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Abstract 
 

A dynamically reconfigurable processor (DRP) is designed to 
achieve high area efficiency by switching reconfigurable data 
paths dynamically. Our DRP architecture has a stand alone finite 
state machine and that switches “contexts” consisting of many 
operational and storage units in processing elements (PEs) and 
wires between them. Utilizing the resources not only in two 
spatial dimensions but also vertically (time-multiplexed) under 
accurate timing and area constraints imposes challenges for a 
high-level synthesizer for the DRP. We describe a C-based 
behavioral synthesis method which features data path generation 
with clock speed optimization. This is achieved by including the 
overhead of selectors in the scheduling algorithm, and 
considering a wire delay at each PE level. A new technique is 
introduced to achieve high area efficiency. It works by effectively 
allocating multiple steps into the context. From the original high-
level synthesizer for application-specific integrated circuits, some 
of the basic rules such as operator and register sharing were 
completely changed due to the coarse grained and multi-context 
architecture. Experimental results show that the generated data 
paths are highly parallelized and well balanced between contexts. 
The delay controllability enables the highest throughput point to 
be found more easily. 

Keywords: High-level Synthesis, Reconfigurable Processor, 
Dynamic Reconfiguration 
 

1. Introduction 
 

A dynamically reconfigurable processor (DRP) has a new 
programmable architecture that enables switching of time-
multiplexed data paths. Each data path is configured as a 
“context” consisting of many operational and storage units and 
the wire connections between them. This enables the DRP to 
execute highly complex and parallel data paths.  

The continuing growth in the demand for flexible, low power, 
and high-performance processors has led to the development of 
several new types of DRPs, such as Chameleon [1], IPFlex's 
DAP/DNA [2], Elixent's D-Fabrix, PACT's XPP [3], and others 
[4]. Note that there is another approach called configurable 
processor which adds customizable functions to prefixed CPU 
instructions such as Tensilica’s Xtensa and Synfora’s PICO. 

However, these new processors must be competitive with existing 
programmable chips, such as CPUs, digital signal processors 
(DSPs), and field programmable gate arrays (FPGAs).  

The compiler plays an important role in this. There are two 
major challenges in developing compilers for DRPs. First, to 
compete with CPUs or DSPs, high programmability must be 
maintained while still having the strength of the parallelism of the 
wired logic. This is usually addressed during the design stage 
when developing a microprocessor. Consequently, the compiler 
for reconfigurable fabric plays a larger role because the boundary 
between the chip design and compiler shifts toward the compiler 
as mentioned in the report on Berkeley’s BRASS project [5]. 
Second, to compete with FPGAs, the compiler must be convenient 
to use, while still achieving high area efficiency through the 
dynamic reuse of resources. While the area efficiency of DRPs 
depends on the nature of the chip, it largely depends on the 
compiler’s performance. Compiler developers should be able to 
meet these challenges through a concerted effort with the new 
chip architecture development.  

However, existing DRP compiles do not adequately meet these 
challenges. Some use schematic entry, one uses its own 
proprietary language at the register-transfer-level (RTL), and a 
limited “C language” can be used only for data path generation at 
the best [6]. A designer who uses these tools still has to take care 
of traditional problems such as meeting timing and area 
constraints, as well as the additional problem of utilizing the 
resources not only two dimensionally but also vertically (time-
multiplexed).  
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Figure 1. Compilation flow and design environment for DRP. 

 

We have developed an integrated C compiler for the DRP. 
Like a C compiler for a microprocessor, our compiler includes the 
entire system environment. As shown in Fig. 1, it includes a high-
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level synthesizer (HLS), a technology mapping tool, a place and 
route tool, an on-chip source-level debugger, and an integrated 
development environment (IDE) with a graphical user interface. 
In this paper, we mainly focus on area efficiency and complying 
timing requirement on the HLS but not on a special technique to 
gain performance.  

