
Efficient Process-Hotspot Detection Using Range Pattern Matching

H. Yao
Tsinghua University

S. Sinha, C. Chiang
ATG, Synopsys

X. Hong, Y. Cai
Tsinghua University

Abstract

In current manufacturing processes, certain layout configurations
are likely to have reduced yield and/or reliability due to increased sus-
ceptibility to stress effects or poor tolerance to certain processes like
lithography. These problematic layout configurations need to be ef-
ficiently detected and eliminated from a design layout to enable bet-
ter yield. In this paper, such layout configurations are called process-
hotspots and an efficient and scalable algorithm is proposed to detect
such process-hotspots in a given layout.

The concept of a range pattern is introduced and used to accurately
and compactly represent these process-hotspots. This representation
is flexible and can incorporate information about the deficiencies of
available modeling and/or subsequent correction (for instance, mask
synthesis) techniques. Each range pattern can also be associated with
a scoring mechanism to score the problem regions according to yield
impact. A library of range patterns is being developed in collaboration
with a fab. The proposed process-hotspot detection system assumes
that process-hotspots are specified as a library of range patterns and de-
termines all occurrences of any of these range patterns in a layout. It is
fast and accurate and can be applied to large industrial layouts. Unlike
previous work, the proposed scheme can identify problems that can-
not be efficiently modeled or corrected by subsequent mask synthesis
techniques and can thereby complement existing work in that area. Ex-
perimental results are quite promising and show that all locations that
match a range pattern in a given layout can be found in a matter of
minutes.

1. Introduction
Manufacturability-aware physical design (considering both yield and

reliability) is becoming a necessity to bridge the gap between design
and manufacturing for nanometer processes. Many of these yield and
reliability issues can be attributed to the presence of certain layout con-
figurations that are susceptible to stress, lithographic process fluctua-
tions, etc. To improve yield, it is necessary to remove these configura-
tions and replace them with more yield-friendly configurations.

A key technique needed to facilitate this is to accurately identify
layout configurations in a given routed layout that are most suscepti-
ble to process issues, thereby potentially affecting functional and para-
metric yield. In the rest of this paper, these regions will be referred
to as process-hotspots. Process-hotspots have to be represented ac-
curately and succinctly in the router for later use. Typically, fabs use
design rules (like recommended rules) to represent process-hotspots.
The representation has been found to be inadequate due to the follow-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD 2006, Nov 5–9 2006, San Jose, USA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

ing reasons. Some of these effects are not necessarily very local. For
instance, lithography effects involve interactions over longer distances
(�1um) than typical minimum spacing rules. Thus complicated rela-
tionships between non-neighboring objects need to be captured. While
design rules have gotten more complex with the incorporation of mul-
tiple width and length dependent rules, it is still difficult to represent
relationships between a large group of non-neighboring objects using
a small set of rules. Relying entirely on design rules to represent all
process-hotspots would result in an explosion of the number of design
rules, which can significantly slow down the router. In some cases,
certain recommended rules are ignored by the router for runtime effi-
ciency. The inadequacy of design rules is further supported by the fact
that DRC tools are being supplemented with more accurate process
simulators (for instance, for lithography) during physical verification
steps.

To address the limitations imposed by design rules, there has been a
push to incorporate process models to analyze and/or drive corrections
during routing. For instance, new work in the area of lithography-aware
routing [1, 2] has proposed embedding an aerial image simulator in the
router to identify process-hotspots. However, these approaches also
have certain limitations.

� Lack of knowledge of downstream steps: It is impossible to accurately
model certain downstream processing steps due to IP issues such as lack
of knowledge of OPC recipes. On the other hand, simple aerial image
based lithography simulations often tag regions that can be easily cor-
rected using mask synthesis techniques as process-hotspots. This over-
estimation of hotspots is wasteful and can produce an unnecessary burden
on the router.

� Huge computational expense: Certain process models are computation-
ally expensive and hard to incorporate during physical design. For ex-
ample, metal stress computations to determine layout configurations sus-
ceptible to stress can significantly slow down the router.

Thus it is not realistic to rely entirely on design rules and process
models during physical design. Instead, we believe that a mechanism
is necessary to directly represent the low-yielding layout configurations
efficiently and accurately. Since effects like lithography and stress are
non-local and often involve interaction distances that are a few microns
long, a good representation of a process-hotspot would be a 2D layout
of rectangles, i.e. a pattern. These patterns can be built off-line using
test-structures or by running more accurate simulation tools. Thus, they
can capture layout configurations that are prone to yield issues due to
fundamental limitations of the mask synthesis techniques, incomplete
or expensive modeling or undesirable interactions between processing
steps. This ensures that the process-hotspot detection during routing
would complement current advances in yield enabling steps like mask
synthesis. While a pattern representation is accurate1, it is usually too
expensive to represent each problem region as a separate pattern. This
is because a lot of these layouts/patterns are quite similar with minor
variations in spacings, lengths and/or widths. Figure 1 shows an ex-
ample where two similar layouts could become process-hotspots due to
different RET constraints (the one on the left is “un-OPC-able” and the
one on the right is “un-SRAF-able”). In the pattern on the left, a serif
cannot be added in some technologies without violating mask design

1In some recent work [5], pattern matching has been used to speed up
some exact simulation tools.

625

Un−OPC−able Un−SRAF−able

Scattering Bar

��
��

�� �� ��

Figure 1. Similar layouts that are process-
hotspots.

rules. A scattering bar cannot be inserted in between the two rectan-
gles for the pattern on the right without violating design rules. The
two patterns are very similar, except for different spacings between the
rectangles. In reality, each of these patterns is representative of a set
of patterns as the same problem could occur for a range of �� and ��
values. Thus, multiple similar patterns will have to be represented if
exact patterns are used.

