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ABSTRACT 
The success of building a complex multi-billion transistor 
processor is very dependent on robust and silicon proven design 
and integration methods. The complexity of 65nm process and 
striving for best in class performance with aggressive time to 
market schedule put a heavy emphasis on innovative design and 
integration methods to enable working silicon. In this paper, we 
describe the design and integration methods successfully used in a 
multi-threaded dual core 65nm Xeon® Processor.  
 
Index Terms—Design Methods; Integration; processor; Xeon®.  
 

1. INTRODUCTION 
The process scaling efficiency as predicted by Moore’s law 
enables more than one processor to be built into the same die in the 
65nm process node. Such a dual core processor, when coupled 
with multi-threading technology [1] makes it appear as four logical 
processors capable of running four threads simultaneously on the 
same processor die. The design and integration of such a processor 
with transistor counts exceeding one billion is a significant 
challenge given the time to market goals and complexity of 
pioneering a 65nm processor. The successful delivery of the design 
hinges on exacting design standards and methods. In this paper, we 
describe the design and integration methods used to build a multi-
threaded dual core Xeon® Processor [2] in the 65nm process 
technology.  
 
The rest of the paper is organized as follows. Section II gives an 
overview of the processor and motivates the use of the specific 
design and integration methods needed for building a complex 
processor. Section III describes the key features of the block 
design methods used and Section IV describes the integration 
methods. Section V concludes the paper.  
 

2. PROCESSOR OVERVIEW 
The Xeon® MP processor described in this paper consists of two 
64-bit cores and a 16MB unified level-3 (L3) cache. Each core 
supports two threads, has a unified 1MB level-2 (L2) cache and 
was largely leveraged from common core architecture. This 
processor required limited core optimizations to create an efficient, 
high performance simple direct interface (SDI) connecting the two 
processor cores, unified L3 cache and processor Front Side Bus 
(FSB) through a caching bridge controller (CBC). 

 
This architecture reduces the cache and external bus access 
latencies. Figure 1 shows the SDI interface at a conceptual level. 
The caching CBC handles the core arbitration, L3 cache accesses, 
and external bus requests. This was an entirely new design for 
implementing a low latency, high speed on die communication 
fabric containing server RAS features for robust server operation. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: Processor Block Diagram 
 
The CBC logic was partitioned into physical units and physical 
implementation of the CBC logic and the chip level integration 
were performed using the techniques described in this paper. The 
main constituents of the CBC physical hierarchy was control and 
data exchange blocks. Apart from these blocks, there were other 
pieces of logic for clocking, DFx and domain crossing; description 
of the implementation of these blocks is beyond the scope of this 
paper.  
 
 

 
 

Figure 2: Processor Die Plot 
 
The cache portion of the chip was designed using techniques 
similar to those in [2] and [3] and was treated as a black box for 
integration; as such, a description of the cache techniques is 
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beyond the scope of this paper. Figure 2 shows a die plot of the 
processor at the top level.  The processor die is 435mm2 die and 
has 1.33B transistors. It operates at more than 3.0GHz from a 
1.25V core supply. The worst-case power dissipation is 150W 
while the power dissipation on a typical server workload is 100W. 
The processor is implemented in a 65nm process technology with 
eight copper interconnect layers and low-k carbon-doped oxide 
inter-level dielectric. 
 

3. DESIGN METHODS 
3.1. Cell Based Design 
All the logic units in the CBC were physically implemented using 
cell based design (CBD) methodology. In this methodology, the 
entire design is built from cells in a library. The cells follow a 
common architecture including the cell footprint and port 
definition. Most of cells in the library are characterized for timing 
and other electrical characteristics, but it is not a pre-requisite. Cell 
based design methodology is advantageous for time critical 
projects, but requires timing-area-power trade-offs.  
 
Most of the CBC logic was implemented with synthesis, and place 
and route techniques. The specific methodology used in each of 
these areas is outside the scope of this paper. Cell sizing was done 
with a combination of external industry tools and in-house tools. 
Significant effort was spent up front to correlate the results from 
the sign-off verification tools to the optimization engines in order 
to ensure monotonic front-to-back design convergence (for 
electrical and geometrical rules, timing, noise and reliability). 
 
