
High-Level Synthesis Challenges and Solutions
for a Dynamically Reconfigurable Processor

Takao Toi, Noritsugu Nakamura, Yoshinosuke Kato, Toru Awashima, and Kazutoshi Wakabayashi

System Devices Research Laboratories, NEC Corporation
Li Jing

NEC Informatec Systems, Ltd.
1753 Shimonumabe, Nakahara, Kawasaki, Kanagawa 211-8666, Japan

info@drp.jp.nec.com

Abstract

A dynamically reconfigurable processor (DRP) is designed to
achieve high area efficiency by switching reconfigurable data
paths dynamically. Our DRP architecture has a stand alone finite
state machine and that switches “contexts” consisting of many
operational and storage units in processing elements (PEs) and
wires between them. Utilizing the resources not only in two
spatial dimensions but also vertically (time-multiplexed) under
accurate timing and area constraints imposes challenges for a
high-level synthesizer for the DRP. We describe a C-based
behavioral synthesis method which features data path generation
with clock speed optimization. This is achieved by including the
overhead of selectors in the scheduling algorithm, and
considering a wire delay at each PE level. A new technique is
introduced to achieve high area efficiency. It works by effectively
allocating multiple steps into the context. From the original high-
level synthesizer for application-specific integrated circuits, some
of the basic rules such as operator and register sharing were
completely changed due to the coarse grained and multi-context
architecture. Experimental results show that the generated data
paths are highly parallelized and well balanced between contexts.
The delay controllability enables the highest throughput point to
be found more easily.

Keywords: High-level Synthesis, Reconfigurable Processor,
Dynamic Reconfiguration

1. Introduction

A dynamically reconfigurable processor (DRP) has a new
programmable architecture that enables switching of time-
multiplexed data paths. Each data path is configured as a
“context” consisting of many operational and storage units and
the wire connections between them. This enables the DRP to
execute highly complex and parallel data paths.

The continuing growth in the demand for flexible, low power,
and high-performance processors has led to the development of
several new types of DRPs, such as Chameleon [1], IPFlex's
DAP/DNA [2], Elixent's D-Fabrix, PACT's XPP [3], and others
[4]. Note that there is another approach called configurable
processor which adds customizable functions to prefixed CPU
instructions such as Tensilica’s Xtensa and Synfora’s PICO.

However, these new processors must be competitive with existing
programmable chips, such as CPUs, digital signal processors
(DSPs), and field programmable gate arrays (FPGAs).

The compiler plays an important role in this. There are two
major challenges in developing compilers for DRPs. First, to
compete with CPUs or DSPs, high programmability must be
maintained while still having the strength of the parallelism of the
wired logic. This is usually addressed during the design stage
when developing a microprocessor. Consequently, the compiler
for reconfigurable fabric plays a larger role because the boundary
between the chip design and compiler shifts toward the compiler
as mentioned in the report on Berkeley’s BRASS project [5].
Second, to compete with FPGAs, the compiler must be convenient
to use, while still achieving high area efficiency through the
dynamic reuse of resources. While the area efficiency of DRPs
depends on the nature of the chip, it largely depends on the
compiler’s performance. Compiler developers should be able to
meet these challenges through a concerted effort with the new
chip architecture development.

However, existing DRP compiles do not adequately meet these
challenges. Some use schematic entry, one uses its own
proprietary language at the register-transfer-level (RTL), and a
limited “C language” can be used only for data path generation at
the best [6]. A designer who uses these tools still has to take care
of traditional problems such as meeting timing and area
constraints, as well as the additional problem of utilizing the
resources not only two dimensionally but also vertically (time-
multiplexed).

High-level Synthesizer

FSM
Context #n

C/BDL Integrated
Design

Environment

Verilog
Simulator

Multi-context Verilog Modules

STC Code PE Code

DRP Chip

On-chip
Source-level

Debugger

Test Bench
Generator

Data-path
Viewer

FSM Viewer

Place & Route Tool

Technology Mapping Tool

Tool Launcher
with Iterative

Optimizer

Scheduling
Result Viewer

Figure 1. Compilation flow and design environment for DRP.

We have developed an integrated C compiler for the DRP.
Like a C compiler for a microprocessor, our compiler includes the
entire system environment. As shown in Fig. 1, it includes a high-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

702

level synthesizer (HLS), a technology mapping tool, a place and
route tool, an on-chip source-level debugger, and an integrated
development environment (IDE) with a graphical user interface.
In this paper, we mainly focus on area efficiency and complying
timing requirement on the HLS but not on a special technique to
gain performance.