To address the above mentioned problems, we propose to succinctly
represent a group of “similar” layouts with allowable variations in length,
width and/or spacing using a new representation called the range pat-
tern. The use of patterns ensures that non-local effects are captured
and the ranges in the pattern enable compact representation. The
range patterns can be built either in collaboration with a fab or with
in-house accurate simulation and mask synthesis flows to identify lay-
out configurations that could have yield and/or reliability issues. An
user-modifiable scoring mechanism provided with each range pattern
can be used to score the patterns in the set based on yield impact. This
information can be used by the router to give higher priority during
correction to the problem regions with greater yield impact. Thus, in
the proposed scheme, process-hotspots are represented as a library of
range patterns. Process-hotspot detection is the task of finding all the
locations where the layout is identical to one of the patterns contained
in a range pattern in the library. The key contributions of this work are
summarized below:

� Introduction of the concept of a range pattern and the associ-
ated range pattern matching problem and a novel and efficient
algorithm for the same.

� Representation of process-hotspots as a library of range patterns.
Since the library is built off-line or provided by the fab, they can
capture information about the true yield killers more accurately.

� A fast, accurate and scalable algorithm for process-hotspot de-
tection during physical design using multiple calls to an efficient
range pattern matching algorithm.

The paper is organized as follows. In Section 2, the concept of a
range pattern and the associated range pattern matching problem is in-
troduced. In addition, efficient representations of the routed layout and
range patterns are discussed. In Section 3, a detailed description of the
proposed process-hotspot detection system is provided. Experimental
results for multiple range patterns on real industrial layouts are pre-
sented in Section 4. Finally, conclusions and directions for future work
are provided in Section 5.

2. Range Patterns and Matching
In this section, we formally introduce the concept of a range pattern

and the associated matching problem. Suitable representations of the
layout and range pattern for use during range pattern matching are also
discussed.
2.1 Range Pattern Definitions

DEFINITION 1. A range pattern is a DRC-correct two-dimensional
layout of rectangles with additional specifications:

1. Widths and lengths of the rectangles can vary within certain user-
specified bounds.

2. Spacing between pairs of rectangles can vary within certain user-
specified bounds.

3. Optimal widths and lengths of the rectangles and optimal spac-
ings between pairs of rectangles can be specified.

4. Constraints can be specified over linear combinations of the widths,
lengths and spacings of the rectangles.

Rectangle 2

Rectangle 1

Rectangle 3

1. Optimal width of each rectangle = 90 nm.
2. Optimal spacing between adjacent rectangles = 90nm.
3. Range of width of all rectangles = (90, 150) nm.
4. Range of spacing between adjacent rectangles = (90, 150) nm.
5. Range of length of central rectangle = (200, 500) nm.
6. Distance between right edge of rectangle 1

and left edge of rectangle 3 cannot exceed 50 nm.

Figure 2. Range pattern Staircase.

Figure 2 shows an example of a range pattern called Staircase
with the following specifications:

1. Optimal width of each rectangle = 90 nm.
2. Optimal spacing between adjacent rectangles = 90 nm.
3. Range of width of all rectangles = (90, 150) nm.
4. Range of spacing between adjacent rectangles = (90, 150) nm.
5. Range of length of central rectangle = (200, 500) nm.
6. Distance between the right edge of rectangle 1 and the left edge

of rectangle 3 cannot exceed 50 nm.
It is clear that the above range pattern contains a multitude of exact

patterns. Thus, a range pattern is a compact representation of a set
of “similar” patterns. A scoring mechanism can also be introduced
for the range pattern. The scoring mechanism typically differentiates
between the various patterns contained in a range pattern based on the
differences in lengths, widths and/or spacings. For instance, a pattern
where the line widths are 90 nm is given a higher score than a pattern
where the line widths are 110 nm as the former is likely to have greater
printability problems and hence worse yield. The scoring model for
each range pattern can be developed using some representative patterns
such that the differences in yield of the patterns contained in a range
pattern can be captured using polynomial functions of the range pattern
parameters (like width, spacing, length, etc. of the rectangles).

The Range Pattern Matching (RPM) problem can be stated as
follows: Given a layout and a range pattern, determine all occurrences
of the range pattern in the layout and score these occurrences using the
scoring mechanism for the range pattern.

Once these match locations are found, the router can work to correct
them. The scores of the various occurrences of the range pattern can be
used to guide the router to correct the most yield-critical ones first.
2.2 Layout Representation

During RPM, the layout is represented by a two-dimensional layout
matrix ������

where ���� �� � � or ��� � � � �� and � � � �

���. The conversion is as follows: If a rectangle overlaps a grid loca-
tion, the value at that location is set to 1. Otherwise, the value of the
grid is set to 0. Figure 3 illustrates with an example the representation
of a layout as a layout matrix.
2.3 Range Pattern Representation

If the range pattern specification is such that it only represents a
small set of exact patterns, matrix representations for each individual
pattern can be used. In that case, existing pattern matching algorithms
(for example, the algorithm in [3]) would suffice to find all occurrences
of the range pattern. However, it would be too computationally expen-
sive to explicitly represent all patterns contained in a general range pat-
tern. To address this issue, we propose a new representation called the

626

Figure 3. Representation of layout as layout ma-
trix.

cutting-slice to efficiently represent all the flexibility inherent in a range
pattern during RPM. The theory and the specific algorithm for automat-
ically translating the range pattern into its cutting-slice representation
is given in the Appendix. Below, we define a cutting-slice represen-
tation and provide an intuitive explanation of how a range pattern can
be completely represented with one or more cutting-slices. Typically,
the number of cutting-slices is much smaller than the number of exact
patterns.

