithms, Design, Experimentation

Keywords
Behavior Synthesis, resource binding, distributed register file

1. INTRODUCTION
With the advancement of the integrated circuit technology, in-

terconnects have an increasingly large impact on the quality of re-
sults (QoR). The shrinking cycle time—combined with the grow-
ing resistance-capacitance delay, die size, and average interconnect
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Figure 1: Advantages of register file over discrete registers. (a)
A scheduled data-flow graph with register binding indicated on
each variable; (b) Binding using discrete registers; (c) Binding
using a register file.

length—result in the increasing ratio of interconnect delay, espe-
cially global interconnect delay, which does not scale well with
feature size. The area and power of interconnects have by far
outweighed the area and power of functional units and registers.
A recent work from Intel [30] shows that interconnects consume
around 51% of the total dynamic power of the microprocessors
in a 0.13um technology, and projects that interconnects can con-
sume up to 80% of the dynamic power in future technologies. For
field-programmable gate arrays (FPGAs), studies show that inter-
connects contribute 70 to 80% of the total area [37] and 75 to 85%
of the total power [25]. Multiplexors, which are collections of in-
terconnects without actual computational functionality, except for
data routing, are particularly expensive for FPGA platforms. It is
shown that the area, delay and power data of a 32-to-1 multiplexor
are almost equivalent to an 18-bit multiplier in 100nm technology
in FPGA designs [3].

At the register-transfer level, a multiplexor is required when mul-
tiple data sources feed into a single port at multiple control steps
(c-steps). As shown in Fig. 1(a), the behavior of a design is repre-
sented in a scheduled data-flow graph (DFG). After resource bind-
ing using discrete registers, a datapath is generated, as shown in
Fig. 1(b), where two multiplexors are needed to route the data flows
at different c-steps. This is indeed the optimal datapath using dis-
crete registers, if one functional unit is the hard resource constraint.
The datapath can be improved if a register-file microarchitecture is
applied, as shown in Fig. 1(c), where there is no multiplexor re-
quired at all. In fact, we can view that the multiplexors in the first
datapath are absorbed and replaced by the dedicated decoder of the
1-write, 2-read-port register file in the second datapath.

However, due to the limitation of numbers of the read and write
ports, a centralized register file may not work for highly paral-
lelized applications which require multiple simultaneous data reads
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Table 1: On-chip RAM Blocks on Virtex II and Stratix FPGAs
Xilinx XC-2V 2000 3000 4000 6000 8000
#18Kb BRAM 56 96 120 144 168
Dist. RAM(Kb) 336 448 720 1,056 1,456

Altera EP1 S25 S30 S40 S60 S80
#M512(512b) 224 295 384 574 767
#M4K(4Kb) 138 171 183 292 364
#M-(512Kb) 2 4 4 6 9

and writes. The port numbers of register files are limited because
the implementation cost of a register file is very sensitive to its port
number. As pointed in [36], the area and power consumption of a
register file grows cubically with its port number. Advanced FPGA
devices, such as Virtex IV [15] and Stratix II [14], are not able to
implement register files with more than two write ports in their on-
chip memory blocks. Suppose the DFG in Fig. 1 were duplicated
three times horizontally; a 3-write, 6-read port register file would
then be required, which is very expensive if not impossible to im-
plement. Apparently, a distributed 3-register-file datapath would be
more efficient in this case.

The use of distributed register files is further encouraged on the
platforms with rich on-chip memory or register-file IP blocks. A
key issue in platform-based design methodology is how to suffi-
ciently use the resources (or services) provided by the underlying
platform or technology [20]. In designs for modern system-on-a-
chip (SoC) or field-programmable SoC, on-chip memories can be
instantiated as pre-optimized IP modules. The resultant area and
performance benefits are remarkable. For example, in Xilinx Vir-
tex II and Altera Stratix devices, memory IP blocks are abundantly
distributed on the chips, so that the implementation of register files
on them is “free" if they are not used for other data storage and the
resource capacity bound is not exceeded. TABLE 1 shows data re-
lated to memory blocks on Virtex II [15] and Stratix [14]. Since we
know that the implementation of multiplexors on FPGAs is very ex-
pensive [3] and register files are able to reduce the multiplexor use
on such platforms, it is not surprising to see dramatic improvement
in area and performance when using on-chip memories to imple-
ment distributed register files.