Comparing multi-context type DRPs to single context type
reconfigurable devices such as FPGAs, although these two
architectures seem to be different, the performance would be not
so different for two reasons. At first, custom arithmetic logic
operations are only slightly faster than look-up table (LUT) based
arithmetic operation with dedicated architectural features of
FPGAs [7]. Secondly and more importantly, wire delay is
dominant factor in this type of reconfigurable device. FPGAs and
DRPs have the same wiring structure which has many switches
between segmented wires. If there is no limitation on the area and
using the same process technology, the performance of the same
circuit design would not be the same but not quite different. Their
performances mainly depend on parallelizing techniques used in a
circuit design. These techniques are generally applicable to any
wired logic devices including FPGAs and DRPs.

Although we don’t focus on parallelizing technique, we can
not neglect the timing issue. It is difficult to predict the delay at
HLS level for fine grained architectures such as FPGAs. The
delay on a critical path mainly depends on the level of look-up
table but its level is subject to change in logic optimization. On
the other hand, a coarse grained architecture has a chance to
control the delay more accurately. In order to reduce the size of
configuration memory, all the architectures [1]-[4] introduced
here are coarse grained although their granularities depend on the
application they focus on. The level of PE in HLS can be
constrained since few logic optimization techniques can be
applied. There are still error factors in placement and routing
needless to add.

The main characteristic of the DRPs is its high area efficiency
which is achieved by switching context dynamically. The
compiler must fill the context not only in two spatial dimensions
but also vertically (time-multiplexed). Ideally, all the resources
are equally used in contexts. But in most cases, it is difficult to
balance them. We solve this problem by combining contexts to
maximize resources at any one context without exceeding
allowable maximum for that context.

2. Dynamically reconfigurable processor

A DRP is a coarse-grained, multi-context, reconfigurable core
that can be integrated with an application-specific integrated
circuit (ASIC). Most other reconfigurable architectures, including
the FPGA, use data path to synthesize a sequencer [8], making it
difficult to control the sequencer from outside the chip. In some
DRP architectures, an embedded CPU is used instead of a
sequencer [2], but a CPU is too slow to handle state transition of
the data paths. One architectural characteristic of our DRP [4] is
that the sequencer is not synthesized using the data path; it is a
stand-alone unit. It is thus fast enough and is controllable
thorough a bus. Many processing elements (PEs) and memory
units are arranged on the DRP. Both the operations to perform and
the wires to use between the PEs and other resources, such as the
on-chip memories and external ports, are selected based on
configuration codes stored in each PE. The configuration is
selected within one clock cycle (less than a nanosecond) by the
sequencer, which is called a “state transition controller (STC)”.

A primitive DRP unit is called a “tile”, and a DRP core
consists of an arbitrary number of tiles. In our prototype “DRP-1”,
there are eight tiles on the chip. As shown in Fig. 2, each tile
consists of 64 PEs, an STC, and one- or two-port on-chip
embedded memory units around the edge. A VMEM, for example,
is an 8-bit, 256-word synchronized memory with one data input
and two data outputs. Both the bit width and the depth can be
expanded by using four units without occupying any PEs. The
STC, located at the center of the tile, controls both the context and
state transition based on an internal state transition table. Our
DRP can execute multiple processes concurrently up to the
number of tiles.

As mentioned in the introduction, in order to reduce the size of
configuration memory, our DRP is 1/8 bit granularity architecture.
As shown in Fig. 3, each PE has an 8-bit arithmetic logic unit
(ALU), a data manipulation unit (DMU) for both 8-bit shift/mask
operations and 1-bit logic operations, an 8-bit register file unit
(RFU), an 8-bit flip-flop unit (FFU), and wire switches. Up to 16
different configuration codes are stored on-chip. Additional codes
can be downloaded on-the-fly from external memory.

State Transition Controller

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

VVMEM VVMEM VVMEM VVMEMVVMEM VVMEM VVMEM VVMEM

VVMEM VVMEM VVMEM VVMEMVVMEM VVMEM VVMEM VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

VVMEM

State Transition Controller

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

PE PE PE PE PE PE PE PEPE PE PE PE PE PE PE PE

VVMEM VVMEM VMEM VMEMHMEM HMEM HMEM HMEM

VMEM VMEM VMEM VMEMHMEM HMEM HMEM HMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

VMEM

Figure 2. Structure of tile in DRP-1.