DEFINITION 2. A horizontal(vertical) slice is a 2D matrix in which
all the rows(columns) are equal. A fragment of a horizontal or vertical
slice is a sub-matrix in which all the matrix elements are equal.

DEFINITION 3. A cutting-slice is a set of horizontal or vertical
slices ���� � � � � ����� with the following specifications:

1. Adjacent slices are not equal, i.e. �� �� ����� � � � � ��� ��.

2. Each slice �� is decomposed into fragments �	���� � � � � 	������,
where 	��� �� 	������ � � � � �
� ��.

3. If applicable, optimal values are specified for the fragments in
each slice and for the slices themselves.

4. If applicable, ranges are specified for each slice and/or frag-
ments within the slice.

5. If applicable, constraints between different fragments and/or slices
are specified as linear functions.

The optimal values, ranges and constraints can be given on an abso-
lute scale (i.e. in microns or nanometers) or in terms of the number of
grids. Typically, the same grid will be used to translate the layout into
a layout matrix and to generate the cutting-slices of a range pattern.

��

��

��

��

��

���� ����

����

���� ���� ����

����

���� ����

Figure 4. Cutting-slice of range pattern
Staircase.

For example, the cutting-slice of range pattern Staircase (Fig-
ure 2) is shown in Figure 4. The range pattern can be cut into 5 slices
denoted as ��� ��� � � � � ��. Note that all the fragments in the ��� slice
�� have the same width as �� (i.e. slice width) but their lengths can
vary. It is possible to specify the variation range for the length of each
fragment and the width of each slice. In the sequel, �� can denote either
the slice or the slice width; 	��� can denote either the fragment or the
fragment length. For example, based on the specification of the range

pattern, the optimal width of �� is 90 nm and the allowable variation
range is (90, 150) nm. In addition, it is also possible to specify con-
straints between different fragments. In this particular example, the ab-
solute distance between the right edge of rectangle 1 and the left edge
of rectangle 3 cannot exceed 50 nm. This translates to the following
linear inequality: 	��� � 	��� � ��.

6. The right end of Rectangle 2 is (50, 250) nm away from the

2. Optimal spacing between the rectangles = 90 nm.
3. Range of width = (90, 150) nm.
4. Range of spacing = (90, 150) nm.
5. Rectangle 1 and rectangle 3 can be of unequal length.

right ends of rectangle 1 and rectangle 3 on one side.

1. Optimal width of each rectangle = 90 nm.Rectangle 1

Rectangle 2

Rectangle 3

Figure 5. Range pattern Rocket.

It should be noted that the number of cutting-slices required to fully
capture all the patterns contained in a range pattern depends on the slic-
ing direction, i.e. the direction used to generate the slices. The number
of cutting-slices for a given slicing direction depends on the number of
overlaps of different fragments caused by the ranges on their dimen-
sions. Only ranges on dimensions that are orthogonal to the slicing
direction need to be considered. Overlaps between two fragments can
be classified into two categories:

1. Uni-directional overlap: The two fragments extend in the same
direction and their ranges may cause overlap. Rectangles 1 and 3
of Rocket in Figure 5 are an example of uni-directional overlap
for a vertical slicing direction.

2. Bi-directional overlap: The two fragments extend in the oppo-
site direction and their ranges may cause overlap. Rectangles
1 and 3 of Staircase in Figure 2 present an example of bi-
directional overlap for a vertical slicing direction.

For both uni-directional overlap and bi-directional overlap between
two fragments, three cutting-slices are needed to completely represent
all possible scenarios for these two fragments. As an example, for range
pattern Rocket in Figure 5, three cutting-slices are required in the
vertical slicing direction (Figure 6(a)-Figure 6(c)), whereas only one
cutting-slice is required in the horizontal slicing direction (Figure 6(d))
to capture all the patterns contained in the range pattern. This is be-
cause the allowable length variations of Rectangles 1 and 3 (Item 5
of the specification) allow three cases: (a) Rectangle 1 is shorter than
Rectangle 3; (b) Rectangle 1 is equal to Rectangle 3; and (c) Rectan-
gle 1 is longer than Rectangle 3. If a vertical slicing direction is used,
three different cutting-slices will be needed to fully capture the flexi-
bility. Figure 6(a-c) illustrates the scenario. On the other hand, a sin-
gle cutting-slice will suffice when a horizontal slicing direction is used
(Figure 6(d)), since neither uni-directional nor bi-directional overlap
occurs in this case.

The total number of the cutting-slices needed for a given range pat-
tern is calculated by enumerating all the overlapping cases, the details
of which are given in the Appendix. Typically, the slicing direction that
results in the least number of cutting-slices is chosen.

3. Process-Hotspot Detection System

In this section, we present the details of the process-hotspot detec-
tion system. The input for the system is the routed layout and a library
of range patterns that describes process-hotspots. The routed layout is
processed layer by layer.
3.1 Overview

The flowchart in Figure 7 describes the process-hotspot detection
system with a single range pattern for one layer. This process can be
easily generalized to multiple range patterns.

The algorithm uses a hierarchical dual-grid scheme with matching
done on two grid sizes (one coarse and the other much finer). The grid
sizes are used to generate the layout matrices and the cutting-slices of

627

�� �� ��

(a) R1 to the
left.

�� �� ��

(b) R1 aligns
with R3.

�� �� ��

(c) R1 to the
right.

��

��

��

��

��

(d) Horizontal slicing direction.