Comparing multi-context type DRPs to single context type 
reconfigurable devices such as FPGAs, although these two 
architectures seem to be different, the performance would be not 
so different for two reasons. At first, custom arithmetic logic 
operations are only slightly faster than look-up table (LUT) based 
arithmetic operation with dedicated architectural features of 
FPGAs [7]. Secondly and more importantly, wire delay is 
dominant factor in this type of reconfigurable device. FPGAs and 
DRPs have the same wiring structure which has many switches 
between segmented wires. If there is no limitation on the area and 
using the same process technology, the performance of the same 
circuit design would not be the same but not quite different. Their 
performances mainly depend on parallelizing techniques used in a 
circuit design. These techniques are generally applicable to any 
wired logic devices including FPGAs and DRPs.  

Although we don’t focus on parallelizing technique, we can 
not neglect the timing issue. It is difficult to predict the delay at 
HLS level for fine grained architectures such as FPGAs. The 
delay on a critical path mainly depends on the level of look-up 
table but its level is subject to change in logic optimization. On 
the other hand, a coarse grained architecture has a chance to 
control the delay more accurately. In order to reduce the size of 
configuration memory, all the architectures [1]-[4] introduced 
here are coarse grained although their granularities depend on the 
application they focus on. The level of PE in HLS can be 
constrained since few logic optimization techniques can be 
applied. There are still error factors in placement and routing 
needless to add.  

The main characteristic of the DRPs is its high area efficiency 
which is achieved by switching context dynamically. The 
compiler must fill the context not only in two spatial dimensions 
but also vertically (time-multiplexed). Ideally, all the resources 
are equally used in contexts. But in most cases, it is difficult to 
balance them. We solve this problem by combining contexts to 
maximize resources at any one context without exceeding 
allowable maximum for that context.  
 

2. Dynamically reconfigurable processor 
 

A DRP is a coarse-grained, multi-context, reconfigurable core 
that can be integrated with an application-specific integrated 
circuit (ASIC). Most other reconfigurable architectures, including 
the FPGA, use data path to synthesize a sequencer [8], making it 
difficult to control the sequencer from outside the chip. In some 
DRP architectures, an embedded CPU is used instead of a 
sequencer [2], but a CPU is too slow to handle state transition of 
the data paths. One architectural characteristic of our DRP [4] is 
that the sequencer is not synthesized using the data path; it is a 
stand-alone unit. It is thus fast enough and is controllable 
thorough a bus. Many processing elements (PEs) and memory 
units are arranged on the DRP. Both the operations to perform and 
the wires to use between the PEs and other resources, such as the 
on-chip memories and external ports, are selected based on 
configuration codes stored in each PE. The configuration is 
selected within one clock cycle (less than a nanosecond) by the 
sequencer, which is called a “state transition controller (STC)”.  

A primitive DRP unit is called a “tile”, and a DRP core 
consists of an arbitrary number of tiles. In our prototype “DRP-1”, 
there are eight tiles on the chip. As shown in Fig. 2, each tile 
consists of 64 PEs, an STC, and one- or two-port on-chip 
embedded memory units around the edge. A VMEM, for example, 
is an 8-bit, 256-word synchronized memory with one data input 
and two data outputs. Both the bit width and the depth can be 
expanded by using four units without occupying any PEs. The 
STC, located at the center of the tile, controls both the context and 
state transition based on an internal state transition table. Our 
DRP can execute multiple processes concurrently up to the 
number of tiles.  

As mentioned in the introduction, in order to reduce the size of 
configuration memory, our DRP is 1/8 bit granularity architecture. 
As shown in Fig. 3, each PE has an 8-bit arithmetic logic unit 
(ALU), a data manipulation unit (DMU) for both 8-bit shift/mask 
operations and 1-bit logic operations, an 8-bit register file unit 
(RFU), an 8-bit flip-flop unit (FFU), and wire switches. Up to 16 
different configuration codes are stored on-chip. Additional codes 
can be downloaded on-the-fly from external memory. 
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Figure 2. Structure of tile in DRP-1. 
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Figure 3. PE architecture. 

 

3. High-level synthesis for DRP 
 

As silicon process technology progresses, it has become 
challenging to design the complex logic circuits. High-level 
synthesis has attracted much attention for handling the complex 
design of reconfigurable chips [9][10][11]. Compared to a RTL 
design, there are several advantages to use C-based HLS in the 
compilation flow for the DRP. Designers can write a code more 
efficiently by using a higher abstraction level language. When a C 
compiler for the CPU is used during design verification flow, 
behavioral level simulation is faster than RTL simulation. The C-
source code can be debugged functionally using a sophisticated 

703



source-level debugger for a CPU. It is more important for 
reconfigurable chips to shorten the design turn-around time than 
ASICs which takes a longer time to be fabricated.  