D
at

a_
in

(8
b
x2

)

D
at

a_
o
u
t

(8
b
)

Flag_in

Flag_out

In
st

ru
ct

io
n
s

A
LU

R
eg

is
te

r
Fi

le
Data WireFlag WireIP

D
M

U

D
at

a_
in

(8
b
x2

)

D
at

a_
o
u
t

(8
b
)

Flag_in

Flag_out

In
st

ru
ct

io
n
s

A
LU

R
eg

is
te

r
Fi

le
Data WireFlag WireIP

D
M

U

Figure 3. PE architecture.

3. High-level synthesis for DRP

As silicon process technology progresses, it has become
challenging to design the complex logic circuits. High-level
synthesis has attracted much attention for handling the complex
design of reconfigurable chips [9][10][11]. Compared to a RTL
design, there are several advantages to use C-based HLS in the
compilation flow for the DRP. Designers can write a code more
efficiently by using a higher abstraction level language. When a C
compiler for the CPU is used during design verification flow,
behavioral level simulation is faster than RTL simulation. The C-
source code can be debugged functionally using a sophisticated

703

source-level debugger for a CPU. It is more important for
reconfigurable chips to shorten the design turn-around time than
ASICs which takes a longer time to be fabricated.

We developed a C-based HLS as a front-end tool for the
compilation flow. It is based on our proprietary HLS for ASICs
[12][13]. The tool extracts instances of parallelism by generating
a control data-flow graph (CDFG) that splits up the description of
each step based on given constraints. Unlike microprocessors, the
clock frequency of the DRP varies since each resource has its own
delay, and the PEs can be chained without inserting a register or
memory. Therefore, HLS with an automatic scheduler is useful
for controlling delays on the data paths.

Moreover, HLS usually extracts both data path and finite state
machine (FSM) from the description. This corresponds to the
DRP architecture in which the data paths and STC are handled
separately. Right from the start, we designed the DRP architecture
with this C-based HLS in mind.

3.1. Allocating multiple contexts

Our DRP compiler inputs C, or behavioral design language
(BDL), and outputs downloadable configuration code (STC Code
and PE Code shown in Fig. 1). The BDL is a subset/superset of
standard C language. For example, hardware-specific notation,
input and output port declarations, bit-level extraction, and
concatenation are all BDL extensions. There are some restrictions
which are difficult to realize on hardware such as recursive call
and dynamic memory allocation. Some types of pointer are
supported if they are statically analyzable.

Our HLS for the DRP is a front-end tool that generates “multi-
context Verilog”, in which the contexts are divided into separate
modules. Although the generated Verilog code cannot be
synthesized using generic logic synthesizers, it can be simulated
using an RTL simulator. Figure 4 shows the communication path
between the data-flow graph and the DRP resources. A finite state
machine (FSM) generated by the HLS is mapped onto the STC.
Basically, the steps have a one-to-one relationship with the
contexts. We can treat the context switching mechanism as state
transition, because the STC is fast enough. However, a function
that combines multiple steps into a single context obtains better
area efficiency, as described below.

An operator is mapped onto either the ALU or DMU as an
instruction for that unit. A register is mapped onto either the RFU
or FFU. An array is mapped to either the embedded memory unit
(VMEM, HMEM) or the off-chip memory through an embedded
memory controller, which is automatically selected based on its
depth.

+

+

+

+

-

<

Step 2

Step 1
IN

OUT

Context 1

Context 2

Context 3

Context 4

STC

+

+

-

<

++

CDFG generated by HLS Context-switching image

ALU/DMU

IN

OUT

Step 3

Step 4

RFU
/FFU

Figure 4. Basic relationships between steps and contexts.

3.2. High-level synthesis flow

A block diagram of our HLS is shown on the left in Fig. 5. In
order to shorten synthesis time, the flow is straight forward. The
C/BDL description is translated into a tree-structured control flow
graph (tCFG). Some optimizations, such as constant propagation,
common sub-expression elimination, loop unrolling, in-line
procedure expansion, and dead code elimination, are applied to
the tCFG. A CDFG is generated from the tCFG. Scheduling, data
path allocation, module binding, and control synthesis are
processed using the CDFG. A condition vector list scheduling
(CVLS) algorithm is used to efficiently allocate resource under
the given constraints [14][15]. Other optimizations, such as
redundancy elimination, are applied to the RTL tCFG. Finally, the
internal format is translated into an RTL language.

tCFG

CDFG

CVL Scheduling

Data-path Allocation

Module Allocation

Constraints

Module Lib.