This paper addresses the problem of full utilization of register
files during behavior synthesis. In particular, the contributions of
this paper are as follows:

i) A distributed register-file microarchitecture (DRFM) is pre-
sented as a flexible synthesis template. DRFM contains multiple
islands, each having a register file, a functional unit pool and data-
routing logic. DRFM will be particularly beneficial for reducing
the interconnect complexity in FPGA designs.

ii) The properties of DRFM are investigated, and an explicit opti-
mization goal, the total number of inter-island connections, is pro-
posed for minimizing interconnect and multiplexor complexity.

iii) A resource binding algorithm is proposed that targets DRFMs
to minimize the inter-island connections directly.

The organization of the paper is as follows. After the discussion
on related work in Section 2, the DRFM concept is presented in
Section 3. Following the preliminaries and problem formulation in
Section 4, the DRFM binding algorithm is discussed in Section 5.
Section 6 discusses how to extend our approach to handle gener-
alized cases. Experimental results are presented in Section 7, fol-
lowed by conclusions in Section 8.

2. RELATED WORK
There is extensive literature on general binding algorithms in

high-level synthesis [8, 11, 38]. The previous work can be roughly
categorized into two major groups. The first group performs simul-
taneous functional unit and register binding. Representative algo-
rithms include simulated annealing [5, 9, 24], simulated evolution
[29], and integer linear programming (ILP) [13, 35]. Since the sub-
tasks of behavioral synthesis are highly interrelated, simultaneous
optimization approaches try to consider all the involved optimiza-
tion parameters together for globally better results. However, the
major concern for these algorithms is their scalability towards op-
timizing large designs. The second group solves register and func-
tional unit binding separately. Representative algorithms include
clique partitioning [39], weighted bipartite-matching [16], and net-
work flow [22, 2, 12]. These algorithms may achieve very good
results for the single task at hand, but it is unclear how much gain
can be relayed to the final product.

The increasing interconnect effect encourages the research on
architectures that exploit the physical locality by operating on data
close to where it is stored. Examples of this are the multiclus-
ter architecture [10] and the multicomputer processor-DRAM chip
model [7]. In behavior synthesis research, [18] and [21] proposed
a distributed-register architecture, where registers are distributed
so that each functional unit can perform a computation by read-
ing/writing data from/to the local dedicated registers. Data trans-
fers between different functional units are regarded as global com-
munications that may take multiple cyclesFurther improvement is
shown in [6], which presents a Regular Distributed Register (RDR)
microarchitecture and an architectural synthesis methodology, with
the emphasis on multicycle on-chip communication for synchronous
designs. However, these microarchitectures do not use register files
specifically or the on-chip embedded memories for register-file im-
plementation.

There are previous research projects related to register file ar-
chitecture in behavior synthesis. The developers of the Hyper sys-
tem [34] proposed to use a register file to replace the cluster of
discrete registers driving each multiplexor (if feasible). However,
the register files are introduced only during the post-process after
traditional binding is accomplished, and the authors did not have a
register-file-based microarchitecture in mind before this step. Since
a good interconnect structure using discrete registers is not neces-
sarily good for a register-file-based microarchitecture, opportuni-
ties for optimizing interconnects and multiplexors may be lost in
this approach. A simple example is illustrated in Fig. 2. Suppose
we are provided with only 1-write-port register files, binding so-
lution (c) uses a register file derived from the traditional binding
(a,b), and reduces the 3-to-1 multiplexor to a 2-to-1 multiplexor.
Note that registers 1 and 2 cannot be grouped into a register file
since they have a “write" competition at a control step, as do reg-
isters 2 and 3. The more aggressive binding solution, Fig. 2(d,e),
uses two distributed register files by taking our approach (discussed
in later sections), and eliminates one multiplexor. Note that solu-
tion (d) introduces a new register element 4 which replaces register
1 at control step 3 in Fig. 2(a).