We developed a C-based HLS as a front-end tool for the 
compilation flow. It is based on our proprietary HLS for ASICs 
[12][13]. The tool extracts instances of parallelism by generating 
a control data-flow graph (CDFG) that splits up the description of 
each step based on given constraints. Unlike microprocessors, the 
clock frequency of the DRP varies since each resource has its own 
delay, and the PEs can be chained without inserting a register or 
memory. Therefore, HLS with an automatic scheduler is useful 
for controlling delays on the data paths.  

Moreover, HLS usually extracts both data path and finite state 
machine (FSM) from the description. This corresponds to the 
DRP architecture in which the data paths and STC are handled 
separately. Right from the start, we designed the DRP architecture 
with this C-based HLS in mind. 
 

3.1. Allocating multiple contexts 
 

Our DRP compiler inputs C, or behavioral design language 
(BDL), and outputs downloadable configuration code (STC Code 
and PE Code shown in Fig. 1). The BDL is a subset/superset of 
standard C language. For example, hardware-specific notation, 
input and output port declarations, bit-level extraction, and 
concatenation are all BDL extensions. There are some restrictions 
which are difficult to realize on hardware such as recursive call 
and dynamic memory allocation. Some types of pointer are 
supported if they are statically analyzable.  

Our HLS for the DRP is a front-end tool that generates “multi-
context Verilog”, in which the contexts are divided into separate 
modules. Although the generated Verilog code cannot be 
synthesized using generic logic synthesizers, it can be simulated 
using an RTL simulator. Figure 4 shows the communication path 
between the data-flow graph and the DRP resources. A finite state 
machine (FSM) generated by the HLS is mapped onto the STC. 
Basically, the steps have a one-to-one relationship with the 
contexts. We can treat the context switching mechanism as state 
transition, because the STC is fast enough. However, a function 
that combines multiple steps into a single context obtains better 
area efficiency, as described below.  

An operator is mapped onto either the ALU or DMU as an 
instruction for that unit. A register is mapped onto either the RFU 
or FFU. An array is mapped to either the embedded memory unit 
(VMEM, HMEM) or the off-chip memory through an embedded 
memory controller, which is automatically selected based on its 
depth.  
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Figure 4. Basic relationships between steps and contexts. 

3.2. High-level synthesis flow 
 

A block diagram of our HLS is shown on the left in Fig. 5. In 
order to shorten synthesis time, the flow is straight forward. The 
C/BDL description is translated into a tree-structured control flow 
graph (tCFG). Some optimizations, such as constant propagation, 
common sub-expression elimination, loop unrolling, in-line 
procedure expansion, and dead code elimination, are applied to 
the tCFG. A CDFG is generated from the tCFG. Scheduling, data 
path allocation, module binding, and control synthesis are 
processed using the CDFG. A condition vector list scheduling 
(CVLS) algorithm is used to efficiently allocate resource under 
the given constraints [14][15]. Other optimizations, such as 
redundancy elimination, are applied to the RTL tCFG. Finally, the 
internal format is translated into an RTL language.  
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Figure 5. Flow of HLS and additional features for DRP. 

 

4. New challenges in HLS 
 

Some otherwise unimportant issues for ASICs could become 
critical problems for our DRP. Still, some problems must be 
anticipated. Table 1 summarizes the differences between HLS for 
ASICs and for the DRP.  
 

4.1. Context compaction technique 
 

Circuit-size variance between steps is one potential problem. 
While this is not an issue for ASIC designs, the variance in the 
number of PEs used among steps becomes a problem in the DRP, 
especially if we assume a one-to-one relationship between steps 
and contexts. This assumption increases the number of unused 
PEs in the context. We implemented a synthesis technique called 
multiple-step-allocation to achieve higher area efficiency by 
utilizing the benefit of having multiple contexts. 