Optimizer

RTL tCFG

Control Synthesis

Register Binding

Translator

Translator

C/BDL

Verilog

To use coarse-grained data path
PE-level decomposition for adder,
subtractor, comparators, barrel-shifter
Shift/Mask instruction assignment for
bit-level manipulation

Additional features for the DRP

For accurate delay and area constraint
at PE level
Two-input selector delay-aware
scheduling
Unit-based area constraint
Wire delay consideration

To use multi-context switching mechanism
with separated FSM
Multiplexer generation only for conditional
use of operators and registers
Multi-context Verilog translation

Share registers and operators
only if these units can be saved

To achieve better area efficiency
with multi-context
Multiple-step-allocation to cope
with unbalanced PE usage

Figure 5. Flow of HLS and additional features for DRP.

4. New challenges in HLS

Some otherwise unimportant issues for ASICs could become
critical problems for our DRP. Still, some problems must be
anticipated. Table 1 summarizes the differences between HLS for
ASICs and for the DRP.

4.1. Context compaction technique

Circuit-size variance between steps is one potential problem.
While this is not an issue for ASIC designs, the variance in the
number of PEs used among steps becomes a problem in the DRP,
especially if we assume a one-to-one relationship between steps
and contexts. This assumption increases the number of unused
PEs in the context. We implemented a synthesis technique called
multiple-step-allocation to achieve higher area efficiency by
utilizing the benefit of having multiple contexts.

If a specified description is scheduled using only a delay
constraint, the number of PEs used in the step could vary. If the
upper limit of the number of the PEs is constrained in the step, an
operation that exceeds the limit slides to the next step. However,
the step might be changeable without reaching the limit. For
instance, since only one access in a clock cycle for each port is
permitted using synchronous memory, if any output data of an
array has a data dependency on the same memory’s input address,
the step is changed because of the data dependency, even though

704

it does not push the limits of any of the constraints. In this case,
the context might only have a few memory accesses, and most of
the PEs are not used. There are several causes of state transition:
(in order of descending priority) 1) control statements including
loops, such as “while” or “goto”; 2) access to synchronous
resources, such as memory or I/O ports; and 3) delays and area
constraints.

 The multiple-step-allocation technique helps reduce the
number of contexts, in which several steps are combined based on
the number of PEs in the step and other constraints. Similar to
single-context devices, this technique uses a multiplexer for
sharing resources, such as the register units, memory units, and
the ports between the steps. A step activation signal for the
multiplexer is sent from the STC, in which a table of the
relationships between steps and contexts is stored. This technique
enables the DRP to store more steps than the number of contexts,
which is limited by the size of the configuration memory in a PE.
Special care must be taken not to increase the delay of the circuit
when inserting the multiplexer. It should not be inserted into a
critical path. Other steps that are not on the longest path can be
combined unless doing so creates a path with a delay that exceeds
that of the critical path. Of course, the number of PEs has to be
within available PEs in the context. Therefore, the number of
multiplexers is estimated each time when combining steps into
various possible combinations. To get the initial data path
information, this technique is applied to the translator for the RTL
tCFG after the shared resources are allocated (Fig.5).

There are two basic methods for combining the steps: 1)
combine consecutive steps and change the context when the
constraint limits are hit; 2) combine as many steps as possible
until limits are hit, regardless of whether it is contiguous. The first
method can reduce the amount of context switching, which
consumes one third to half of the power for this kind of DRP. The
second provides better area efficiency and better reduces the
number of unused PEs than the first by optimizing the step
selection process.

4.2. Wire delays and granularity consideration

In general, the wire delays of reconfigurable devices are much
longer than the operational delays, because they include both
metal wire delays and buffer and tri-state route-switching delays.
Wire delays can account for up to 60% of the overall design

delays in FPGA [16] and are a dominant factor in the performance
of a DRP. Even in HLS for ASICs, wire delays cannot be ignored,
especially for the deeper submicron processes. However, accurate
wire delays can only be obtained after the place and route tool has
finished the static timing analysis. Layout-driven scheduling-
binding synthesis reportedly can avoid time consuming iterations
of the design process [17]. IPFlex [2] avoids this issue
architecturally by guaranteeing the worst-case delay between two
operators in any location and prohibiting PE chaining. By
utilizing coarse-grained data paths, our HLS for the DRP is able
to control the delay of the circuit at the PE level.

Since wire delays are dominant, we focused on them. The
typical wire delay between PEs was added to each operational
delay. It was calculated based on previous experimental
measurement using the place and route tool. Other pre-measured
delays were added to the setup and delay of the embedded
memory units and the delay of external ports because their
placements on the chip are more restricted than those of the PEs.

