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ABSTRACT
Designs using simple geometric layout objects (such as points, sticks
and rectangles) with Restrictive Design Rules (RDRs) on each lay-
out object (i.e., it must be placed on a set of grids subject to a set
of ground rules) have been introduced as an approach to better en-
able design for manufacturability (DFM) in ultra-deep submicron de-
signs[9]. In this paper, we study the problem of migrating the con-
ventional shape-based layouts to the simplified layouts with RDR
constraints. We present a migration flow which consists of two pro-
cess steps: (1) conversion where shapes (such as polygons) are con-
verted to simple geometric objects (such as sticks) while the topol-
ogy is maintained, and (2) grid legalization for RDRs where the sim-
ple geometric objects are placed on grid subject to the given set of
ground rules by using a novel legalization algorithm, the Minimum
Perturbation-driven Graph-based Grid Legalization(MP-GGL) algo-
rithm. We demonstrate the effectiveness of the flow by successfully
migrating a set of library cells in the conventional shape-based tech-
nology to the simplified layouts with RDR constraints.

1. INTRODUCTION
With the advance of ultra-deep submicron technology, manufac-

turability has become one of the major problems in VLSI design. Be-
cause the ability to control the physical properties of fabricated de-
vices and interconnects is decreasing, the variability of finally printed
shapes and their physical properties is increasing. Therefore, design
for manufacturability (DFM) has become one of the most challeng-
ing topics among designers and researchers. Post-layout manufac-
turability enhancement techniques, such as optical proximity correc-
tion (OPC) and resolution enhancement techniques (RET), have been
a key step to compensate shape variations and ensure the manufac-
turability of designs. However, these post-layout processes are very
expensive. The complexity of these techniques is increasing as well.
For the emerging technologies (65nm and beyond), the computation
cost and complexity of the post-layout processes are becoming the
bottle-necks in the design-to-silicon flow.

Therefore, regular layout styles have been proposed to improve
the manufacturability and achieve manageable post-layout process-
ing complexity. In [7], Gupta and Kahng predicted that the layouts
in the technology of 65nm and beyond will look like a regular grat-
ing. The researchers in leading technology companies have proposed
to restrict the layouts such that all the gate-forming polysilicon con-
ductors have the same orientation, the same narrow width, and the
same pitch[13, 5]. Most recently, Lavin et al[9] have explored how
design restrictions could improve the manufacturability and extended
the design restrictions on polysilicon conductors to all the layers of
a design and proposed to use a set of simple geometric objects, such
as points for contacts and vias, sticks for wiring and rectangles for
diffusion, to represent the layout. An example of a simplified layout
is shown in Figure 1. In addition to the ground rule constraints, each
simplified layout object must be placed on a specified grid among a
given set of grids (called multiple grid constraints in this paper). The
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Figure 1: An example of a simplified layout.

down-stream post-layout processes will convert the simple geometric
objects to the conventional-look target shapes by considering manu-
facturing requirements and OPC/RET effects. As technology further
scales down, the simplification and restriction is the trend to facil-
itate post-layout processing and to achieve manufacturable designs
and predictable performance. We refer to this kind of design style as
simplified layout with RDR constraints in this paper.

Use of simplified layouts with RDR constraints has implications
to the design migration process. Automatic design migration is an
essential process to achieve maximum productivity. Many of the ex-
isting migration tools are based on layout compaction techniques[12,
11, 4] that were developed in the 1980’s when layout area and wire
length minimizations were the major objectives. Heng et al[8] pro-
posed a new objective for the layout migration, minimum layout per-
turbation, to preserve the integrity of the original layout as much
as possible. They formulated the legalization problem as a special
case of linear programming (LP) problem and proposed a graph-
based Simplex algorithm to solve it. Later, Zhu et al[16] presented
an integer linear programming (ILP)-based approach to preserve the
geometric closeness in the layout migration, in the similar manner
of minimum layout perturbation. Most recently, Yuan et al[15] ad-
dressed the problem of putting polysilicon conductors on grid during
the technology migration process. However, none of these works ad-
dresses the problems of abstracting layout shapes into simple geomet-
ric objects and legalizing them to satisfy the multiple grid constraints.