There has been research that focuses on the synthesis for min-
imizing register file (or memory module) numbers or port num-
bers [28, 27]. Many distributed-storage approaches were proposed
to overcome the drawbacks of centralized storage organizations in
the architectural synthesis domain. A sequencer-based architecture
is proposed in [1], where a sequencer is either a stack or queue. A
data routing approach in [26] tries to find better ways to transfer
data among datapath components to reduce interconnect complex-
ity. A distributed VLIW architecture is discussed in [17], and ap-
plications are mapped onto this architecture by fully exploring the
temporal and spacial locality of both computations and communi-
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Figure 2: Three binding solutions for the same scheduled
DFG. (a) A scheduled DFG marked with binding informa-
tion obtained from a traditional binding approach; (b) The
discrete-register-based binding according to (a); (c) The bind-
ing using a register file derived from (b); (d) The scheduled
DFG marked with binding information obtained from our
distributed-register-file-based approach; (e) The binding de-
rived from (d).

cations. These approaches focus on scheduling techniques, while
none of them focus on the resource binding stage. In [23], the au-
thors applied interconnect minimization techniques during variable
allocation (after operation binding) for datapaths with multi-port
memory modules. Our approach differs from [23] in that we con-
sider the bindings for operations and variables together in a unified
way, targeting an island-based microarchitecture template.

3. DISTRIBUTED REGISTER-FILE
MICROARCHITECTURE

The essential insight behind many approaches discussed in Sec-
tion 2 is that communication should be localized as much as pos-
sible to minimize the interconnect effect. With a similar insight in
mind, we present a distributed register-file microarchitecture (DRFM)
for resource binding in behavior synthesis.

Fig. 3 presents one of the multiple computational islands of this
microarchitecture. Each island contains a local register file (LRF),
a functional unit pool (FUP), and data-routing logic. The LRF
plays a key role in an island, since it is used to store the value pro-
duced from the internal FUP of the island. The LRF also provides
data to the FUPs in this and the external islands. Data-routing logic
is, as implied by its name, used for routing data from external is-
lands. The multiplexors on the front of the FUP may be used to se-
lect correct data, either from the LRF or data-routing logic, at each
control step. Note that these multiplexors if used, are usually much
smaller compared with those in the datapath using discrete regis-
ters. Hereafter, let M = {I1, ...,IK} denote a DRFM instance with
K islands. Suppose I is an island, we use LRF(I ) and FUP(I ) to
represent its LRF and FUP, respectively.

For simplicity, we will first present the ideal DRFM configura-
tion, where each LRF is restricted to only 1-write-port but there is
no restriction on the read-port number, and no data replication is
allowed, i.e., a variable can only be stored in one register element
of a fixed register file during its lifetime. Generalized cases will be
discussed in Section 6.

DRFM provides many advantages in behavior synthesis. First,
it is a semi-regular microarchitecture template. Although it has
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Figure 3: Illustration of an island in a distributed register-file
microarchitecture (DRFM) instance.

a write-port restriction on each LRF, it provides much more flex-
ibility than the traditional VLIW and DSP architectures because
DRFM has no restriction on data-routing structures and other con-
figurations of the LRF and FUP. The size and configuration of the
islands may be unbalanced to fit the application behavior. The flex-
ible configurations should be determined by the applications and
synthesis algorithms. Second, DRFM provides a template and ex-
plicit optimization goals for synthesis algorithms. Conceptually
it encourages a binding of computations with their related data
closely within one island, and allows synthesis algorithms to fo-
cus on global inter-island communications. In particular, the data-
routing logic should be optimized by any synthesis algorithm tar-
geting DRFMs. Last, modern FPGA platforms should be very ef-
ficient for implementing DRFMs, given their rich on-chip memory
resource.

4. PRELIMINARIES AND PROBLEM
FORMULATION

The behavioral kernels of an application to be synthesized are
represented as data-flow graphs (DFGs). A DFG is a directed
acyclic graph (DAG), G(V,E), where every node represents a com-
putational operation, such as an addition or a multiplication, and
every directed edge (u,v) represents a dataflow produced by oper-
ation u and consumed by v. In a scheduled DFG, every operation
is assigned into a control step (c-step). Hereafter, without explicit
mention, we assume simplified DFGs, where each operation takes
exactly one c-step and produces exactly one output variable, and
where all the nodes are functionally compatible. (Extensions to
general cases are straightforward and omitted in the paper.) We use
the same notation for an operation and the variable it produces.