PE-level decomposition during the pre-scheduling translation
stage takes into account the course grain architecture of the DRP.
Although the DRP basically has an 8-bit granularity architecture,
both the ALU and DMU have 1-bit inputs and output. They are
used for carry-in and carry-out flags, comparison result flags,
logical operations, etc. A 32-bit adder, for instance, is
decomposed into four cascaded 8-bit adders, each of which has
the wire delay. Without this decomposition, the original 32-bit
adder, which has longer wire delays for four wire legs cannot be
scheduled unless it fits within the timing constraint. This
decomposition is applied to C-operators, which are decomposed
into more than one PE level during the pre-scheduling translation
stage. These operators include an adder, a subtractor, comparators,
and a barrel-shifter. With this decomposition, the scheduler can
control the delay more precisely at each PE level, reducing the
number of steps required.

Care must be taken when there is bit-level extraction or
concatenation. Since these operations become the wiring
connection in an ASIC, they do not have to be considered in the
scheduler. The DRP needs a shift/mask instruction in the DMU,
and the delay and area for this instruction must be carefully
considered. In our HLS for the DRP, bit-level extraction or
concatenation that does not align to one or eight bits is
transformed into a shift/mask instruction during the pre-
scheduling translation stage; this instruction is then treated the
same as any other instruction by the scheduler.

4.3. Multiplexer delays in context switching

HLS for single-context devices, such as ASICs or FPGAs,
treats the data path and FSM separately. A generated RTL FSM
is merged into the data path using a logic synthesizer. On the
other hand, multiple contexts must be considered in our HLS for
the DRP, in which the STC is a stand-alone module that handles
context transition and is outside the PE array. This separation
enables the DRP scheduler to treat multiplexing with a completely
new approach.

There are two types of multiplexers: those for resource sharing
among steps and those for conditional branching. The two types
are usually merged for a single-context device. But this can
prevent accurate timing estimation in the scheduler because the
number of inputs for a multiplexer is difficult to predict from only
the CDFG, especially if resources are shared among several steps.
Operator sharing is an effective technique for optimizing the data

Table 1. Differences between HLS for ASICs and for the DRP.

By using selector instruction
in either ALU or DMU
(Must consider delay)

Conditional
expression

Based on number of units
(ALU / DMU / VMEM / HMEM)

Based on number of
operators or memory

elements
Area constraint

STC code
(with fixed delay)

Wired logic
(with variable delay)

FSM

Shift/Mask instruction
(Must consider delay)

Wire connection
Bit concatenation/

extraction

8-bit: 2 / 3 input and 1 output,
1-bit: 1 / 3 input and 1 output

(Coarse-grained)

Any bits
(Fine-grained)

Operand and
wires

(Granularity)

Basically no sharing
(Share only if unit is saved)By using multiplexer

(Its delay is negligible.
Must do scheduling and
sharing simultaneously)

Operator /
Register sharing

Multiple contexts
(Must average the number of

operational unit)
Single context Data path

For the DRPFor ASICs

By using selector instruction
in either ALU or DMU
(Must consider delay)

Conditional
expression

Based on number of units
(ALU / DMU / VMEM / HMEM)

Based on number of
operators or memory

elements
Area constraint

STC code
(with fixed delay)

Wired logic
(with variable delay)

FSM

Shift/Mask instruction
(Must consider delay)

Wire connection
Bit concatenation/

extraction

8-bit: 2 / 3 input and 1 output,
1-bit: 1 / 3 input and 1 output

(Coarse-grained)

Any bits
(Fine-grained)

Operand and
wires

(Granularity)

Basically no sharing
(Share only if unit is saved)By using multiplexer

(Its delay is negligible.
Must do scheduling and
sharing simultaneously)

Operator /
Register sharing

Multiple contexts
(Must average the number of

operational unit)
Single context Data path

For the DRPFor ASICs

705

path. Therefore, except for the primitive logical operators which
are smaller than a multiplexer, operators are shared using the
CVLS algorithm in our HLS for ASICs. Although the delay of a
multiplexer with only few inputs is negligible in an ASIC, the
scheduling of such multiplexers is difficult because the resources
are actually shared among the steps during the “Data-path
Allocation” or “Register Binding” stage (see Fig. 5, 6 and (a)).

For the DRP, a multiplexer for sharing resources among steps
is hidden into the fast context switching mechanism with a fixed
delay. Because both the RFU and FFU have their own write-
enable flags as a configuration bit, a multiplexer for preserving
the value of a flip-flop for more than one step is not necessary.
The context is switched by changing both the wire connection and
the operational code without using a selector instruction (SEL) in
either the ALU or DMU. The SEL is conventionally used for
selecting signals conditionally in a step.