If a specified description is scheduled using only a delay 
constraint, the number of PEs used in the step could vary. If the 
upper limit of the number of the PEs is constrained in the step, an 
operation that exceeds the limit slides to the next step. However, 
the step might be changeable without reaching the limit. For 
instance, since only one access in a clock cycle for each port is 
permitted using synchronous memory, if any output data of an 
array has a data dependency on the same memory’s input address, 
the step is changed because of the data dependency, even though 
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it does not push the limits of any of the constraints. In this case, 
the context might only have a few memory accesses, and most of 
the PEs are not used. There are several causes of state transition: 
(in order of descending priority) 1) control statements including 
loops, such as “while” or “goto”; 2) access to synchronous 
resources, such as memory or I/O ports; and 3) delays and area 
constraints. 

 The multiple-step-allocation technique helps reduce the 
number of contexts, in which several steps are combined based on 
the number of PEs in the step and other constraints. Similar to 
single-context devices, this technique uses a multiplexer for 
sharing resources, such as the register units, memory units, and 
the ports between the steps. A step activation signal for the 
multiplexer is sent from the STC, in which a table of the 
relationships between steps and contexts is stored. This technique 
enables the DRP to store more steps than the number of contexts, 
which is limited by the size of the configuration memory in a PE. 
Special care must be taken not to increase the delay of the circuit 
when inserting the multiplexer. It should not be inserted into a 
critical path. Other steps that are not on the longest path can be 
combined unless doing so creates a path with a delay that exceeds 
that of the critical path. Of course, the number of PEs has to be 
within available PEs in the context. Therefore, the number of 
multiplexers is estimated each time when combining steps into 
various possible combinations. To get the initial data path 
information, this technique is applied to the translator for the RTL 
tCFG after the shared resources are allocated (Fig.5).  

There are two basic methods for combining the steps: 1) 
combine consecutive steps and change the context when the 
constraint limits are hit; 2) combine as many steps as possible 
until limits are hit, regardless of whether it is contiguous. The first 
method can reduce the amount of context switching, which 
consumes one third to half of the power for this kind of DRP. The 
second provides better area efficiency and better reduces the 
number of unused PEs than the first by optimizing the step 
selection process. 
 

4.2. Wire delays and granularity consideration 
 

In general, the wire delays of reconfigurable devices are much 
longer than the operational delays, because they include both 
metal wire delays and buffer and tri-state route-switching delays. 
Wire delays can account for up to 60% of the overall design 

delays in FPGA [16] and are a dominant factor in the performance 
of a DRP. Even in HLS for ASICs, wire delays cannot be ignored, 
especially for the deeper submicron processes. However, accurate 
wire delays can only be obtained after the place and route tool has 
finished the static timing analysis. Layout-driven scheduling-
binding synthesis reportedly can avoid time consuming iterations 
of the design process [17]. IPFlex [2] avoids this issue 
architecturally by guaranteeing the worst-case delay between two 
operators in any location and prohibiting PE chaining. By 
utilizing coarse-grained data paths, our HLS for the DRP is able 
to control the delay of the circuit at the PE level.  

Since wire delays are dominant, we focused on them. The 
typical wire delay between PEs was added to each operational 
delay. It was calculated based on previous experimental 
measurement using the place and route tool. Other pre-measured 
delays were added to the setup and delay of the embedded 
memory units and the delay of external ports because their 
placements on the chip are more restricted than those of the PEs.  

PE-level decomposition during the pre-scheduling translation 
stage takes into account the course grain architecture of the DRP. 
Although the DRP basically has an 8-bit granularity architecture, 
both the ALU and DMU have 1-bit inputs and output. They are 
used for carry-in and carry-out flags, comparison result flags, 
logical operations, etc. A 32-bit adder, for instance, is 
decomposed into four cascaded 8-bit adders, each of which has 
the wire delay. Without this decomposition, the original 32-bit 
adder, which has longer wire delays for four wire legs cannot be 
scheduled unless it fits within the timing constraint. This 
decomposition is applied to C-operators, which are decomposed 
into more than one PE level during the pre-scheduling translation 
stage. These operators include an adder, a subtractor, comparators, 
and a barrel-shifter. With this decomposition, the scheduler can 
control the delay more precisely at each PE level, reducing the 
number of steps required.  