In this paper, we study the problem of migrating a conventional
shape-based layout into a simplified layout subject to a set of ground
rules and multiple grid constraints. As a solution, we present a migra-
tion flow. It consists of two steps. (1) Conversion: converting shapes
(such as polygons) to simple geometric objects, i.e., points, sticks
and rectangles. We use rectilinear medial axis to represent the ab-
stract skeleton of conventional shapes (polygons) and transform them
into sticks. (2) Legalization: putting objects on grids and satisfy-
ing the ground rules (for example, spacing rules). Handling multiple
grid constraints is essentially an integer linear programming (ILP)
problem. Unfortunately, we observe that in reality the ground rule
constraints together with the multiple grid constraints often contain
conflicts, and thus a generic ILP solver often fails to return a feasible
solution. Therefore we have to look for a practical way to obtain a
valid layout (i.e., objects are on grid) while fixing the ground rule vi-
olations as many as possible. For this reason, we adopt a graph-based
approach to solve the problem. The constraints are represented by a
graph (called constraint graph) where the nodes in the graph represent
the layout objects and the arcs represent the ground rule constraints.
Each node is associated with a grid constraint specified by the tech-
nology. Conflicts in the constraints can be expressed by the existence
of positive cycles in the constraint graph. We resolve the positive cy-
cles by relaxing the minimum number of arcs (relaxing some ground
rules). The legalized result is obtained with the flavor of minimum
layout perturbation. We have successfully migrated a set of library
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cells from the conventional shape-based technology to the legal sim-
plified layouts while satisfying the RDR constraints. We have made
the following contributions in developing the migration flow.

(1) Rectilinear medial axis. We propose a new concept, rectilinear
medial axis, for converting polygon shapes to sticks, as the existing
solutions are not effective. Medial axis (skeleton) has been widely
studied in the computational geometry literature. The existing medial
axis algorithms may generate arbitrary angle of segments. We restrict
the orientation of segments to be either vertical or horizontal and de-
velop an algorithm to create the rectilinear medial axis for rectilinear
polygons.

(2) Theoretical bound of iterations in computing the longest path
in a directed graph with multiple grid constraints. To compute the
longest path in a graph without any grid constraint, Bellman-Ford
algorithm may need n− 1 iterations, and Yen’s algorithm may need
n/2 iterations, where n is the number of nodes in the graph[3]. Lee
and Tang[11] presented a theoretical bound of iterations in computing
the longest path in a graph with single grid constraints, i.e., only some
of the nodes are required to be placed on a single pitch grid, while
other nodes are not required to be on grid. We derive a theoretical
bound in computing the longest path in a graph with multiple grid
constraints, i.e., each node is required to be placed on a specified
grid among a set of grids, and to distinguish it from the conventional
longest path on a directed graph without grid constraint, we call it the
grid longest path in this paper.

(3) Positive cycle removal in computing the grid longest path. For
a directed graph without grid constraint, we can use a prev arc to
record the previous node triggering the value update of the current
node during the longest path computation. By traversing the prev arcs
we can get the nodes on the longest path. If there is no positive cycle,
the prev arcs and the nodes should form a tree (or forest for an uncon-
nected graph). Thus if we find a cycle when traversing the prev arcs,
then the cycle is a positive cycle. This approach is no longer valid in
finding a positive cycle in a graph with grid constraints. We propose
an efficient algorithm to identify the positive cycles and resolve them
by relaxing the minimum number of arcs for such graphs.

(4) Minimum Perturbation-driven Graph-based Grid Legalization
(MP-GGL) algorithm. Multiple grid legalization with minimum lay-
out perturbation can be formulated as an integer linear programming
(ILP) problem. However, in general, ILP solvers not only take very
long runtime for large scale problems, but also have difficulty in re-
solving the conflicts of grid constraints and ground rule constraints.
We propose a graph-based algorithm to solve it with minimum lay-
out perturbation flavor. Experimental results have demonstrated the
effectiveness of this algorithm.

The rest of the paper is organized as follows. Section 2 defines
the problem of migrating conventional layouts into simplified layouts.
Section 3 presents the method of converting the shapes to simple geo-
metric objects. The approach to legalize the layouts to satisfy ground
rules and multiple grid constraints is described in Section 4. Exper-
imental results are reported in Section 5, followed by the conclusion
and future work in Section 6.