In our HLS for the DRP, a SEL is treated the same as the other
instructions. For example, although the operational delay of a SEL
and an adder are not same, the delay for each PE level differs
slightly since wire delay is the dominant factor in a reconfigurable
device. From the perspective of PE usage, both of a SEL and
adder are the same ALU instruction, although their actual areas on
the silicon differ. For these reasons, the operators are shared in a
context only if both the number and the level of the PE do not
increase (see Fig. 6 and (b)). Eventually, only a SEL for
conditional use of an operational unit, register unit, memory unit
or port in a step must be scheduled. This helps the scheduler
estimate the conditional delay more precisely. A SEL placed
before either an operational unit or register unit is depicted as a
node in the CDFG. Our HLS for the DRP treats this selector node
as an operator node which has a delay (see Fig. 6 and (c)). A
selector node with only one input can be ignored for a register or
operator but is necessary for an external port or memory port.
These ports are depicted as more than one node in a step on the
CDFG when they are conditionally used. For these types of
resources, we add the SEL delay into the node itself. We must
carefully treat a SEL for the data input port of a memory unit,
because the unit has a write or read enabling signal, which also
works as a selector.

E

H

+

Step 2

Step 1

Step 3

Step 4

B

+

+

D

+

G

J

A

C

F I Operator

Register

Break

Selector

Figure 6. Example illustration of resource sharing.

(a) If the adders in steps 2 and 3 are shared, assuming registers A
and C are the same, a two-input multiplexer is needed only if
both registers B and D are not shared. If all adders including
the two in step 4 are shared, a multiplexer with more input
may be needed. However, the number of inputs is difficult to
predict during the scheduling stage because registers must be
optimally assigned simultaneously.

(b) In our DRP, all the adders are not shared. The fast context
switching mechanism eliminates the need for a multiplexer for
sharing resources among steps. Because the two adders in step
4 are exclusively used, they should be shared only if registers
F and I are the same. Although this sharing does not reduce
the PE level because it simply moves the multiplexer to be
inserted from the input of the adder to the output, the number
of operational units is reduced from three (two adders and one
selector to select the adders) to two (one adder and one
selector to select register G or H).

(c) If the total delay of both a selector node and the adders in step
4 is more than the designed delay, the selector node is moved
to step 5, like the other operator nodes.

This new multiplexer handling also simplifies the work of the
place and route tool. Because most of operational instructions are
not shared in a context or among contexts, there is no restriction
on the multiplexer location. Essentially, this means the
operational instructions including the SELs are bound at the
placement. Therefore, a faster data path with fewer wire
connections can be synthesized.

4.4. Unit-based area constraint

An area-constrained algorithm is a suitable synthesis algorithm
for the DRP for three reasons. Many pairs of the ALUs and
DMUs are spread over the tiles of the chip, a DRP core consists of
an arbitrary number of tiles, and the DRP is designed to get the
maximum performance by using these operational units as much
as possible but within their limited number.

The area constraint in our HLS for ASICs is given by the
numbers of operators. If the number exceeds the constraint in a
step, the data flow is divided into multiple steps. Basically, the
designer sets the number of operators based on the size of the chip,
the operator library for a specific process technology, and the
design properties. For the DRP, because all the operators become
instructions in either the ALU or DMU, the total number of either
one is taken as an upper bound in the scheduler.

This unit-based constraint is also applied to the memory unit.
The constraint in our HLS for the DRP is given by the number of
the memory units, such as the HMEM or VMEM. The memory
specifications, such as the number of ports, setup time, data delay,
and total number of units, are specified in a memory constraint
file provided by the compiler system.

5. Evaluation

We evaluated the performance of our HLS for the DRP by
using a Viterbi decoder. Up to 16 add, compare, and select (ACS)
operations can be executed in parallel from this code. The other
specifications were a constraint length (K) of 9 and a code rate
(R) of 1/2. It should be noted that we had compared the
performance to CPUs and DSPs on several stream applications
(including Viterbi decoder but not from the same source code)
[18] and several encryption algorithms [19].

5.1. Effect of context compaction with area constraint

The numbers of operational units allocated in each context
using the following four allocation rules were counted and are
shown in Fig. 7. Because two operational units, the ALU and
DMU, comprise a PE, we took the larger of these counts as a
result. The circuit delay was not constrained.

706

• Single-step-allocation (SSA)
Allocating following the single-step to single-context rule

results in contexts 8, 9, and 10 having many operational units
since the ACS operations are executed in these steps. The
other contexts use only a few operators.

• Multiple-step-allocation (MSA)
Allocating following the multiple-step to single-context rule

results in a reduction in the total number of contexts to
approximately half compared to the single-step-allocation rule
although the total number of operational units slightly
increases because selectors are inserted to share the resources.
This rule produces the lowest context usage. DRP-1, our
prototype, has two restrictions: 1) a context can collect up to
four steps; and 2) up to four event signals per context can be
fed back to the STC.