Figure 6. Horizontal and vertical cutting-slices of
range pattern Rocket.

a range pattern for each stage. Matching with the coarse grid identifies
locations that are potential matches for the range pattern. In the next
stage, the layout matrix of the layout at each of the match locations and
the cutting-slices of the range pattern are generated using a finer grid
and the matching process is repeated. The match locations identified
at this stage are the locations where a true match to the range pattern
exists and hence are true process-hotspots. Typically, the fine grid size
is equal to the manufacturing grid size. The algorithm is executed on
both the original and a 	�Æ-rotated layout.
3.2 Range Pattern Matching Sub-Problem

In this section, we discuss the solution for the RPM problem for a
given range pattern and a given window of the layout, which is rep-
resented as a layout matrix. The matching problem is invoked both
for the original range pattern and its �
�Æ-rotated version. For ease of
presentation, we discuss the solution for the original range pattern and
also assume that a single cutting-slice in the vertical slicing direction
can completely represent it.

The matching algorithm is performed block by block. Here a block
refers to a sub-matrix of the layout matrix. The number of columns
in the block is equal to the width of the layout matrix. The height of
the block is equal to �, where
�� � � �
�. Here,
�� and

� denote the minimum and maximum possible number of rows of
the range pattern, respectively (the height of the range pattern is not
unique as the widths, lengths and spacings can vary). The first block
starts from the bottom row of the layout matrix.

A naive approach would look for potential matches at each loca-
tion of a block. This would make the task computationally infeasible.
Instead, a fast filtering operation is first performed at each block to
efficiently filter out locations that can never be matches to the range
pattern. The details of the filtering algorithm are provided in the next
section. It is proved that this operation never filters out locations that
are true matches of the range pattern and hence does not result in the
loss of any true matches of the range pattern in the window. All the
locations that are not filtered out are examined more closely to deter-
mine if they are true matches. To achieve this, the layout matrix near
the match location is decomposed into slices and a thorough compari-
son is done between the slices of the layout matrix and the slices in the
cutting-slice of the range pattern. This includes a check of the con-
straints on the fragments of each slice or between slices as well as
constraints on the slices themselves. If the location passes the verifi-
cation phase during the coarse-grid stage, it is a potential match and is
re-examined during the fine-grid stage. If the location passes the verifi-
cation during the fine-grid stage, a true match is recorded. In addition,
a matching score is computed based on the cost function provided with

Done
Processing

Layout ?

Output locations that

match given pattern.

Routed Layout

No

Yes

No

Yes
All

Range Pattern

Range Pattern

size wxw with origin at
Initialize a window of

Processed?

Generate layout matrix

of pattern (coarse grid)

Fi
ne

−
G

ri
d

St
ag

e
C

oa
rs

e−
G

ri
d

St
ag

e

Cutting−slice

Match Locations

match location.
with fine grid for next

Generate layout matrix
for the given window

using coarse grid.

left bottom corner of layout.

new position.
Shift window to

Matching for layout matrix.
Cutting−slice

of pattern (fine grid)

Matching for layout matrix.

Figure 7. Flowchart of the hotspot detection sys-
tem.

the range pattern. The cost function is a function of the following vari-
ables in the given range pattern: the optimal values and the lower and
upper bounds of widths, lengths and spacings. The calculated cost is
typically translated to the matching score between 1 and 100.

Inc

Mov
Inc Dec

Dec

Mov
Inc

Inc
Mov

min

max

Figure 8. Worm-like movement of the layout
block.

It is necessary to enumerate all the blocks whose heights are be-
tween
�� and
� starting from each row of the layout matrix to
find all the occurrences of the range pattern without loss of matches.
However, these blocks share a lot of common information. In order to
reuse work done in encoding the previous block, the blocks are pro-
cessed in a worm-like fashion such that only the top and the bottom
rows are changed each time (Figure 8). The first block is of height
��

starting from the bottom row. Each time a new block is generated by ei-
ther adding a row at the top, removing a row from the top or moving the
whole block up by one row when the height of the block reaches
�� or

�. It ensures that all heights between
�� and
� are enumerated

628

for all blocks that start at a row in the layout matrix. This worm-like
enumeration enables incremental encoding of the block, thereby greatly
improving runtime.

3.2.1 KMP-based Filter
The first step of the filtering operation is to encode both the block

� and the cutting-slice 	 of the range pattern as 1D strings. Let the
string representations of � and 	 be �� and 	� , respectively. Given
�� and 	� , a KMP matching [4] is done to find all potential matches
of 	� in �� . All locations that are not matches are filtered out. The
locations that match are mapped back to locations in the block and are
examined more closely using a secondary check (based on slice-by-
slice and fragment-by-fragment matching) to determine if they are true
matches.

The block and cutting-slice encoding are done as follows:

DEFINITION 4. The run-length compression of a column ������ �
is equal to ���� ��� � � � � �����, where: (1) �� �� ���� �� � � � ����;
(2) ������ � can be represented as a concatenation of � segments, i.e.
�� repeated �� times, �� repeated �� times, and so on; (3)

����

��� �� �
� .

For the range pattern, the run-length compression of each vertical
slice (a vertical slice is uniquely represented by a single column) is
generated. This is a string of alternating 0’s and 1’s. A “1” is appended
at the top of each string generated after run-length compression to dis-
tinguish between strings “01” and “1”. Each string is encoded into an
integer value using binary encoding2 . Encoding each slice converts the
cutting-slice of the range pattern into a string of numbers, where the
length of the string is equal to the number of slices in the cutting-slice.

2. Spacing between middle vertical rectangle

3. Range of width = (90, 150) nm.

4. Range of spacing between middle vertical

1. Width of each rectangle = 90 nm.

and horizontal rectangle = 90 nm.

and horizontal rectangles = (90, 150) nm.