2. PROBLEM DEFINITION
A conventional shape-based layout consists of a set of polygons,

each of which is associated with a layer including diffusion, polysili-
con (poly), metals, contact, vias etc. Usually a layout is restricted to
be rectilinear. Simplified layouts with RDR are represented by a set
of simple geometric objects, for example, points representing con-
nections between wiring, sticks representing wiring, and rectangles
representing diffusion. Each object is required to be on a pitch grid
that is some multiple of the baseline grid in the design. For exam-
ple, some objects must be on the grid of 1X, and some other objects
must be on the grid of 4X. In addition to the grid constraints, de-
sign ground rules are defined to ensure manufacturability. Typically
ground rules include spacing rules specifying the minimum space be-
tween objects, length rules specifying the minimum length of some
objects, and methodology rules specifying the design requirement for
assembling cells (for example, power bus must be placed at some pre-
defined location, the height of the cells is pre-fixed, and so on). We
want to preserve the integrity of the original layout in the migration
process by using the minimum layout perturbation objective [8]. The
perturbation is defined as the absolute difference between the original
location and the new location for a layout element. Thus the problem
can be defined as follows.

PROBLEM 1. Given a conventional shape-based layout, we mi-

grate it to a valid simplified layout with minimum layout perturbation
subject to a set of restrictive design ground rules and multiple grid
constraints.

3. CONVERSION
Since contacts and vias are square or rectangles, it is straight-

forward to convert them to points by using their center points to rep-
resent the objects. To convert a polygon to rectangles, we can adopt a
scan-line algorithm [6] to decompose the polygon to a set of abutted
rectangles.

However, it is not trivial to convert polygons (such as polysilicon,
metal) to sticks. Existing solutions are not effective. Decomposing
the polygon into a set of rectangles using a simple scan-line scheme
and then converting each rectangle to a stick (for example, using cen-
terline) may lose the global view of the original polygon and cause
mis-oriented or disconnected parts. An example is illustrated in Fig-
ure 2.

(a) (b)

Figure 2: (a) The original polygon. (b) A scan-line algorithm is
applied to decompose the polygon into a set of rectangles and each
rectangle is converted to a stick using the centerline. The sticks
are disconnected.

Instead, we use the medial axis to represent the skeleton of the
original polygon, and then convert it to the sticks. Medial axis has
been widely studied in the literature of computational geometry [1,
2, 10]. Existing medial axis algorithms may generate non-rectilinear
segments for a rectilinear polygon (If Euclidean metric (L2) is used,
medial axis algorithm may generate even parabolic curves1). In the
simplified layout with RDR, all sticks must be rectilinear. So we
propose a method to create the rectilinear medial axis for rectilinear
polygons. We first compute the medial axis using L∞ metric[14]. The
result contains only straight segments, some of which may be non-
rectilinear. Then we build a graph to represent the connectivity of
the segments of the medial axis. Each node in the graph represents a
segment. A pair of directed arcs between two nodes represent the con-
nection between the two representing segments. Then we traverse the
graph, remove or transform the non-rectilinear nodes/segments into
rectilinear ones, while maintaining the connectivity. The conversion
result for the polygon in Figure 2 is illustrated in Figure 3.

(a) (b)

Figure 3: (a) The medial axis result using L∞ metric. (b) The
rectilinear medial axis obtained by our algorithm.

The algorithm consists of six steps shown in Figure 4:
(1) Compute the medial axis of the polygon using metric L∞.
(2) Build a graph to represent the segment connectivity.
(3) Mark the orientation for each node/segment as one of the fol-

lowings: horizontal, vertical or non-rectilinear.
(4) Merge non-rectilinear nodes. There may be more than one

non-rectilinear nodes between two rectilinear nodes. We loop on each
non-rectilinear node, and remove some non-rectilinear nodes such
that there exists at most one non-rectilinear node/segment between
any two rectilinear nodes/segments.

(5) Mark each node as “kept” or “disposed”. All rectilinear (hori-
zontal/vertical) segments will be “kept”. Whether a non-rectilinear
node/segment is “kept” or “disposed” depends on the situations.

1A metric Ln is defined as follows. Given two points, p1 = (x1,y1),
and p2 = (x2,y2), the distance between p1 and p2, |p1 − p2| =
n
√|x1 −x2|n + |y1 −y2|n. Euclidean metric is L2. In L∞ metric,
|p1 − p2| = max(|x1 −x2|, |y1 −y2|).
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Figure 4: The example of converting a polygon to rectilinear
wires by computing rectilinear medial axis. Step (1): compute
the medial axis using L∞. Step (2): construct a graph to represent
the connectivity. Step (3): mark node orientation as vertical, hor-
izontal or non-rectilinear. “Shaded” nodes mean non-rectilinear.
Step (4): merge non-rectilinear nodes. Step (5): determine to
“keep” or “dispose” a node by examining the pattern. Step (6):
output rectilinear medial axis and wires.