DEFINITION 1. In a scheduled DFG G, let T (v) denote the c-
step where v is scheduled. Operation u is compatible to v, repre-
sented as u � v, if T (u) < T (v). The � relation is a partial order.
The compatibility graph with respect to scheduled DFG G(V,E) is
denoted as Gc(V,Ec), where Ec is called the compatibility-edge set,
and Ec = {(u,v)|u � v,∀u,v ∈V}.

In the scheduled DFG of Fig. 4, there are compatibility edges
(v1,v2, and (v7,v10, etc., which are not explicitly drawn.

DEFINITION 2. Operations u and v are incompatible, denoted
as u ↔ v, if there is no compatibility edge (u,v) or (v,u) in Gc.
Obviously, u ↔ v if and only if T (u) = T (v).

DEFINITION 3. The lifetime of variable u, denoted as L(u), is
defined as the c-step interval from its generation to its last con-
sumption. Variables u and v are lifetime-conflicting, denoted as
u �� v, if and only if their lifetimes overlap.
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Figure 4: A scheduled data-flow graph and four node-disjoint
chains (compatibility edges are not drawn explicitly).

In the scheduled DFG of Fig. 4, L(v1) = [2,4], L(v6) = [2,3],
and L(v9) = [4,4]. Obviously, v1 �� v6 and v1 �� v9.

In a valid resource binding of a scheduled DFG G, each opera-
tion is assigned to a functional unit, and each variable is assigned to
a register. Two operations cannot share one functional unit if they
are incompatible. Two variables cannot share one register if they
are lifetime-conflicting. In the DFG of Fig. 4, operations v1 and v6
cannot share a functional unit, while variables v6 and v9 may share
a register to hold their value since their lifetimes are disjointed.

A valid binding defines a complete datapath, including the mul-
tiplexors required to connect the functional units and registers. In
addition to the numbers of the functional units and registers, the
multiplexor structures usually impact the quality of the result dra-
matically.

4.1 DRFM Binding and Its Properties
Using the definition of DRFM in Section 3, within island I , a lo-

cal operation issued in functional unit pool FUP(I ) always writes
its output variable into local register file LRF(I ), which has only
one write port. Therefore, in a valid resource binding of G onto
DRFM M, if operation v is assigned to FUP(I ), then its result
variable must be stored into LRF(I ) at c-step T (v), and any other
operation cannot write data into LRF(I ) at T (v). Noting this, and
if we ignore the detailed way in which variables are allocated and
addressed within a register file, we have the following definition.

DEFINITION 4. A resource binding of scheduled DFG G(V,E)
on DRFM M, denoted as B(G,M), is a function B : V → M. B is
feasible if and only if u ↔ v implies B(u) �= B(v), ∀u,v ∈V .

Definition 4 is simpler than the traditional definition of discrete-
register-based binding because it unifies the binding solution for
both operations and variables. It is a hint leading to a cleaner prob-
lem formulation on DRFM binding.

PROBLEM 1. General DRFM Binding Problem. Given sched-
uled DFG G and DRFM M, find a feasible resource binding B(G,M),
so that its quality is optimized.

However, in practice, the quality of a binding B(G,M), i.e., the
resulting DRFM configuration, is determined by several interre-
lated factors, such as the number of islands, the size of each LRF,
and the organizations of the FUPs and the data-routing logic. Fur-
thermore, the cost of a DRFM configuration is platform dependent,
since different technologies have very different costs for imple-
menting the same DRFM instance. Therefore, without additional
constraints given, Problem 1 is vague and hard for optimization.

Checking the properties of a DRFM binding, we expect a relaxed
but more concrete formulation. Using Definition 4, it is easy to
show that for any feasible B(G,M), the operations bound in the

same island must be in a chain in Gc. Since each island has only
one write port in its LRF, and each operation exactly takes one c-
step and produces one variable, the operations bound in the same
FUP must be scheduled into different c-steps. If the operations are
sorted according to their c-steps, the compatibility edges among
adjacent operations will form a chain in Gc.