• Single-step-allocation with operational unit constraints
(SSA+OCs)

Limiting the number of operational units to 128 (the number
of units in two tiles) per step under the single-step to single-
context rule increases the number of contexts related to the
ACS calculation (the context 8 to 12), compared to the above
two methods, because the contexts hit the constraints although
the peaks are diminished.

• Multiple-step-allocation with operational unit constraints
(MSA+OCs)

Limiting the number of units to 128 per context under the
multiple-step to single-context rule averages the numbers of
operational units without increasing the number of contexts.
This rule offers the best from the stand point of “volume
efficiency”, as described below.

0

50

100

150

200

250

0 5 10 15
Context

N
um

be
r o

f u
ni

ts SSA
MSA
SSA+OCs
MSA+OCs

Figure 7. Number of operational units assigned in each Viterbi

decoder context.

5.2. Area efficiency

Two criteria, context and area, are used to evaluate “area
efficiency” for multi-context devices. Therefore, it should be
renamed “volume efficiency” for this type of architecture.

To evaluate the previous context, we defined context usage
rate Crate = C / 16, where C is the number of contexts used and 16
is the number of contexts that can be stored in the configuration
memory on the DRP-1. If Crate exceeds 1, all the contexts cannot
be stored simultaneously. Since the unused contexts are available
for future extensions or for other applications, a lower rate is
better. The MSA rule produced the lowest context usage rate (Fig.
8).

The area is primarily resolved using the maximum number of
PEs in the context. Let the number of operational units allocated
in context i be OPEi. The filling rates of operational unit OPErate
are defined as follows and are shown on the right in Fig. 8.

}max{
0

i

C

i
i

rate OPEC

OPE
OPE

⋅
=

∑
= .

A higher filling rate is better for efficient area usage. Combining
the multiple-step-allocation and the operational unit constraint
(MSA+OCs) offers the best from the standpoint of “volume
efficiency”.

0
0.2
0.4
0.6
0.8

1
1.2

SSA MSA SSA+OCs MSA+OCs

C
ra

te

0

0.1
0.2
0.3
0.4
0.5
0.6

SSA MSA SSA+OCs MSA+OCs

O
PE

ra
te

Figure 8. Context usage rate (left) and operational unit filling

rates (right).

5.3. Estimated delay and throughput

Figure 9 shows the relationship between the delay estimated
by the HLS and the delay obtained by static timing analysis in the
place and route (P&R) tool and the delay constraint. The close
agreement between the results indicates that our method works
well. The saturation of the HLS curve indicates that the scheduler
can no longer constrain the delay. The generated circuit is fully
chained after the saturation point.

0

10

20

30

40

50

20 30 40 50 60 70

Delay Constraint [ns]

D
el

ay
 [n

s] HLS
P&R

Figure 9. Delay vs. delay constraint.

The circuit throughput depends on both the delay and the
number of cycles it takes to execute a test data. The cycle is
determined by the number of scheduled steps and by the sequence
of FSM generated by the HLS. The relationship between the delay
constraint and circuit throughput is shown in Fig. 10. Thanks to
the special care taken when inserting the multiplexer, the
multiple-step-allocation (MSA) did not affect the throughput of
the circuit. As shown in Fig.10, a delay constraint of around 30 ns
offers the best throughput. Although the delay is decreased in the
delay constraint of 20ns, the number of cycle is increased more.

0
100
200
300
400
500
600
700

20 30 40 50 60 70

Delay Constraint [ns]

Th
ro

ug
hp

ut
 [k

bp
s]

SSA
MSA
SSA+OCs
MSA+OCs

Figure 10. Throughput vs. delay constraint.

707

Because of the limitations on parallelizing the design with the
operational unit constraints (OCs), the throughputs are lower than
without them. The number of operational unit should not be
constrained if the performance is critical. It can be increased to
more than the peak of the units with single-step-allocation rule if
number of context is critical.

The accurate delay estimation of our HLS enables the optimal
throughput to be found more quickly without running the P&R
tool. This is especially valuable when trying to identify the best
optimization options and constraint combination in a reasonable
amount of time. Since there are many combinations of the
numbers to be constrained, there is an iterative optimization
function in the integrated development environment (see Fig. 1) to
support a designer. It automatically tries all combination of
constrains, which are the number of operational unit and the delay,
in given ranges. Our HLS automatically also tries many compiler
options such as the multiple-step-allocation, a loop unrolling and
a function inlining with the support of the iterative optimization
function. Along with design productivity, this is one of the best
key advantages of HLS compared to design in RTL language.
Moreover, it fits well with the nature of the DRP, which offers a
trade-off between the best throughput (by increasing circuit
parallelization) and the minimum area (by dynamically switching
the contexts).