5. Spacing range between vertical rectangles = (90, 120) nm.�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

�
�

�
�

�
�

�
�

�
�

Figure 9. Cutting-slice of range pattern Mountain.

As an example, the slices in the cutting-slice of the range pattern
Mountain (Figure 9) are encoded as follows: S0: “11” = 3; S1: “101”
= 5; S2: “1101” = 13; S3: “101” = 5; S4: “11” = 3; The 1D string
representation of the range pattern is ��� �� ��� �� ��.

The block is encoded in a similar fashion. First, the slices in a block
are identified in one sweep starting from the left end of the block. The
slices are created such that no two adjacent ones are equal. Then, the
run-length compression of each slice is generated and each slice is en-
coded using the same method used for the slices in the cutting-slice of
the range pattern. Using this method, the 1D string representation of
the layout in Figure 10 is ��� ��� ��� �� �� �� ��� �� �� �� ��� ��� ��. It
is easy to see that there is an exact match of the encoded range pattern
��� �� ��� �� �� in the encoded block. Hence, columns 5-14 of the block
in Figure 10 are examined more closely to see if it is a true match. The
remaining locations can never be true matches and are filtered out.

THEOREM 1. The filtering algorithm satisfies the following condi-
tions: Let � denote the cutting-slice of a range pattern �	. For every
occurrence of the original range pattern �	 in the original block �,
there is an occurrence of the encoded cutting-slice 	� in the encoded
block �� .
2It is possible to use any encoding scheme that can represent each string
of alternating 0’s and 1’s with a unique number.

2 210 10 3 5 13 5 3 2 10 10 2

��

�

Figure 10. Layout block encoding.

Proof Sketch: We prove the theorem for the case when the range pattern �	
has a single cutting-slice � and for the case when the occurrences of �	 in �
have the same orientation.

The block encoding has two steps: (1) block slicing, (2) run-length com-
pression of each slice. The block slicing process moves horizontally from one
end to the other identifying vertical slices such that no two adjacent slices are
equal. By definition, a vertical slice is a 2D matrix where all the columns are
equal. By definition of a cutting-slice, the slices in � also have the property
that no two adjacent slices are equal. Since the range pattern �	 has a single
cutting-slice � , the block slicing ensures that all occurrences of �	 in � will
be replaced by slices that are identical to the slices in the cutting-slice � . Fur-
thermore, since the same run-length compression is used for each slice of the
block, both occurrences of � in the sliced block will have the same encoding
and will be represented by the same string in �� . In addition, this string is equal
to �� since the same run-length compression is also used on the slices in � to
generate �� .

The same can be shown to hold if a range pattern �	 has multiple
cutting-slices. Thus, no true matches are lost during the filtering oper-
ation. However, it is not necessarily true that each occurrence of the
encoded range pattern in the encoded block implies a true match.

3.2.2 Complexity Analysis of the RPM Algorithm
Given a layout block �����

where
�� � � �
�, the differ-
ent slices are first identified by comparing ���� �� with ���� � ����� �
� � � and � � � � �� � ��, which takes ���
 ��� � ��� time.
Let the number of different identified slices in the layout block be
� �� � � � ���. Then the run-length compression and the binary
encoding for the layout block runs in time ���
 ��. The KMP string
matching algorithm takes ���� to find the potential matches and the
verification process for each potential match is of ���� time. There-
fore, the time complexity of the RPM algorithm for one layout block
is ���
 ���. According to the block enumeration strategy, the to-
tal number of different blocks in layout matrix ������

is less than
����
�����
 �
��
�����. So the total time complexity of
the RPM algorithm in the whole layout matrix without the worm-like
enumeration technique is ��
�
��
 ����
�����
 �
��

�� � ���.

In the worm-like enumeration technique, only the top row and bot-
tom row of the new block need to be checked to incrementally update
the identified slices and the run-length compression result. The time
complexity of slice identification is reduced to ����� and that of run-
length compression is ���
 ��, where � is the average time for up-
dating the run-length compression of each slice. � is not a constant as
it depends on the number of fragments of each slice. The incremental
binary encoding runs in ����, which is typically smaller than �����.
Thus, the total runtime complexity using the worm-like enumeration
strategy is ��
����� �
��
����
�����
�
��
������.

From the above analysis, it can be observed that the dimension of
the layout matrix (�� and ��) and the variation range in the height of
the cutting-slice (
�� and
�) are the key factors which affect the
runtime of the RPM algorithm.

3.3 Scalability and Runtime Optimization

In most practical cases, a direct translation of the entire layout into
a layout matrix is impossible. Hence, the hotspot detection system

629

works window-by-window in an incremental fashion to cover the en-
tire layout and an RPM algorithm is executed for each window. It is
necessary to ensure that consecutive windows overlap to avoid loss of
matches. The amount of overlap between adjacent windows depends
on the maximum possible size of the range pattern. If the maximum
possible width and height of the range pattern are
�
 and
��,
respectively, the amount of horizontal overlap between two consecutive
windows should be �
�
 � �� and the amount of vertical overlap
should be �
�� � ��, respectively. In the implementation, the size
of the window is much larger than that the maximum dimension of the
range pattern on either side. However, it should not be too large to
avoid excessive memory consumption.

The grid size used for generating the layout matrix and the cutting-
slices of a range pattern can greatly impact the runtime.

THEOREM 2. Let single-grid hotspot detection consist of overlap-
ping window generation to cover the entire layout along with RPM
within each window for a given range pattern. If the layout matrix
and the cutting-slices of a range pattern are generated using the man-
ufacturing grid, then single-grid hotspot detection can determine all
occurrences of the range pattern in the layout.