Hereafter, for binding solution B(G,M), we will not distinguish
an island and its associated chain in Gc; i.e., I = B(v) represents
both the island to which v is bound and the chain in Gc that contains
v. For the example in Fig. 4, chain Ia = {v1,v2,v3,v4} is bound
into an island, as is chain Ic = {v6,v7,v8}. It is obvious that in this
example, four islands are required to produce a feasible binding,
since there are at least four chains in this scheduled DFG. This is
also indicated by the following property.

THEOREM 1. B(G,M) will not be feasible if the number of the
islands in M is less than the minimum number of node-disjoint
chains in Gc.

4.2 Inter-Island Connections

DEFINITION 5. In a feasible DRFM binding solution B(G,M),
for dataflow (u,v), if B(u) �= B(v), the dataflow is an inter-chain
or global dataflow; otherwise it is a intra-chain or local dataflow.

Let us suppose that in Fig. 4 the binding solution corresponds
to the four shaded chains (islands), {Ia,Ib,Ic,Id}; the dataflow
edges (v1,v4), (v6,v7), etc., are intra-chain dataflows; and (v1,v10),
(v6,v9), etc., are inter-chain dataflows.

Intuitively, the local dataflows within a chain are carried through
local physical connections between the LRF and FUP, while inter-
chain dataflows have to be carried by global inter-island connec-
tions. Since DRFM assumes point-to-point inter-island connec-
tions, two dataflows can share a global connection, if and only if
they are produced from a common chain and consumed in another
common chain at different c-steps. In the same example of Fig. 4,
dataflows (v1,v7) and (v2,v8) may share a global connection be-
tween island Ia and Ic. In contrast, dataflows (v6,v9) and (v7,v9)
must use two different global connections between Ic and Id since
they are consumed at the same c-step.

DEFINITION 6. In a DRFM binding B(G,M), between islands
Ii and I j , a connection can be shared by two dataflows if their
consumer operations are different and compatible. The number of
inter-island connections (IICs) between islands Ii and I j , denoted
as IICB (Ii,I j), is the minimum number of connections required to
carry the dataflows between the islands (chains) under the shar-
ing conditions. The total number of inter-island connections of
B(G,M) is defined as IIC(B) = ∑∀Ii,I j∈M,Ii �=I j

IICB (Ii,I j).

Using this definition, it is not difficult to see that in Fig. 4, IIC =
5, given that dataflows (v1,v7) and (v2,v8) share an inter-island
connection, while (v6,v9) and (v7,v9) cannot share one. In gen-
eral, the incompatibility-relations among the operations within one
island are sparse, and the IIC numbers can be computed fairly fast.

The inter-island connections are critical to the final DRFM qual-
ity (also shown in Section 7.1), since for any feasible B(G,M), the
input-port number of island I is equal to the number of inter-island
connections feeding into I . For example, island A in Fig. 3 has four
input ports because there are four global connections feeding into
it. This fact implies that the complexity of the data-routing logic
is determined by the inter-island connections, and it suggests the
following relaxed problem formulation.

PROBLEM 2. DRFM Binding for Minimum Inter-Island Con-
nections. Given scheduled DFG G(V,E) and DRFM M, find a fea-
sible resource binding B(G,M) so that IIC(B) is minimized.
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5. AN ITERATIVE DRFM BINDING
ALGORITHM

However, Problem 2 is still not easier to solve than the traditional
binding problem for connectivity optimization [32]. It is not diffi-
cult to show that a port-assignment problem of three-port memories
(NP-complete problem PA3U in [31]) can be reduced to a restricted
version of Problem 2. The detailed proof is omitted in this pa-
per, and the readers are referred to [31] and [32] for similar proofs.
In addition, the global connections among DRFM islands may be
shared by multiple dataflow edges (see Section 4.2); and this prop-
erty makes Problem 2 different from the classic graph partitioning
problem, where the edges are static.