The logic partitioning and block size determination went hand –in-
hand with the routing wire width determination. As explained in 
Section 1V, wider metal with discrete widths were used to allow 
maximum flexibility in block size. The logic, in addition to being 
partitioned according to connectivity, was also partitioned so that 
the layout for the logic partition would fit within a specified 
maximum physical block size. The block sizes in CBC in this 
processor were larger than the sizes seen historically in processor 
designs, which enabled global logic optimization and reduced the 
effort to maintain design collaterals for each partition. The number 
of discrete blocks reduced as well as minimization of Full Chip 
(FC) interfaces for FC floorplan and timing.  
 
The end result of this exercise was the breaking down of the CBC 
logic into five main control blocks, one data exchange block and 
one register file block. The control logic handles the entire 
input/output transaction logic along with the bus and snoop queues 
and associated transaction queuing and arbitration logic for the 
requests from different sources. One of the three main control 
blocks (CONTROL1) is much larger and more complex than the 
others. The complexity is compounded by the heavy 
interconnectivity inside the block leading to huge fan-in/fan-out 
logic cones.  With multiple clock domains, there were numerous 
timing paths with the launching and receiving flops in different 
clock domains (cross-clock paths).  
 

3.2. Pipeline Convergence 
One of the critical tasks for the processor design was the 
convergence of the CBC logic pipeline, as the RTL was designed 
from scratch. The pipeline convergence was driven by placement 
based timing feedback and for this, the post-placement timing 

results had to be monotonic with respect to the post-layout timing. 
There were two enablers for this process. First, the correlation 
effort described above allowed for monotonic convergence within 
the block. Second, very detailed timing budgets at the interface pin 
level were stabilized very early on in the design cycle and 
decoupled the block level timing convergence from the processor 
top level timing convergence. 
 
A specific methodology was followed for the path analysis. Paths 
with logic depth greater than a process dependent predetermined 
number and those which had huge negative slack were the first 
candidates for logic changes (logic optimization, logic re-
partitioning or pipelining).  High fan out and fan-in logic cones 
were analyzed in detail and heavily loaded signals were replicated 
(in some cases, many times). At all times, the floorplan and timing 
budgets were kept in-sync with these logic changes and congestion 
and route-ability were evaluated. Pipeline convergence efforts in 
the CONTROL1 block based on early CBD feedback resulted in 
significant acceleration of the overall design convergence. Figure 3 
below shows the convergence trend over time of pipeline 
convergence effort for the CONTROL1 block. It does not show the 
state of the design at tapeout. The figure shows the decreasing 
trend in total negative slack (TNS), worst negative slack (WNS) 
and the number of paths (PATHS) in CONTROL1 over this period.  
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Figure 3: Pipeline Convergence Trend for CONTROL1 

 

3.3. Power Reduction 
The CBC was designed to strict power constraints. CBC blocks 
were placed into one of two categories based on their average 
activity factor (AF) and performance sensitivity or timing 
criticality.  Timing critical blocks with high average AF were 
initially designed using primarily nominal transistor based cells. 
Once a desired level of timing convergence was met, cells along 
non-timing critical paths were selectively swapped to cells 
containing low leakage transistors (LL-cells) without impacting 
any of the design convergence metrics. For lower activity factor 
blocks the design was built using LL-cells and a few Nominal cells 
were then used to converge the last few timing paths. It was 
observed that the cell count and total capacitance was higher with 
the use of LL-cells only, thus the use of nominal cells for high AF 
blocks resulted in lower dynamic power.  This two pronged 
strategy enabled fast design convergence, as well as activity 
appropriate power reduction strategy to be applied.  
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4. INTEGRATION METHODS 
The key goal for our full-chip integration methodology was to 
decouple the full-chip layout and block layout, so that work could 
proceed on both in parallel, to meet the aggressive schedule for the 
project. This section describes some of the techniques that were 
used to achieve this decoupling. 
 

4.1. Full Chip Signal Pitches and Routing 
The die size for this chip was largely set by the fixed components – 
the cores and cache – and did not depend as critically on the 
integration methodology. Additionally, the performance trade-off 
in the CBC enabled the creation of a full-chip integration 
methodology that was optimized for rapidly converging the timing 
and layout of full-chip and CBC blocks, virtually independent of 
each other. 
 