Proof Sketch: Assume for the sake of simplicity that the range pattern has
a maximum dimension of ��� on both sides. We begin by proving that the
single-grid hotspot detection can find all matches of a range pattern contained
in a block �� . Since the grid is generated using the manufacturing grid, hence
all the layout rectangles and the rectangles in the range pattern snap to the grid.
Hence, no rounding error is introduced in the generation of the layout matrix
or the cutting slices. This combined with Theorem 1 ensures that all matches
contained within a block are located.

Next, we need to prove that all occurrences of the range pattern in a given
window �� are identified by the single-grid scheme. Let �� and 	� denote the
bottom and left coordinates of ��, respectively. Let � denote the size of ��

in either direction. There are two cases:

1. Matches that start between �	�� ��� and �	� � � � ���� � ��� �� �
� � ��������: The worm-like movement ensures that starting from
each row of the layout matrix
�� (which is essentially a digitization
of the rectangles in ��) all blocks of height between �� and ���

(�� and ��� denote the minimum and maximum height of the range
pattern, respectively) are enumerated. The size of the �� is much larger
than ��� in either direction. Since all range pattern occurrences within
a block are identified and all possible blocks are enumerated, this ensures
that all range pattern occurrences in a window that start between �	�� ���
and �	� �� � �������� �� �� � �������� will be completely
contained in �� and found during the RPM call in ��.

2. Matches that start from �	� � � � ���� �� � � � ����: By con-
struction, �� overlaps with two windows �� (�� is to the right of��)
and �� (�� is above ��) such that �� and �� overlap in the hori-
zontal direction by ���� � �� and �� and �� overlap in the vertical
direction by ���� � ��. Hence a range pattern that starts within ���
grids of the right edge of �� will be captured during RPM in ��. Simi-
larly, a range pattern that starts within ��� grids of the top boundary of
�� will be completely contained in �� and hence will be found when
RPM is called on �� . Thus, all range pattern occurrences in �� will be
identified.

It should be noted that the single-grid hotspot detection system can find
redundant matches, i.e. multiple matches are reported for the same
occurrence. A simple redundancy checking algorithm based on sort-
ing the coordinates of the bottom left corners of the reported locations
can eliminate such duplicate matches. The runtime for directly finding
matches on the whole layout using a fine grid size is typically slow.
Hence, a hierarchical matching strategy is adopted to speedup the pro-
gram. To begin with, matching is done on the coarse grid. This means
the layout matrix and the cutting-slices are generated using a coarse
grid. During this stage, potential match locations can be quickly iden-
tified. However, this stage could introduce rounding errors since it is
not necessary for every rectangle in the layout and the range pattern to
align with the grid. To counter this, the constraints in the range pattern
are typically relaxed (i.e. a wider range is allowed) during this stage.
Then, a second round of matching is carried out on the match loca-
tions found in the coarse-grid stage. This check is typically done using

a much finer grid (usually equal to the manufacturing grid) to elimi-
nate errors due to rounding issues or over-relaxation of constraints. It
should be noted that the coarse grid size has to be less than the smaller
of the two: the minimum width or the minimum spacing of the layer.
Otherwise, neighboring features might merge resulting in an incorrect
translation of the layout into a layout matrix. However, a very large
coarse grid size can result in a large number of potential matches and
drive up the cost of the fine grid validation step. In practice, a grid size
that is equal to half the allowable coarse grid size is found to provide
the right balance in terms of runtime.

Table 1. Range Pattern Characteristics
Range Pattern # Rects. Overlap? Multiple Patterns?

Bird 5 Yes Yes
Bridge 6 Yes Yes
Weave 4 No Yes
Zigzag 3 Yes Yes

4. Experimental Results

We have tested the proposed process-hotspot detection system on a
Linux 2.4 system with two 2.2 GHz CPUs and 2 GB RAM (only a sin-
gle CPU was used for the experiments). Five layouts were used in the
experiments: ��, �� and �� are three metal layers of a ��
��

�

design; �� and �� are two metal layers of a ��

 ��

� design.
Both designs are ��
 designs. The process-hotspot library has the
range patterns we discussed in the paper as well as some additional
range patterns that were provided by a fab. Since we are unable to
divulge the details of the range patterns obtained from the fab, we char-
acterize them using three criteria to give a sense of their complexity:
number of rectangles, whether the rectangles overlap and whether they
contain multiple exact patterns (typically each range pattern specified
by the fab has ranges on multiple dimensions resulting in a large num-
ber of exact patterns). The key characteristics of the range patterns
obtained from the fab are summarized in Table 1.

The library was tried on each of the designs. For the sake of brevity,
only the designs where matches were found for a particular range pat-
tern are presented. For the hierarchical matching strategy, the coarse
grid size is set to be 50 nm and the fine grid size is equal to the manu-
facturing grid of the design.

The results for the library are shown in Table 2. Columns Range
Pattern and Design Name identify the range pattern and design, respec-
tively. The number of locations in the layout that match each range
pattern and the runtime for finding all matches are shown in Column
of Matches and Column Runtime(s). The data for both the hierar-
chical scheme and the single-grid scheme (where the grid is equal to
the manufacturing grid) is presented. Column Score Range shows the
score range of the matches in the layout with the single-grid detection
scheme.