We apply an iterative control-step-by-control-step heuristic ap-
proach to solving Problem 2. Each iteration contains two phases:
horizontal bipartite-matching-based assignment and vertical local-
search-based refinement. The algorithm assumes that the island
number K is given for a DRFM configuration M = {I1, ...,IK}.
In practice, the island number may be provided by designers as
a constraint, or by an aggressive search for an “optimal" number
by calling the algorithm multiple times. Each iteration of the al-
gorithm takes in the current partial binding solution B ′(G,M) and
constructs an updated solution. The algorithm terminates when a
complete binding is obtained.

5.1 Horizontal Assignment
In the horizontal phase, we apply a minimum-weighted bipar-

tite matching algorithm to obtain a reasonable initial solution for
the second phase. A similar idea was presented in [16] for general
datapath allocation. Each horizontal phase considers the set of op-
erations Θ within one c-step. Since the operations in Θ are pairwise
incompatible, they must be assigned onto different islands.

Given Θ and the current partial binding B ′(G,M), we construct
a weighted bipartite graph Gbp(VΘ

S
VM,VΘ ×VM) as follows:

Step 1. For each operation v there is a node n(v) ∈ VΘ, and for
each island I there is a node m(I ) ∈VM.

Step 2. For each possible assignment of v to island I , build an
edge (n(v),m(I )) ∈VΘ ×VM.

Step 3. Assign weight for each edge (n(v),m(I )). The weight
is the number of the new inter-island connections introduced by the
assignment of v to I .

A minimum-weighted bipartite matching Ematch ⊆ VΘ ×VM for
Gbp can be computed optimally in O(|VM|3) [33]. For each edge in
(n(v),m(I )) ∈ Ematch, we bind operation v to island I and update
B ′ accordingly.

Obviously, any matching Ematch of bipartite graph Gbp corre-
sponds to a feasible binding of Θ to M, and the total weight of
Ematch equals the cost of the attempted binding, or the number
of newly introduced inter-island connections. Therefore, the up-
dated binding solution produced by the minimum-weighted bipar-
tite matching is optimal among all the possible bindings of Θ to M,
as in the following conclusion.

THEOREM 2. The binding of Θ to M produced by the above
algorithm introduces a minimum number of new inter-island con-
nections to the current partial DRFM-binding solution.

However, the matching algorithm performs the binding in an
“horizontal" fashion in the scheduled DFG, and cannot predict its
impact on the future iterations.

5.2 Vertical Refinement
At the second phase of each iteration, we apply a vertical local-

search-based refinement for the current partial solution. The re-

finement process uses an idea similar to the Kernighan-Lin algo-
rithm [19], despite the fundamental difference between our prob-
lem and the classic graph-partitioning problem. It reassigns an op-
eration to a different chain in order to overcome the “greediness"
introduced by the horizontal phase, while the refinement phase ben-
efits in runtime from the good initial solution constructed in the
horizontal assignment phase. The algorithm is described in the fol-
lowing steps:

Step 1. Set all the operations in the current partial solution to be
unlocked for movement.

Step 2. Find a movement of an unlocked operation from its cur-
rent chain to another such that the gain, i.e., IIC reduction, is the
maximum (even if the gain is negative) among all of the possible
movements. This operation is locked then, and the movement his-
tory is recorded.

Step 3. If the previous movement introduces an incompatibility
in the binding, we apply the same movement as in Step 2 for the
unlocked operation of the incompatible pair. Repeat Step 3 until no
incompatibility is introduced.

Step 4. Repeat Steps 2 to 3 until all operations are locked.
Step 5. Find the first L movements which will not introduce

incompatibility, such that their total gain is the maximum partial
sum of the entire historical movement list. These L movements are
committed, and the rest are recovered.

Step 6. Repeat Steps 1 to 5 until no movement is committed.
The entire binding algorithm calls the horizontal assignment and

vertical refinement in an interleaved fashion; each iteration adds a
set of operations within one control step, and gradually constructs
the complete solution.

The readers are encouraged to apply this algorithm on the simple
example in Fig. 4. One optimal solution will have operation v9
assigned to chain Ic, instead of Id , and finally IIC = 4.

After the operation(variable)-to-island binding, we perform a de-
tailed binding within each island. In particular, a register file is
allocated for the set of variables assigned to it. Traditional regis-
ter binding techniques, such as graph-coloring and left-edge algo-
rithms [8], may be conducted to minimize the size of each register
file by sharing a register element for multiple compatible variables.
Functional unit binding is trivial since the operations within an is-
land are pairwise c-step-compatible.