Since we want to keep as few bends as possible, a non-rectilinear node
in the graph is marked “kept” only when the corresponding segment
is definitely needed to maintain the connectivity. Otherwise, it will
be marked as “disposed”. The patterns are illustrated as follows. We
check the connected nodes/segments at each end of a non-rectilinear
node/segment:

1. If the two ends connect the segments which have different ori-
entations (vertical or horizontal), then the node is “disposed” as
we can extend the two connected segments (with different ori-
entations) to maintain the connectivity with fewer bends. The
patterns are shown in Figure 5(a).

2. If the two ends only connect the segments with the same ori-
entation, i.e,. two parallel segments, then the node is “kept”
as it is needed to connect those two parallel segments. We ex-
tend the parallel segments to the middle point and transform
the non-rectilinear segment to a rectilinear one to maintain the
connectivity. The patterns are shown in Figure 5(b).

(a) (b)

Figure 5: (a) The patterns to mark a non-rectilinear segment
(node) as “disposed”. (b) The patterns to mark a non-rectilinear
segment (node) as “kept”.

(6) Output the rectilinear medial axis and wires. We only out-
put the nodes/segments marked as “kept”. If a ‘kept” node is a non-
rectilinear segment, we transform it to a rectilinear segment based on

the orientation of the connected nodes/segments, as shown in Figure
5(b). A segment may be degenerate (0 length), and can be ignored. If
a ‘kept” node is a rectilinear segment, we may need to extend its ends
to abut with the adjacent nodes (segments) to maintain the connectiv-
ity. We can merge the connected segments with the same orientation
and the same width, and remove the redundant ones.

4. LEGALIZATION
After converting shapes into simple geometric objects (points,

sticks and rectangles), we need to legalize the simplified layout to
satisfy the given set of restrictive design ground rules and grid con-
straints. Typically, legalization is performed in two successive steps,
first in the x-direction and then in the y-direction, or vice versa. The
successive 1-D legalizations can meet most of the ground rule con-
straints in a realistic layout migration environment and are capable of
producing good results in practice with much less runtime compared
with the 2-D legalization. In this paper, we adopt the approach of
two successive 1-D legalizations. Without loss of generality, in the
following we only describe the legalization in the x-direction.

A constraint graph , G = (V,A), is used to represent the ground
rule constraints. In the x-direction, each node vi in the graph rep-
resents one of the following layout elements: a vertical edge of a
rectangle, an endpoint of a horizontal stick, a vertical stick, and a
point. Without confusion, we also use vi to denote the layout element
in the paper. Let x(vi) denote the x-location of layout element vi,
and xold(vi) denote the initial x-location of a layout element vi in the
given layout. The constraint specified by a ground rule between two
layout elements vi and v j is represented by a difference constraint of
the form x(v j)−x(vi) ≥ wi j (the equality constraint can be expressed
by two difference constraints). The constraint corresponds to a di-
rected arc, ai j = (vi,v j), from node vi to node v j with weight wi j in
the constraint graph, where vi is called arc tail and v j is called arc
head. In addition, each node vi is associated with a grid constraint:
being placed on grid of giX. The grid constraint can be expressed as:
x(vi) = gi × x′(vi), where x′(vi) is an integer. For example, for a de-
vice with double contacts as shown in Figure 6(a), we can use two
nodes d1 and d2 to represent the left and right edge of diffusion, two
nodes p1 and p2 to represent the left and right endpoint of polysilicon,
and two nodes c1 and c2 to represent the two contacts, respectively.
The constraint graph is shown in Figure 6(b). Typically, the device
size will not be changed in the legalization process, i.e., fixing the
value of x(d2)−x(d1) to be the original. Let s0 be the original value,
and then x(d2)− x(d1) = s0. Thus we add two more arcs, (d1,d2)
with weight s0 and (d2,d1) with weight −s0, resulting in the con-
straint graph as shown in Figure 6(c).
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Figure 6: (a) A device with double contacts. (b) The correspond-
ing constraint graph. (c) The constraint graph with fixed device
size (x(d2)−x(d1) = s0).