The first parameters to be tuned were the signal routing pitches. By 
using a pre-defined set of discrete wire widths and spacing values 
that were much wider than the process minimum width and 
spacing, and by making all full-chip wires half-shielded to reduce 
Miller coupling, the repeating distances for full-chip routing were 
made as long as possible.  Also, the repeating distances on 
different layers were adjusted such that they had a simple 
relationship to each other. For example, metal8 repeating distance 
was twice the metal6 repeating distance, which in turn was twice 
the metal4 repeating distance. This simplified the placement of 
repeater stations, as described in the next section. 
 
Simultaneously, the CBC implementation team diligently adjusted 
the aspect ratios of blocks so that no block was wider than the 
repeating distance on metal8, the highest horizontal routing layer. 
This ensured that full-chip routes crossing over a block on metal8 
would not need to dive down into the block to get repeated. After 
studying global routing requirements, minimal wiring channels 
were allocated in the floorplan to accommodate less critical global 
wires on lower level metal layers. This approach significantly 
simplified the process of multiple instantiation of custom blocks 
such as tag arrays, since no top level routes or repeaters were 
pushed into these blocks. This also eliminated the need to re-
characterize the electrical characteristics of the highly leveraged 
core design providing maximum reuse and fastest overall time to 
market. 
 
The net result was that full-chip wires on metal8 crossed over 
blocks without requiring to be repeated in the blocks, and full-chip 
wires on lower metals were routed in the whitespace surrounding 
the blocks and did not need to cross over the blocks. From the 
block perspective, this resulted in a relatively stable physical 
environment in which the block design happened, with the block 
gaining complete ownership of routing resources up to metal7, and 
having some well-defined metal sharing with full-chip on metal8. 
Furthermore, the block netlist did not need to be augmented with 
full-chip signals and repeaters that would change in each 
integration cycle. This stable environment contributed greatly to 
the rapid convergence of block-level layout and timing. While this 
approach involved a small penalty in die area, it was far 
outweighed by enabling significant design re-use and accelerated 
time to market (TTM). 
 

4.2. Full Chip Repeater Methodology 
For maximum productivity on this project, a virtual repeater 
methodology was used. Virtual repeaters are symbolic annotations 
placed on wires, with information about the repeater cell that they 
represent. The extraction and timing tools recognize these 
annotations and can calculate delays and slopes as if real repeater 
cells were inserted at the indicated locations, without requiring the 
overhead of netlist and wire fracturing. The repeaters were 
maintained in virtual form until quite late in the project – about a 
quarter before tapeout. Once the design was stable, real repeaters 
were inserted into the netlist based on the virtual repeater locations. 
Keeping the repeaters virtual allowed the integration team to 
respond quickly to late design changes, while maintaining 
acceptable accuracy in the timing model.   
 
 
The virtual repeater insertion tool minimized the total delay while 
meeting slope targets at every receiver and repeater input. As 
mentioned in the previous section, all full-chip repeaters were 
inserted in the whitespace between full-chip blocks. The floorplan 
was populated with a grid of repeater stations, which are narrow 
horizontal or vertical blocks placed in the whitespace in the 
floorplan that mark the location of legal repeater placement sites. 
These were spaced according to the repeating distance of the 
lowest full-chip routing layer in that direction. For example, in the 
horizontal direction, repeater stations were placed approximately 
600u apart. Metal4 wires would need to be repeated every time 
they crossed a station, while Metal6 wires would need to be 
repeated in every other station and Metal8 wires could skip over 3 
stations before requiring a repeater. The virtual repeater insertion 
tool was constrained to insert repeaters only in the keep-in regions 
defined by the unpopulated repeater station sites. Figure 4 below 
shows the grid of repeater stations in the CBC area.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Repeater Stations in CBC Area 
 
To further simplify data flows and decouple repeater insertion 
from timing tools, the repeater insertion engine did its own 
parasitic estimation, and used default “tail” data for block internal 
parasitics, as opposed to stitching in RC from a block extraction 
run. The default tails could be overridden by a control file, as 
explained in the next section. 
 
Converting the virtual repeaters into real repeaters was done by a 
tool that traced the routing for each net, breaking the wires as they 
crossed over repeater stations with virtual repeater annotations 
over them. The broken segments of the nets were assigned unique 
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names. Pins were created on the repeater station boundaries, and 
the repeater cell was inserted into the station netlist. The repeater 
stations were then assembled by a simple custom place-and-route 
flow. 
 