4.1 Discussion

The range in scores strengthens our claim that many similar patterns
can exist in a given layout. Conventional exact pattern matching solu-
tions would require multiple invocations to find all these patterns. By
Theorem 2, the single-grid scheme where the grid size is equal to the
manufacturing grid should find all the matches of a given range pat-
tern. Comparing the number of matches of the hierarchical scheme
with the single-grid scheme shows that the hierarchical scheme can
identify all the matches at a fraction of the runtime. This indicates that
the proposed hierarchical scheme is quite accurate and has a very low
likelihood of missing any potential match locations in the layout. The
runtimes for the hierarchical matching strategy range between a few
seconds and 6 minutes for each range pattern, whereas the runtimes for
single-grid detection are much higher. The maximum memory used for
matching all the range patterns is � ����.

630

Table 2. Process-Hotspot Detection Results
of Matches Runtime (s)

Range Pattern Design Name Hier. Single-Grid Hier. Single-Grid Score Range

Bird D1 212 212 156.43 3189.94 [87.81,97.29]
Bird D2 52 52 14.86 2166.80 [85.99,96.84]
Bird D3 5 5 15.75 2862.74 [93.22, 96.84]
Bird D4 5480 5480 264.07 15933.31 [80.11, 96.84]
Bird D5 36 36 73.24 13397.48 [80.56, 92.01]

Bridge D1 2062 2062 137.98 11517.72 [98.32,98.74]

Weave D4 14 14 358.59 17694.92 [93.40, 95.88]
Weave D5 2 2 83.46 16036.56 [93.40, 93.40]

Zigzag D2 2474 2474 19.47 2142.57 [93.23,98.73]
Zigzag D3 1642 1642 13.31 3130.89 [97.46,97.46]
Zigzag D4 12939 12939 358.59 14888.53 [93.23, 98.73]
Zigzag D5 3038 3038 95.08 12878.50 [97.46, 97.46]

Mountain D4 10 10 157.99 16598.91 [91.00, 92.50]

Staircase D4 349 349 188.11 22865.83 [99.15, 99.43]

The above results show that the proposed scheme is a promising ap-
proach and can be embedded in the router to efficiently detect process-
hotspots during routing. Once the problem locations are identified, lo-
cal wire-spreading and/or widening can be attempted to break the par-
ticular occurrence of the range pattern. If local solutions do not suffice,
the connections can be removed and new re-routings attempted. To
avoid returning to the same solution, new DRC rules based on the con-
straints of the range pattern can be added when new routings are being
explored in the area.

5. Conclusion
In this paper, we propose the concept of representing process-hotspots

as range patterns, which are compact representations of a set of similar
layouts. The use of patterns ensures that non-local lithography or stress
effects are captured and the ranges enable compact representation.

The range pattern matching problem is also introduced and an effi-
cient algorithm is proposed for the same. A process-hotspot detection
system, based on range pattern matching, to efficiently and accurately
find and score process-hotspots in a given layout is also presented. The
system guarantees no false alarms since only patterns that match one
of the range patterns in the library are located. The proposed algorithm
is scalable and can work on large layouts, thereby making it a practical
scheme for efficiently detecting process-hotspots during routing and/or
physical verification. Experimental results indicate that the runtimes
are quite small, which makes it possible to embed it in a router for
post-routing optimizations. The algorithm is being extended to handle
range patterns with “don’t care” regions, i.e. regions in the range pat-
tern that do not require user specification and allow any combination of
rectangles to exist.

We are currently investigating algorithmic correction schemes to
eliminate and/or reduce the occurrences of the detected process-hotspots
at the routing stage. Another noteworthy direction for future work
would be to investigate if already existing recommended rules can be
combined and compactly represented using fewer range patterns, thereby
reducing the runtime burden on routers and/or physical verification
tools. In addition, more thorough comparisons with model-based ap-
proaches are necessary and are being done as a part of future work.

6. References

[1] L.-D. Huang and M. D. F. Wong. Optical proximity correction
(opc)-friendly maze routing. In DAC, pages 186–191, June 2004.

[2] J. Mitra, P. Yu, and D. Z. Pan. RADAR: Ret-aware detailed
routing using fast lithography simulations. In DAC, pages
369–372, June 2005.

[3] R. Zhu and T. Takaoka. A technique for two-dimensional pattern
matching. In Comm. ACM, 32(9), pages 1110–1120, 1989.

[4] D.E. Knuth, J.H. Morris and V.R. Pratt. Fast Pattern Matching in
Strings. Siam Journal on Computing 6(2), pages 323–350, 1977.

[5] http://www.commandcad.com.

APPENDIX

Here, we describe how the range pattern has to be specified by the
user and an algorithmic procedure to convert the specification into one
or more sliced patterns. A typical range pattern specification includes:
(1) Edges at the left and bottom boundary of the range pattern. (2)
Ranges (with or without optimal values) or absolute values between
rectangle edges. These ranges in (2) could either specify ranges in the
length, width or spacing as well as additional constraints.

[6] DEFINITION 5. A Range Graph � is a quadruple ����� �� ��
where � and � are finite sets, � � � � ���� �� � �
 � � � �� ��
and � � � � ��
� �� � �
 ��
 � ��. The elements of �

are vertices, the elements of � are edges and the elements of � are
real numbers. � satisfies the condition that whenever there is an edge
 � ��� �� � ���� with �� � � �
���, there is also an edge
� � ���� where � � ��� �� and ��� � � �����
�.
(�) is denoted
as min()(max()) and is called the lower (upper) bound of edge . The
range of is �� � � �� �
�. A range graph � � ����� �� ��
is called stable iff the following condition is satisfied: for each edge
 � ����, range of is finite and minimized.