Care must be taken when there is bit-level extraction or 
concatenation. Since these operations become the wiring 
connection in an ASIC, they do not have to be considered in the 
scheduler. The DRP needs a shift/mask instruction in the DMU, 
and the delay and area for this instruction must be carefully 
considered. In our HLS for the DRP, bit-level extraction or 
concatenation that does not align to one or eight bits is 
transformed into a shift/mask instruction during the pre-
scheduling translation stage; this instruction is then treated the 
same as any other instruction by the scheduler.  
 

4.3. Multiplexer delays in context switching 
 

HLS for single-context devices, such as ASICs or FPGAs, 
treats the data path and FSM separately. A generated RTL FSM 
is merged into the data path using a logic synthesizer. On the 
other hand, multiple contexts must be considered in our HLS for 
the DRP, in which the STC is a stand-alone module that handles 
context transition and is outside the PE array. This separation 
enables the DRP scheduler to treat multiplexing with a completely 
new approach.  

There are two types of multiplexers: those for resource sharing 
among steps and those for conditional branching. The two types 
are usually merged for a single-context device. But this can 
prevent accurate timing estimation in the scheduler because the 
number of inputs for a multiplexer is difficult to predict from only 
the CDFG, especially if resources are shared among several steps. 
Operator sharing is an effective technique for optimizing the data 

Table 1. Differences between HLS for ASICs and for the DRP.
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path. Therefore, except for the primitive logical operators which 
are smaller than a multiplexer, operators are shared using the 
CVLS algorithm in our HLS for ASICs. Although the delay of a 
multiplexer with only few inputs is negligible in an ASIC, the 
scheduling of such multiplexers is difficult because the resources 
are actually shared among the steps during the “Data-path 
Allocation” or “Register Binding” stage (see Fig. 5, 6 and (a)).  

For the DRP, a multiplexer for sharing resources among steps 
is hidden into the fast context switching mechanism with a fixed 
delay. Because both the RFU and FFU have their own write-
enable flags as a configuration bit, a multiplexer for preserving 
the value of a flip-flop for more than one step is not necessary. 
The context is switched by changing both the wire connection and 
the operational code without using a selector instruction (SEL) in 
either the ALU or DMU. The SEL is conventionally used for 
selecting signals conditionally in a step.  

In our HLS for the DRP, a SEL is treated the same as the other 
instructions. For example, although the operational delay of a SEL 
and an adder are not same, the delay for each PE level differs 
slightly since wire delay is the dominant factor in a reconfigurable 
device. From the perspective of PE usage, both of a SEL and 
adder are the same ALU instruction, although their actual areas on 
the silicon differ. For these reasons, the operators are shared in a 
context only if both the number and the level of the PE do not 
increase (see Fig. 6 and (b)). Eventually, only a SEL for 
conditional use of an operational unit, register unit, memory unit 
or port in a step must be scheduled. This helps the scheduler 
estimate the conditional delay more precisely. A SEL placed 
before either an operational unit or register unit is depicted as a 
node in the CDFG. Our HLS for the DRP treats this selector node 
as an operator node which has a delay (see Fig. 6 and (c)). A 
selector node with only one input can be ignored for a register or 
operator but is necessary for an external port or memory port. 
These ports are depicted as more than one node in a step on the 
CDFG when they are conditionally used. For these types of 
resources, we add the SEL delay into the node itself. We must 
carefully treat a SEL for the data input port of a memory unit, 
because the unit has a write or read enabling signal, which also 
works as a selector.  
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Figure 6. Example illustration of resource sharing. 
 

(a) If the adders in steps 2 and 3 are shared, assuming registers A 
and C are the same, a two-input multiplexer is needed only if 
both registers B and D are not shared. If all adders including 
the two in step 4 are shared, a multiplexer with more input 
may be needed. However, the number of inputs is difficult to 
predict during the scheduling stage because registers must be 
optimally assigned simultaneously.  