The legalization problem can be formulated as follows:

min ∑
vi∈V

|gi ×x′(vi)−xold (vi)| (1)

subject to:

g j ×x′(v j)−gi ×x′(vi) ≥ wi j, ∀ai j ∈ A

x′(vi) be integer, ∀vi ∈V
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We can linearize the objective function by using the technique pre-
sented in [8]. Thus the problem (1) is essentially an integer linear pro-
gramming (ILP). In addition to the fact that it is expensive to solve an
ILP problem, unfortunately, in reality the inputs of restrictive design
ground rules with the grid constraints often contain conflicts and thus
a generic ILP solver fails to return a feasible solution. Conflicts of the
constraints can be identified as positive cycles in the constraint graph.
For example, in the constraint graph in Figure 6(c) where we fix the
device size, if the separation space s2 + s3 + s4 > s0, then there is a
conflict in constraints and d1 → c1 → c2 → d2 → d1 forms a positive
cycle. In fact as we discuss later, with the grid constraints taken into
account, the condition that the sum of the weights along a cycle is
greater than 0 is only sufficient but not necessary to imply a positive
cycle.

Therefore we propose a Minimum Perturbation-driven Graph-
based Grid Legalization(MP-GGL) algorithm for multiple grid legal-
ization problem. Our algorithm can produce a valid simplified layout
with RDR (i.e., all the objects will be on grid) while trying to fix the
ground rule violations and preserve the integrity of the original layout
as much as possible. For the case shown above, the algorithm will re-
lax some constraint (arc). Designers can manually fix the ground rule
violations later (for example, to remove one of the double contacts or
to change the device size in this case). MP-GGL algorithm is based
on the grid longest path computation. In the following sections, we
first present how to compute the grid longest path with positive cycle
removal, and then describe the MP-GGL algorithm.

4.1 Computing the Grid Longest Path
Computing the longest path in a directed graph without the grid

constraints G = (V,A), the inverse version of computing the shortest
path, is a classical problem. Bellman-Ford algorithm[3] can handle
arbitrary weights of arcs, and may take n−1 iterations (n is the num-
ber of nodes). In each iteration, all the arcs are labeled by updating
the value of the arc head based on the arc weight and the value of the
arc tail. Yen’s algorithm[3] improves Bellman-Ford algorithm by as-
signing an order to the nodes, for example, v1, v2, ..., vn. So the arcs
are partitioned into two disjoint sets, forward arcs A f and backward
arcs Ab, where A f = {ai j |i < j} and Ab = {ai j |i > j}. Both (V,A f )
and (V,Ab) are directed acyclic graphs (DAG). At each iteration, each
node is visited in the order of v1,v2,...,vn, and its connected arcs in A f
are labeled (referred as forward pass in the paper), and then each node
is visited in the reverse order, and its connected arcs in Ab are labeled
(referred as backward pass). In this way, it only takes at most n/2
iterations for the labeling process to converge if there is no positive
cycle in the graph. Observing that the constraint graph derived from
a layout has some special property, Liao and Wong[12] proposed to
sort the nodes according to their original locations, and assign the or-
der to the nodes. In this way, |Ab| << |A f |. Thus they proved that
the number of iterations needed is at most |Ab|+ 1. Typically in a
constraint graph of a layout, |Ab|+1 << n/2. If the number of iter-
ations exceeds the bound and the labeling operation still updates the
value of some node, then there exists a positive cycle. Basically, if
there is no positive cycle, the longest path is well-defined, and all the
longest paths from the source to all other nodes form a tree rooted at
the source.
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Figure 7: A graph with grid constraints. s is the source; d1 and
d2 are on the grid of 1X; and p1, p2 and p3 are on the grid of
4X. From s to d1, the grid longest path is s(0) → d1(2) → p1(8) →
d2(11) → d1(3) → p2(8) → d2(12) → d1(4) → p3(8) → d2(13) →
d1(5), where the node value is shown in () adjacent to each node.
Note that d1 appears multiple times in the grid longest path due
to the rounding-up of labeling p1, p2, p3 for their grid constraints.
On the other hand, the value change on d1 does not affect p1 due
to the fact that p1 is on a coarser grid and thus its labeling process
can “absorb” the value increase from d1.

s 1 r

p
0

0

Figure 8: A graph with grid constraints. s is the source; r is on the
grid of 3X; and p is on the grid of 4X. The pair of arcs between r
and p implies that the value of r must equal the value of p. From s
to r, the grid longest path is s(0) → r(3) → p(4) → r(6) → p(8) →
r(9) → p(12) → r(12), where the node value is shown in () adja-
cent to each node.