The specification for a range pattern �� is first converted to two
range graphs: one for the horizontal edges of the rectangles henceforth
denoted as !�� and another for the vertical edges of the rectangles
henceforth denoted as � ��. Thus, each rectangle edge "� becomes
a vertex �� in the corresponding range graph and an edge �� exists in
the range graph between any two vertices �� and �� , where � �� �. If
the user has specified a range � �#�� #�� and/or an absolute distance
between rectangle edges "� and "� , then �� ��� is set to �#�� #�� (or
�#� #�). Otherwise, �� ��� is set to ������. Then, the All-Pair Min-
Range Path (APMRP) algorithm (as outlined below) is invoked. The
APMRP algorithm works as follows:

1. For k = 0 to �� � ��, For i = 0 to �� � ��, For j = 0 to �� � ��,

(a) If �� �� �� and �� �� $� and �� �� $�

i. If �
�� ��� ��� and �
�� ��� ��� and �
�� ����

�� ��� �
�� ����

A.
�� ��� �
�� ��� �
�� ���.
ii. If �
��� ��� % ��� and �
��� ��� % ��� and
�
��� ��� �
��� ��� %
��� ����

A.
��� ��� �
��� ��� �
��� ���.

The lower bounds of some edges can increase and the upper bounds of
some edges can decrease after the application of the APMRP algorithm

631

to a range graph �. If the range of an edge � ���� becomes negative
or unbounded after the application of the APMRP algorithm, it can
be concluded that the specification for �� is invalid and needs to be
revised. It can be proved that in all other cases (i.e. when the range
pattern specification is valid) the APMRP algorithm finds a stable range
graph �� for the given input range graph �.

DEFINITION 6. Edge � ���� where �� � � �
��� is called
indefinite iff the following conditions are satisfied:
 �� �;
 � �
and � � �. Otherwise, e is called definite.

An indefinite edge � ���� with �� � � �
��� contains a set of
definite ranges. If
 � � and � % �, then there are three definite
ranges: ��
����� ��� ��� ��� ���. If
 � � and � � �, then there are
two definite ranges: ��
����� ��� ���. If
 � � and � % �, there are
two definite ranges: ���� ��� ��� ���.

DEFINITION 7. A stable range graph is definite iff each edge is
definite.

It is not necessary that a definite stable graph is obtained after the appli-
cation of the APMRP algorithm. Given an indefinite stable range graph
�, it is necessary to convert the indefinite edges of � into definite
ones to determine the unique topological orders of the rectangle edges.
Each topological order corresponds to a cutting-slice. The algorithm,
Enum DRG, described below takes a indefinite stable range graph �

corresponding to �� and outputs all definite range graphs contained in
it.

1. Invoke APMRP(�) to update the ranges of each edge in �.

2. Set flag allEdgeDefinite = TRUE.

3. For each edge � ��� �� � ����, do:

(a) If is indefinite, then
i. For each definite range " � �
���
�� of , do:

A. Set �� ������ � �
���
�� and ��� � � ��
���
���,
where � � ��� �� denotes the edge from � to �.

B. Invoke Enum DRG on the modified �.
ii. Set allEdgeDefinite = FALSE.

(b) If allEdgeDefinite == FALSE, then break.

4. If allEdgeDefinite == TRUE, then Output definite range graph
��.

The cutting-slices needed to represent a range pattern can be derived
from the definite stable range graphs obtained using Enum DRG. Next,
we provide some theory to explain why this is the case.

DEFINITION 8. Given a definite edge � ��� �� � ����, where
�� � � �
���, vertex v is said to precede vertex w iff
 % �. Two
vertices are equal iff
 � � � �. If vertex � precedes vertex �, then
vertex � and vertex � are said to satisfy the precedence relation ��

denoted ����. If vertex � equals vertex �, then vertex � and � are
said to satisfy the equivalence relation denoted as ����.

Note that the topological order of the vertices can be derived according
to the precedence and equivalence relations between the vertices.

LEMMA 1. In a definite range graph �� � ����� �� ��, any pair
of vertices � and � � ���� (� �� �� satisfies one of the following
three conditions: (1) � Rp �; (2) � Rp �; (3) � Re � and � Re �.

DEFINITION 9. Two topological orders &���� � � ���� ��� � � � � �� �
� � �� �� �� ����� � � � � �� and &���� � � ���� ��� � � � � �� �
� � �� �� �� ����� � � � � �� are said to be equivalent to each
other iff the following conditions are satisfied: For any � �� � � � ��,
if �� �� ��, then ������.

When equivalent topological orders are counted as one, it can be proved
that a definite range graph �� � ����� �� �� has a unique topological
order &� �� �.

THEOREM 3. Given a slicing direction, the number of cutting-slices
needed is equal to the number of different topological orders of the
rectangle edges along the same direction regardless of the topological
order of the rectangle edges along the other direction.

The above theorem states that it is necessary to convert only one of
the range graphs (either the horizontal or the vertical) into definite
range graphs. Suppose the !�� has been converted into a set of def-
inite range graphs denoted as !� and the � �� has been converted
into a stable range graph � �. The algorithm Enum Cutting Slice
described below enumerates a cuttings-slice for each definite graph
�� � !� and � �.

1. Sort vertices of �� into topological order &��.

2. Consecutive vertices ��� �� � &�� identifies a slice �. The range
of the edge ��� �� � ����� is the range of �’s width.

3. For each slice �, do:

(a) Identify vertices in � � that correspond to vertical rectangle
edges that are contained in �.

(b) Sort these vertices to derive topological order &��3.
(c) Consecutive vertices �
��� � &�� identifies a fragment ' .

The range of the edge �
��� � ����� is the range of ' ’s
length.

4. For each edge in �� or � �, translate the range of into addi-
tional constraints on the slices or fragments.

3It can be proved that a unique topological order exists for these ver-
tices.

632

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