(b) In our DRP, all the adders are not shared. The fast context 
switching mechanism eliminates the need for a multiplexer for 
sharing resources among steps. Because the two adders in step 
4 are exclusively used, they should be shared only if registers 
F and I are the same. Although this sharing does not reduce 
the PE level because it simply moves the multiplexer to be 
inserted from the input of the adder to the output, the number 
of operational units is reduced from three (two adders and one 
selector to select the adders) to two (one adder and one 
selector to select register G or H).  

(c) If the total delay of both a selector node and the adders in step 
4 is more than the designed delay, the selector node is moved 
to step 5, like the other operator nodes.  

 

This new multiplexer handling also simplifies the work of the 
place and route tool. Because most of operational instructions are 
not shared in a context or among contexts, there is no restriction 
on the multiplexer location. Essentially, this means the 
operational instructions including the SELs are bound at the 
placement. Therefore, a faster data path with fewer wire 
connections can be synthesized.  
 

4.4. Unit-based area constraint 
 

An area-constrained algorithm is a suitable synthesis algorithm 
for the DRP for three reasons. Many pairs of the ALUs and 
DMUs are spread over the tiles of the chip, a DRP core consists of 
an arbitrary number of tiles, and the DRP is designed to get the 
maximum performance by using these operational units as much 
as possible but within their limited number.  

The area constraint in our HLS for ASICs is given by the 
numbers of operators. If the number exceeds the constraint in a 
step, the data flow is divided into multiple steps. Basically, the 
designer sets the number of operators based on the size of the chip, 
the operator library for a specific process technology, and the 
design properties. For the DRP, because all the operators become 
instructions in either the ALU or DMU, the total number of either 
one is taken as an upper bound in the scheduler.  

This unit-based constraint is also applied to the memory unit. 
The constraint in our HLS for the DRP is given by the number of 
the memory units, such as the HMEM or VMEM. The memory 
specifications, such as the number of ports, setup time, data delay, 
and total number of units, are specified in a memory constraint 
file provided by the compiler system.  
 

5. Evaluation 
 

We evaluated the performance of our HLS for the DRP by 
using a Viterbi decoder. Up to 16 add, compare, and select (ACS) 
operations can be executed in parallel from this code. The other 
specifications were a constraint length (K) of 9 and a code rate 
(R) of 1/2. It should be noted that we had compared the 
performance to CPUs and DSPs on several stream applications 
(including Viterbi decoder but not from the same source code) 
[18] and several encryption algorithms [19].  
 

5.1. Effect of context compaction with area constraint 
 

The numbers of operational units allocated in each context 
using the following four allocation rules were counted and are 
shown in Fig. 7. Because two operational units, the ALU and 
DMU, comprise a PE, we took the larger of these counts as a 
result. The circuit delay was not constrained. 
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• Single-step-allocation (SSA) 
Allocating following the single-step to single-context rule 

results in contexts 8, 9, and 10 having many operational units 
since the ACS operations are executed in these steps. The 
other contexts use only a few operators.  

• Multiple-step-allocation (MSA) 
Allocating following the multiple-step to single-context rule 

results in a reduction in the total number of contexts to 
approximately half compared to the single-step-allocation rule 
although the total number of operational units slightly 
increases because selectors are inserted to share the resources. 
This rule produces the lowest context usage. DRP-1, our 
prototype, has two restrictions: 1) a context can collect up to 
four steps; and 2) up to four event signals per context can be 
fed back to the STC.  

• Single-step-allocation with operational unit constraints 
(SSA+OCs) 

Limiting the number of operational units to 128 (the number 
of units in two tiles) per step under the single-step to single-
context rule increases the number of contexts related to the 
ACS calculation (the context 8 to 12), compared to the above 
two methods, because the contexts hit the constraints although 
the peaks are diminished.  

• Multiple-step-allocation with operational unit constraints 
(MSA+OCs) 

Limiting the number of units to 128 per context under the 
multiple-step to single-context rule averages the numbers of 
operational units without increasing the number of contexts. 
This rule offers the best from the stand point of “volume 
efficiency”, as described below.  
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Figure 7. Number of operational units assigned in each Viterbi 

decoder context. 
 

5.2. Area efficiency 
 

Two criteria, context and area, are used to evaluate “area 
efficiency” for multi-context devices. Therefore, it should be 
renamed “volume efficiency” for this type of architecture.  