With grid constraints taken into account, we can still compute the
longest path by iteratively labeling the arcs. In each labeling opera-
tion, we need to round the value of the arc head up to the next grid
location. We illustrate it by two examples, shown in Figure 7 and 8.
The following lemma states the path property with grid constraints.

LEMMA 1. For a directed graph G = (V,A) with l different grids,
gi, i = 1,2, ..., l, given a path from v1 to v2 that the initial value of v1 is
x1 and the value of v2 is x2 after labeling the path, if the value of v1 is
assigned to x′1 such that x′1 ≥ x1, then the value of v2 will be at least
x2 after re-labeling the path; and if the value of v1 is increased to
gM +x1, then the value of v2 will be gM +x2 after re-labeling, where
gM is the least common multiple of all gi, i = 1,2, ..., l.

Proof: Obvious. �

It can be seen that due to the grid constraint the grid longest path
is no longer a tree and a node may appear several times in the grid
longest path. However, in the grid longest path in Figure 7, the node,
d1 or d2, appears at most 4 times; and in the grid longest path in Figure
8, the node p appears no more than 3 times. The result is summarized
in the lemma as follows.

LEMMA 2. For a directed graph with l different grids, gi, i =
1,2, ..., l, if there is no positive cycle, a node v, which is on the grid of
gk, will appear in a grid longest path at most gM/gk times, where gM
is the least common multiple of all gi, i = 1,2, ..., l.

Proof: Let us suppose that v appears t times in a grid longest path,
t > gM/gk . Obviously, gM/gk is an integer since gM is the multiple
of gk. Thus t −1 ≥ gM/gk . We denote the grid longest path to be s →
...→ v→ ...→ v→ ...→ v→ .... Thus the sequence of nodes between
two consecutive v form a cycle (beginning with v and ending with v).
Since v is on the grid of gk, the labeling process will update the value
of v to be the multiple of gk. When the labeling process visits v for a
second time along the grid longest path, it should increase the value
of v at least gk, otherwise the change of value is ≤ 0 and the cycle
of nodes shall not appear on the longest path. If v appears t times,
t − 1 ≥ gM/gk , then the value increase from the first v to the last v
along the path will be ≥ (t −1)gk ≥ gM . Note that the path from the
first v to the last v forms a cycle. According to Lemma 1, the labeling
process will keep increasing the value of v at least gM each time by
visiting the sequence of nodes from the first v to the last v. Thus the
labeling process will not converge, i.e., the sequence of nodes from
the first v to the last v will form a positive cycle, which contradicts
the assumption. �

When there are grid constraints, we may need more iterations in
labeling the arcs. Lee and Tang[11] presented a theoretical bound of
iterations in computing the longest path in a graph with single grid
constraints, i.e., only some of the nodes are required to be placed on
a single pitch grid, while other nodes are not required to be on grid.
It is not trivial to generalize the result to the multiple grid constraints.
The following theorem states the theoretical bound in computing the
longest path in a graph with multiple grid constraints.

THEOREM 1. For a graph with l different grids, gi, i = 1,2, ..., l,
supposing that there are ni graph nodes on the grid of gi, and mi be
the number of backward arcs in Ab such that the max grid of the two
nodes it connects is gi, if there is no positive cycle, then the number
of labeling iterations is at most

min((
l

∑
i=1

(nigM/gi))/2,
l

∑
i=1

(migM/gi)+1)

where gM is the least common multiple of all gi, i = 1,2, ..., l.
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Proof: According to Lemma 2, a node v which is on the grid of gi
appears at most gM/gi times in a longest path. Thus the number of
nodes in a longest path (including repeats) is at most ∑l

i=1(nigM/gi).
Each iteration labels at least 2 arcs along any longest path (at least
one in the forward pass and at least one in the backward pass). Thus
the number of iterations needed is at most (∑l

i=1(nigM/gi))/2.
In each iteration, the forward pass labels some forward arcs in

A f , and the backward pass labels at least one backward arc in Ab (if
Ab is not empty) along any longest path. Since a node v which is
on the grid of gi appears at most gM/gi times in a longest path, the
arc which connects v will also appear at most gM/gi times. We are
given that mi be the number of backward arcs in Ab such that the
max grid of the two nodes it connects is gi. Thus |Ab| = ∑l

i=1 mi
and the number of backward arcs in a longest path (including repeats)
is at most ∑l

i=1(migM/gi). Since each iteration labels at least one
backward arc, the number of iterations is at most ∑l

i=1(migM/gi)+1
(one additional iteration may be needed if the last arc in a longest path
is a forward arc).