Although we present the DRFM binding algorithm for data-flow
graph, there is no fundamental difficulty to extend it for general
control-data-flow graphs (CDFGs), since the algorithm itself does
not require the directed-acyclic property for the underlying sched-
uled graph (a scheduled CDFG will be a general state-transition
diagram (STG)). However, the lifetime and compatibility analysis
should be more sophisticated for a scheduled CDFG over DFG. In
addition, in a CDFG-to-DRFM binding solution, the operations as-
signed into the same island may form a node-disjoint cycle, instead
of a simple chain in the DFG case.

6. EXTENSIONS TO GENERAL CASES
The previous algorithm produces a feasible DRFM binding solu-

tion. However, it ignores the read-port limitations of register files.
In a c-step, if several operations in multiple chains consume the
variables produced from the same chain I , then multiple read ports
are needed by LRF(I ). As shown in Fig. 4, on c-step 4, four op-
erations access three variables v1, v2, and v3, which are produced
from chain Ia; therefore LRF(Ia) needs at least three read ports.

There is an opportunity to reduce the read-port number require-
ment by spreading simultaneous reads throughout different c-steps,
using the slacks of dataflows. In the DFG of Fig. 4, for dataflow
(v2,v8), which is produced in chain Ia and consumed in Ic, if we
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Table 2: Sensitivity of QoR to Inter-Island Connections on De-
sign DIR

IIC MUX SLICE LUT FF D(ns)
26 89 451 707 263 9.61

27(3.8%) 93(4.5%) 482(6.9%) 787 257 10.14
36(38%) 102(15%) 616(37%) 1046 263 10.77
39(50%) 108(21%) 658(46%) 1110 271 10.02

could transfer the value from LRF(Ia) to some buffer in Ic at c-step
3, then at c-step 4 v8 can be accessed from the local buffer instead
of LRF(Ia). This way, a read port is saved for LRF(Ia).

To support this mechanism, we need refinement on the DRFM to
allow selective variable replication. In particular, we add a set of
storage elements, namely input buffers, into the data-routing logic
for each island, and thus allow direct data routes from an external
LRF to the input buffer, as shown in Fig. 3. A scheduling algorithm
for the data transfers is applied to meet the read-port constraints and
to minimize the input buffers.

In addition, other general cases in practical applications, such
as multicycle/pipelined operations, operation chaining, and multi-
ple operation types, should be handled carefully in the real DRFM
binding implementation.

7. EXPERIMENTAL RESULTS
The binding algorithms for DRFMs are implemented in UCLA

xPilot synthesis framework [4]. In this framework a behavioral de-
scription in C is first parsed and optimized into a data-flow graph.
The synthesis engine begins with latency-driven scheduling and
generates a scheduled DFG. The DRFM binding algorithm dis-
cussed in Section 5 is then applied on the scheduled DFG and a
set of DRFM templates to explore a desired DRFM binding. At
last, a backend program generates VHDL RTL, which is accepted
by existing logic synthesis and physical design tools. This experi-
ment targets on the Xilinx Virtex II FPGA platform [15], using ISE
v7.1 as the downstream tool.

The test cases, PR, LEE, CHEN, and DIR, are different discrete-
cosine transformation algorithms, featuring extensive addition, sub-
traction and multiplication operations.

7.1 Sensitivity to Inter-Island Connections
TABLE 2 shows how global inter-island connections are corre-

lated with the QoR on design DIR. For the same scheduling result,
we perform four different DRFM binding approaches: one random
binding approach and the optimizing algorithm with three different
efforts. The first two columns of TABLE 2 list the inter-island con-
nection numbers (IIC) and total multiplexer-input counts (MUX)
of the resulting datapath, reported by our synthesis system. The
third to fifth columns are the resource results reported by Xilinx
ISE after place-and-route, namely the slice, LUT, and flip-flop (FF)
counts. In the Virtex II device, a slice contains two LUTs and two
FFs. The slice count represents the total resource usage, and the
LUT and FF numbers show the resource distribution. The last col-
umn, D, is the achievable clock period (or path delay) reported by
ISE’s static timing analyzer. We set the timing constraints to 8ns
for all the experiments.