4.3. Full-Chip Convergence Techniques 
Since time to market was an important parameter on this project, it 
was essential to leverage as much automation as possible for full-
chip routing and repeating. However, one typical drawback of this 
is the slower convergence caused by variation in the results 
produced by automation tools. A spec-based mechanism in the 
auto-router and a fine-grained control mechanism for the repeater 
insertion tool helped to keep the variations under control and to 
generate predictable results. 
 
The auto-router allowed routing specs to be specified with 
different levels of granularity. In the early stages of the project, the 
specs were simple layer-pair directives. However, as the design 
stabilized and more paths met their timing, additional constraints 
were provided in the form of topology directives to the router, 
effectively “soft-freezing” the routes. When the design was near-
converged, almost every FC net had topology specs attached, to 
prevent unnecessary variations.  
 
Since virtual repeaters were converted to physical repeaters just 
one quarter before tapeout, it became necessary to ensure that the 
virtual repeater insertion results were predictable, and that any 
manual tuning of the virtual repeater locations could be reproduced 
the next time we ran the tool. To this end, a control file mechanism 
was devised which allowed the user to specify how far the first or 
last repeater got inserted from a specific block pin, which subset of 
repeater stations to use to repeat a specific net, or overrides for the 
default slope target values for some set of nets, etc. By maintaining 
this control file, the virtual repeater insertion tool was able to 
generate highly reproducible results even though it was run from 
scratch in each integration cycle. 
 
Full-chip timing feedback was incorporated into the floorplan by 
one of several manual approaches. Scenic routes, layer changes, 
topology changes, etc. were fixed either by manually routing the 
net and preserving it as a hard pre-route, or by editing the spec for 
the net so that the auto router could generate the preferred topology. 
Tweaks to the repeater solution were captured as changes to the 
control file. 
 
In order to further decouple and speed up the convergence of full-
chip and block-level timing paths, the virtual repeater insertion tool 
was directed to insert the first repeater on a signal emanating from 
a CBD block as close to the driving pin as possible. Similarly, the 
last repeater on a signal entering a CBD block was constrained to 
be within a specific radius of the input pin. This ensured that the 
CBD blocks saw very stable external loads on driver pins and 
slopes on receiver pins, enabling faster convergence. 
 
The total number of CBC signals that required routing at full-chip 
level was about 7000. Nearly 99% of these nets were routed within 
20% of their optimal wire length, which indicates that the 
restrictions imposed on routing over the blocks did not hurt route 
optimality significantly. 231 repeater stations were placed in the 
floorplan, and over 30,000 repeaters were inserted on CBC signals 
at the full-chip level.  

5. CONCLUSION 
Block design and integration methods are key elements of bringing 
billion+ transistor server processor to market.  We have presented 
a number of novel strategies and methods used in the design and 
integration of a Xeon server processor that have enabled delivery 
of industry leading performance on an accelerated development 
timeline. Aggressive usage of cell based design methods enabled 
early pipeline convergence using placement based timing. Power 
targets were achieved by block appropriate power reduction 
methods, including upfront design with high threshold voltage 
cells. Use of multiple wire pitches and half shielding allowed 
maximal repeating distances per metal layer thereby enabling 
bigger block sizes, minimizing repeater count, and eliminating the 
need for embedded FC repeating inside functional blocks. This 
correct by construction approach to FC metallization significantly 
increased electrical robustness of the overall design (minimal effort 
for FC noise, EM, self heat convergence), enabled maximum hard 
IP reuse of the core, and significantly decoupled the design 
convergence of functional blocks from convergence at the full chip 
level. Virtual repeating methodology achieved near final timing 
quality early in the design cycle with minimal perturbation in the 
design process.  
 
Through a set of comprehensive and coordinated methodology 
decisions made early in the design cycle we were able to 
strategically decouple several aspects of IC design. RTL 
development, full chip assembly, timing, cell based design, core, 
and cache physical design were largely completed in parallel. 
Decoupling of FC assembly, timing, and robustness from 
functional block convergence was achieved by reducing the FC 
interfaces through bigger functional block sizes, pre-defined metal 
sharing, eliminating embedded repeater stations, and spec-based 
timing budgeting.  By making calculated trade offs in area, 
schedule, performance and complexity we were able to deliver a 
robust design with market leadership performance, in break though 
development times. Many of the methodology innovations 
described in this paper are now a standard part of the processor 
design process for bringing the highest performance, most reliable 
server processors to market. 
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