Therefore, in summary the bound of iterations is
min((∑l

i=1(nigM/gi))/2,∑l
i=1(migM/gi)+1). �

COROLLARY 1. The bound of iterations in computing the grid
longest path: min((∑l

i=1(nigM/gi))/2,∑l
i=1(migM/gi)+1) is tight.

The bound of iterations can be reached in the worst case. An ex-
ample is shown in Figure 9. For the graph, we need n + 1 itera-
tions to compute the grid longest path from s to d3, and n + 1 =
min((∑l

i=1(nigM/gi))/2,∑l
i=1(migM/gi) + 1). Note that only 2 it-

erations are needed if there are no grid constraints.
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Figure 9: A graph with grid constraints. s is the source; di,
i = 1,2,3, are on the grid of 1X; and pi, i = 1, ...,n− 1, are on
the grid of nX. From s to d3, the grid longest path is s → d2 →
d1 → p1 → d2 → d1 → ... → pi → ... → d2 → d1 → pn−1 → d2 →
d1 → d3, and the final value of d3 is n + 3. The node order
is s,d1, p1, ..., pn−1,d2,d3. The number of iterations required to
compute the grid longest path is n+1.

4.2 Positive Cycle Removal
When the number of iterations exceeds the bound and the value of

some node is still changing in the labeling process, there exists a posi-
tive cycle. In a directed graph without the grid constraints, we can use
a prev arc to record the previous node during the longest path compu-
tation which triggers the value update of the current node. Thus we
can traverse the prev arcs back to eventually find the positive cycle
if there exists one, and then remove it by relaxing some arc. When
grid constraints are taken into account, a node/arc may appear multi-
ple times even within one longest path. The way of using a prev arc
to record the previous node does not work any more. How to remove
positive cycle for a directed graph with grid constraints is not consid-
ered in [11]. It should be noted that the sum of the arc weights along
a positive cycle may be less than or equal to zero on a graph with grid
constraints. Such an example is shown in Figure 10. We propose an
efficient algorithm to remove positive cycles on such graphs.

When the number of iterations exceeds the bound, we mark the
arcs triggering the value update of some nodes as “potential bad” arcs,
and put them into an array. Note that not all the potential bad arcs are
“true” bad arcs. Then we use binary search to find the true bad arcs
(maybe more than one). The arcs in the second half of the array are
marked as “bad”. Then we re-compute the grid longest path. Those
arcs marked as “bad” will be ignored in the labeling operation. We
take one of the following actions based on the result.
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Figure 10: A graph with a positive cycle. s is the source; d1 and
d2 are on the grid of 1X; and p1 and p2 are on the grid of 4X. The
positive cycle is d1 → p1 → d2 → d1 → p2 → d2 → d1. The labeling
process along the cycle will not converge. Note that the sum of the
weights along the cycle is less than 0.

1. If the computation converges, then the arcs in the first half of
the array are “good” arcs and the size of potential bad arcs is
reduced by half. We continue the search process on the second
half of the array, recursively.

2. If the computation does not converge within the bound of iter-
ations, then there exists at least one “true bad” arc in the first
half of the array. We recursively search for true bad arcs on the
first half of the array until one is found.

In this way, we can identify one bad arc. It should be noted that
we need to continue the search process on the rest of “potential bad”
arcs, since there may exist some other “true bad” arcs. Obviously,
the number of iterations to identify the ‘true bad” arcs is bounded by
b log p, where b is the number of “true bad” arcs and p is the number
of potential arcs we have identified.

It should be noted that two potential arcs may be mutually exclu-
sive in terms of “true bad”, i.e., one is “true bad” and then the other is
“good”, if they belong to the same positive cycle. Our approach will
identify exactly one of them as “true bad”. The one that is placed in
the later position in the array (i.e., with bigger index) will be iden-
tified as “true bad”. Therefore, we can assign some priority to the
potential arcs, and sort them in the array.

4.3 MP-GGL Algorithm
We first construct the constraint graph for a layout and add two

additional nodes: a source node for the left boundary and a sink node
for the right boundary. We compute the grid longest path beginning
with the source, i.e., compacting all layout objects to the left boundary
subject to the given set of ground rule constraints and multiple grid
constraints. Thus the value of a node is the lower-bound of valid on-
grid locations to place the corresponding object in the layout. Then
we invert the directions and weight signs of all the arcs in the con-
straint graph and compute the grid shortest path beginning with the
sink, i.e., compacting all layout objects to the right boundary subject
to the given constraints. Note that the expansion of the layout area
may be needed in order to contain all the objects. In this way, we
obtain the upper bound of valid on-grid locations to place each node.
Then the nodes are sorted in the order regarding to the original loca-
tions. We visit each node in this order, place the node on grid position
between its lower bound and upper bound honoring its original loca-
tion, and then propagate the value to other nodes by updating their
lower bounds or upper bounds if needed. The algorithm of legaliza-
tion is summarized as follows.