Overall, the table shows a consistently proportional relation among
the inter-island connection numbers, multiplexer-input counts, and
the design area numbers (increased ratios shown in the parenthe-
ses). The delay numbers vary within a reasonable range, while the
minimal-area solution has the best performance. The results sug-
gest that the minimization of the inter-island connections is indeed
the right optimization goal for resource binding on DRFMs.

Table 3: Comparisons of Three Approaches: Discrete-Register
Binding, Unoptimized DRFM Binding, and Optimized DRFM
Binding

IIC MUX SLICE LUT FF/RAM D(ns)

PR
- 123 807 1030 694/0 11.7

27 103 404(50%) 713 179/6 11.2
(86,7) 24 90 369(8.7%) 640 162/7 10.2

LEE
- 123 717 988 576/0 12.3

25 107 382(47%) 689 184/6 11.5
(98,7) 23 93 333(13%) 599 178/5 11.0

CHEN
- 132 1032 1335 866/0 12.3

40 108 540(48%) 976 118/10 12.2
(102,10) 28 88 427(21%) 728 140/10 11.3

DIR
- 126 838 1210 670/0 9.6

39 108 658(21%) 1110 271/5 10.0
(228,10) 26 89 451(31%) 707 263/5 9.6

7.2 Comparisons of QoR
For a fair comparison, we implemented a discrete-register bind-

ing algorithm presented in [3], which in turn is an enhancement
of the binding algorithm in [16] and uses the bipartite-weighted-
matching heuristic to minimize multiplexors for low-power FPGA
designs. As reported in [3], the binding results are much better than
the traditional left-edge algorithm [8], which allocates a minimum
number of registers but frequently generates complex multiplexor
structures. In addition, we ran through another unoptimized DRFM
binding flow for comparison. This unoptimized flow performs a
random assignment of the operations onto the given islands, only
complying with the compatibility relations.

TABLE 3 shows the comparisons of the QoR for the three flows.
For each test case, the first row shows the results of the discrete-
register-based approach, and the second and third rows are the re-
sults of the DRFM bindings without and with optimizations, re-
spectively. Each cell in the first column contains the design name
and a parenthesized pair. In each pair, the first number is the op-
eration count of the DFG, and the second is the resulting island
number. In these experiments, the island numbers are determined
by the number of node-disjoint chains of a scheduled DFG, as dis-
cussed in Section 4. In practice, the island number may be specified
by designers as a constraint, or determined by a search automati-
cally. The rest of the columns have the same meaning as those in
TABLE 2, except that column “FF/RAM" also lists the number of
RAM blocks used to implement register files. Note that the results
for discrete-register datapaths use no RAM blocks, since no register
file is applied. The table also shows that the RAM block numbers
may not equal the resulting island number, since occasionally the
variables produced in an island may be lifetime-compatible with
each other, and thus they can be merged into a single register. In
other words, an LRF may be reduced into a register, so that no
RAM block is needed.

On average for this set of test cases, the unoptimized DRFM
binding results achieve a 41% area reduction over the discrete-
register-based approach. Between the second and third rows for
each test cases, the slice counts consistently reflect the impact of
the inter-island connections and multiplexor counts. Further area
reductions achieved by the optimized approach vary from 8.7% to
31%, and are 18% on average. Finally, the optimized DRFM bind-
ing approach achieves more than 2X logic area reduction when
compared with the discrete-register-based approach, with a 7.8%
clock-period reduction on average.

8. CONCLUSIONS
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The distributed register-file microarchitecture (DRFM) enables
efficient use of distributed embedded memory blocks in modern
FPGAs. It provides a useful architectural template for behavior
synthesis and a direct optimization objective: minimizing inter-
island connections. A novel DRFM binding algorithm is presented
towards this objective directly. On the Xilinx Virtex II device,
our experiments show a 2X logic area reduction, with a 7.8% im-
provement in design performance, when compared with a tradi-
tional discrete-register-based approach. The results are consistent
with the significant reductions on global-interconnections and mul-
tiplexors achieved by our approach.
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