6. Summary and future work

We have developed a C-based compiler for our dynamically
reconfigurable processor (DRP), using C language in all phases
of development; algorithmic-level optimization, circuit
optimization considering hardware architecture, functional-level
simulation, and on-chip debugging. Using the short turn-around-
time tool set, the designer can take full advantage of the
reconfigurable processor, for example, by starting a design before
the functional specifications have been fixed or by designing
using one or a few developers. By making use of multi-context
and a coarse-grained data path of the DRP architecture, our high-
level-synthesizer can control delay at processing element level
and constrain the number of elements properly. Although the
techniques introduced in this paper are primarily for our DRP,
most of them can be applied to other coarse grained
reconfigurable processors.

Because the compiler which converts a high-level description
into logic-level coding can deal with only a limited range of
parallelization, a source code optimization process is needed. To

overcome the disadvantages of adopting a high-level language,
more parallelizing techniques are needed to expand the synthesis
search space.

References

[1] K. Bondalapati, “Parallelizing DSP nested loops on reconfigurable
architectures using data context switching”, Proc. 38th DAC, pp. 273–276,
2001.

[2] T. Sato, H. Watanabe, and K. Shibata, “Implementation of dynamically
reconfigurable processor DAPDNA-2”, VLSI Design, Automation and
Test, pp.323-324, April 2005.

[3] M. Vorbach and R. Becker, “Reconfigurable processor architectures for
mobile phones”, Proc. Parallel and Distributed Processing Symposium,
pp.22-26, 2003.

[4] M. Motomura, “A Dynamically Reconfigurable Processor Architecture”,
Microprocessor Forum, Oct. 2002.

[5] A. DeHon and J. Wawrzynek, “Reconfigurable Computing: What, Why,
and Design Automation Requirements?”, Proc. 36th DAC, pp. 610–615,
Jun. 1999.

[6] J.P. Cardoso and M. Weinhardt, “Fast and Guaranteed C Compilation onto
the PACT-XPP Reconfigurable Computing Platform”, Proc. 10th FCCM,
2002.

[7] S. M. Trimberger, “Field-Programmable Gate Array Technology”, Kluwer
Academic Publisher, p.10, 1994.

[8] J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with a
Reconfigurable Coprocessor”, Proc. 5th FCCM, pp. 12–21, 1997.

[9] T.J. Callahan, J.R. Hauser, and J. Wawrzynek, “The Garp Architecture and
C Compiler”, IEEE Computer, Vol. 33, No. 4, pp. 62–69, Apr. 2000.

[10] Xilinx Forge, http://www.xilinx.com.
[11] C. Sullivan et al., “Deterministic hardware synthesis for compiling high-

level descriptions to heterogeneous reconfigurable architectures”, Proc.
38th HICSS, 2005.

[12] K. Wakabayashi, “C-based synthesis experiences with a behavior
synthesizer, “Cyber””, Proc. DATE 1999, pp. 390–393, March 1999.

[13] K. Wakabayashi, and T. Okamoto, “C-based SoC Design Flow and EDA
Tools: An ASIC and System Vendor Perspective”, IEEE Trans. on CAD,
Vol.19, Issue 12, pp. 1507–1522, Dec. 2000.

[14] K. Wakabayashi and T. Yoshimura, “A resource sharing and control
synthesis method for conditional branches”, ICCAD-89, pp. 62–65, Nov.
1989.

[15] K. Wakabayashi and H. Tanaka, “Global scheduling independent of
control dependencies based on condition vectors”, Proc. 29th DAC, pp.
112–115, Jun.1992.

[16] M. Xu and F.J. Kurdahi, “Area and timing estimation for lookup table
based FPGAs”, Proc. 1996 ED&TC, pp. 151–157, Mar. 1996.

[17] M. Xu and F. J. Kurdahi, “Layout-driven high level synthesis for FPGA
based architectures”, Proc. 1998 DATE, pp. 446–450, 1998.

[18] N. Suzuki, et al., “Implementing and Evaluating Stream Applications on
the Dynamically Reconfigurable Processor”, 12th Annual IEEE
Symposium on FCCM, pp. 328–329, Apr. 2004.

[19] M. Suzuki, et al., “Stream Application on the Dynamically Reconfigurable
Processor”, Proc. 2004 FPT, pp. 137–144, Dec. 2004.

708

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