To evaluate the previous context, we defined context usage 
rate Crate = C / 16, where C is the number of contexts used and 16 
is the number of contexts that can be stored in the configuration 
memory on the DRP-1. If Crate exceeds 1, all the contexts cannot 
be stored simultaneously. Since the unused contexts are available 
for future extensions or for other applications, a lower rate is 
better. The MSA rule produced the lowest context usage rate (Fig. 
8).  

The area is primarily resolved using the maximum number of 
PEs in the context. Let the number of operational units allocated 
in context i be OPEi. The filling rates of operational unit OPErate 
are defined as follows and are shown on the right in Fig. 8.  
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A higher filling rate is better for efficient area usage. Combining 
the multiple-step-allocation and the operational unit constraint 
(MSA+OCs) offers the best from the standpoint of “volume 
efficiency”.  
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Figure 8. Context usage rate (left) and operational unit filling 

rates (right). 
 

5.3. Estimated delay and throughput 
 

Figure 9 shows the relationship between the delay estimated 
by the HLS and the delay obtained by static timing analysis in the 
place and route (P&R) tool and the delay constraint. The close 
agreement between the results indicates that our method works 
well. The saturation of the HLS curve indicates that the scheduler 
can no longer constrain the delay. The generated circuit is fully 
chained after the saturation point.  
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Figure 9. Delay vs. delay constraint. 

 

The circuit throughput depends on both the delay and the 
number of cycles it takes to execute a test data. The cycle is 
determined by the number of scheduled steps and by the sequence 
of FSM generated by the HLS. The relationship between the delay 
constraint and circuit throughput is shown in Fig. 10. Thanks to 
the special care taken when inserting the multiplexer, the 
multiple-step-allocation (MSA) did not affect the throughput of 
the circuit. As shown in Fig.10, a delay constraint of around 30 ns 
offers the best throughput. Although the delay is decreased in the 
delay constraint of 20ns, the number of cycle is increased more.  
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Figure 10. Throughput vs. delay constraint. 
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Because of the limitations on parallelizing the design with the 
operational unit constraints (OCs), the throughputs are lower than 
without them. The number of operational unit should not be 
constrained if the performance is critical. It can be increased to 
more than the peak of the units with single-step-allocation rule if 
number of context is critical.  

The accurate delay estimation of our HLS enables the optimal 
throughput to be found more quickly without running the P&R 
tool. This is especially valuable when trying to identify the best 
optimization options and constraint combination in a reasonable 
amount of time. Since there are many combinations of the 
numbers to be constrained, there is an iterative optimization 
function in the integrated development environment (see Fig. 1) to 
support a designer. It automatically tries all combination of 
constrains, which are the number of operational unit and the delay, 
in given ranges. Our HLS automatically also tries many compiler 
options such as the multiple-step-allocation, a loop unrolling and 
a function inlining with the support of the iterative optimization 
function. Along with design productivity, this is one of the best 
key advantages of HLS compared to design in RTL language. 
Moreover, it fits well with the nature of the DRP, which offers a 
trade-off between the best throughput (by increasing circuit 
parallelization) and the minimum area (by dynamically switching 
the contexts).  
 

6. Summary and future work 
 

We have developed a C-based compiler for our dynamically 
reconfigurable processor (DRP), using C language in all phases 
of development; algorithmic-level optimization, circuit 
optimization considering hardware architecture, functional-level 
simulation, and on-chip debugging. Using the short turn-around-
time tool set, the designer can take full advantage of the 
reconfigurable processor, for example, by starting a design before 
the functional specifications have been fixed or by designing 
using one or a few developers. By making use of multi-context 
and a coarse-grained data path of the DRP architecture, our high-
level-synthesizer can control delay at processing element level 
and constrain the number of elements properly. Although the 
techniques introduced in this paper are primarily for our DRP, 
most of them can be applied to other coarse grained 
reconfigurable processors.  

Because the compiler which converts a high-level description 
into logic-level coding can deal with only a limited range of 
parallelization, a source code optimization process is needed. To 

overcome the disadvantages of adopting a high-level language, 
more parallelizing techniques are needed to expand the synthesis 
search space.  
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