Algorithm MP-GGL
1. Constructing the constraint graph G(V,A)
2. Obtaining the lower bounds by computing the grid

longest path beginning with source
3. Obtaining the upper bounds by inverting the directions

and weight signs of arcs and computing the grid
shortest path beginning with sink

4. FOR EACH node in the order regarding to original loc
5. Placing it between lower bound and upper bound

honoring the original location
6. Propagating the update of other bounds

5. EXPERIMENTAL RESULTS
We implemented the proposed approaches, conversion and legal-

ization, in C++ and integrated them to a migration flow and tested it
on a 1.6GHz Linux box with 1024MB memory by migrating a set of
library cells in the conventional shape-based technology to the simpli-
fied layout designs with RDR constraints. Figure 11 shows a layout
in the conventional shape-based technology and its simplified repre-
sentation after being converted and legalized by our flow.
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Figure 11: (a) The original layout. (b) The simplified layout with RDR.

Table 1: Comparison on legalization between MP-GGL and
LP+Snap

test #nodes #arcs ground rule errors runtime(s)
case LP+Snap MP-GGL LP+Snap MP-GGL
cell1 2799 19742 138 0 2.12 1.17
cell2 2718 19156 110 0 1.94 1.14
cell3 2049 14237 80 0 1.31 0.83
cell4 1286 8575 80 0 0.92 0.62

Table 2: Experimental Results on Positive Cycle Removal

test #nodes #arcs #potential #removed runtime
case bad arcs bad arcs (s)
cell5 1883 9382 544 52 3.03
cell6 573 3769 180 19 0.61
cell7 587 3629 54 25 0.52
cell8 455 3078 46 16 0.43

In order to show the efficiency of the MP-GGL algorithm pre-
sented in Section 4, we compare the legalized results provided by
MP-GGL algorithm with a two-step flow where the layout is legal-
ized without the grid constraints using a minimum perturbation-based
legalization engine[8], and then we snap the object to the nearest grid
point without considering any ground rule constraints. This two-step
flow is referred as LP+Snap in Table 1. Table 1 reports the results of
legalizing four library cells. The inputs are the simplified layouts gen-
erated by the conversion process in our migration flow and have grid
violations (not all of the objects are on grid) and ground rule viola-
tions. The MP-GGL algorithm can generate legal results (the objects
are placed on grid and meet the ground rule constraints) when there is
no positive cycle in the constraint graph. For those four cells, we only
apply spacing and length constraints, thus there is no positive cycle
and there are zero ground rule errors in the legalized results. On the
other hand, the LP+Snap flow can not fix all the ground rule viola-
tions due to the heuristic snap-on-grid process. The size of the layout
is reported in terms of the number of nodes and arcs in the constraint
graph.

In order to test the efficiency of our positive cycle removal tech-
nique in MP-GGL, we tested it on another set of testcases with not
only spacing and length constraints but also methodology constraints
which cause positive cycles in the constraint graph. Because of the
relaxation in removing the positive cycles, there may be some ground
rule violations. The results are shown in Table 2.

6. CONCLUSION AND FUTURE WORK
In this paper, we studied the problem of migrating the conven-

tional shape-based layouts to the simplified layouts to meet the re-
strictive design rules with multiple grid constraints. We presented
a migration flow which consists of two steps: conversion (convert-
ing the shape-based layout to the simplified layout using rectilinear
medial axis) and legalization (modifying the layout to satisfy the set
of ground rules and multiple grid constraints). We formulated the
multiple grid legalization problem as an integer linear programming
problem and proposed the MP-GGL algorithm, which is based on

computing the grid longest path with positive cycle removal, to solve
the legalization problem. Experimental results on migrating library
cells from the conventional shape-based layouts to the simplified lay-
outs with RDR have demonstrated the effectiveness of our approach.
Future work includes the study on design migration for hierarchical
layouts from the conventional shape-based technology to the simpli-
fied layout style designs with RDR.
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