
Design and Integration Methods for a Multi-threaded Dual Core
65nm Xeon® Processor

Raj Varada, Mysore Sriram, Kris Chou, James Guzzo
Intel Corporation, 2200 Mission College Blvd, Santa Clara, CA

{raj.r.varada, mysore.sriram, kris.chou, james.t.guzzo}@intel.com

ABSTRACT
The success of building a complex multi-billion transistor
processor is very dependent on robust and silicon proven design
and integration methods. The complexity of 65nm process and
striving for best in class performance with aggressive time to
market schedule put a heavy emphasis on innovative design and
integration methods to enable working silicon. In this paper, we
describe the design and integration methods successfully used in a
multi-threaded dual core 65nm Xeon® Processor.

Index Terms—Design Methods; Integration; processor; Xeon®.

1. INTRODUCTION
The process scaling efficiency as predicted by Moore’s law
enables more than one processor to be built into the same die in the
65nm process node. Such a dual core processor, when coupled
with multi-threading technology [1] makes it appear as four logical
processors capable of running four threads simultaneously on the
same processor die. The design and integration of such a processor
with transistor counts exceeding one billion is a significant
challenge given the time to market goals and complexity of
pioneering a 65nm processor. The successful delivery of the design
hinges on exacting design standards and methods. In this paper, we
describe the design and integration methods used to build a multi-
threaded dual core Xeon® Processor [2] in the 65nm process
technology.

The rest of the paper is organized as follows. Section II gives an
overview of the processor and motivates the use of the specific
design and integration methods needed for building a complex
processor. Section III describes the key features of the block
design methods used and Section IV describes the integration
methods. Section V concludes the paper.

2. PROCESSOR OVERVIEW
The Xeon® MP processor described in this paper consists of two
64-bit cores and a 16MB unified level-3 (L3) cache. Each core
supports two threads, has a unified 1MB level-2 (L2) cache and
was largely leveraged from common core architecture. This
processor required limited core optimizations to create an efficient,
high performance simple direct interface (SDI) connecting the two
processor cores, unified L3 cache and processor Front Side Bus
(FSB) through a caching bridge controller (CBC).

This architecture reduces the cache and external bus access
latencies. Figure 1 shows the SDI interface at a conceptual level.
The caching CBC handles the core arbitration, L3 cache accesses,
and external bus requests. This was an entirely new design for
implementing a low latency, high speed on die communication
fabric containing server RAS features for robust server operation.

Figure 1: Processor Block Diagram

The CBC logic was partitioned into physical units and physical
implementation of the CBC logic and the chip level integration
were performed using the techniques described in this paper. The
main constituents of the CBC physical hierarchy was control and
data exchange blocks. Apart from these blocks, there were other
pieces of logic for clocking, DFx and domain crossing; description
of the implementation of these blocks is beyond the scope of this
paper.

Figure 2: Processor Die Plot

The cache portion of the chip was designed using techniques
similar to those in [2] and [3] and was treated as a black box for
integration; as such, a description of the cache techniques is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

Core0
(1M L2)

Caching Bridge Controller
L3

(16 MB)
SDI

System Bus

FSB Interface

SDI

Core0
(1M L2)

SDI

SDI

Core0
(1M L2)

Caching Bridge Controller
L3

(16 MB)
SDI

System Bus

FSB Interface

SDI

Core0
(1M L2)

SDI

SDI

Core

Core

Cache

CBC

Cache

Pads

Pads

607

beyond the scope of this paper. Figure 2 shows a die plot of the
processor at the top level. The processor die is 435mm2 die and
has 1.33B transistors. It operates at more than 3.0GHz from a
1.25V core supply. The worst-case power dissipation is 150W
while the power dissipation on a typical server workload is 100W.
The processor is implemented in a 65nm process technology with
eight copper interconnect layers and low-k carbon-doped oxide
inter-level dielectric.

3. DESIGN METHODS
3.1. Cell Based Design
All the logic units in the CBC were physically implemented using
cell based design (CBD) methodology. In this methodology, the
entire design is built from cells in a library. The cells follow a
common architecture including the cell footprint and port
definition. Most of cells in the library are characterized for timing
and other electrical characteristics, but it is not a pre-requisite. Cell
based design methodology is advantageous for time critical
projects, but requires timing-area-power trade-offs.

Most of the CBC logic was implemented with synthesis, and place
and route techniques. The specific methodology used in each of
these areas is outside the scope of this paper. Cell sizing was done
with a combination of external industry tools and in-house tools.
Significant effort was spent up front to correlate the results from
the sign-off verification tools to the optimization engines in order
to ensure monotonic front-to-back design convergence (for
electrical and geometrical rules, timing, noise and reliability).

The logic partitioning and block size determination went hand –in-
hand with the routing wire width determination. As explained in
Section 1V, wider metal with discrete widths were used to allow
maximum flexibility in block size. The logic, in addition to being
partitioned according to connectivity, was also partitioned so that
the layout for the logic partition would fit within a specified
maximum physical block size. The block sizes in CBC in this
processor were larger than the sizes seen historically in processor
designs, which enabled global logic optimization and reduced the
effort to maintain design collaterals for each partition. The number
of discrete blocks reduced as well as minimization of Full Chip
(FC) interfaces for FC floorplan and timing.

The end result of this exercise was the breaking down of the CBC
logic into five main control blocks, one data exchange block and
one register file block. The control logic handles the entire
input/output transaction logic along with the bus and snoop queues
and associated transaction queuing and arbitration logic for the
requests from different sources. One of the three main control
blocks (CONTROL1) is much larger and more complex than the
others. The complexity is compounded by the heavy
interconnectivity inside the block leading to huge fan-in/fan-out
logic cones. With multiple clock domains, there were numerous
timing paths with the launching and receiving flops in different
clock domains (cross-clock paths).

3.2. Pipeline Convergence
One of the critical tasks for the processor design was the
convergence of the CBC logic pipeline, as the RTL was designed
from scratch. The pipeline convergence was driven by placement
based timing feedback and for this, the post-placement timing

results had to be monotonic with respect to the post-layout timing.
There were two enablers for this process. First, the correlation
effort described above allowed for monotonic convergence within
the block. Second, very detailed timing budgets at the interface pin
level were stabilized very early on in the design cycle and
decoupled the block level timing convergence from the processor
top level timing convergence.

A specific methodology was followed for the path analysis. Paths
with logic depth greater than a process dependent predetermined
number and those which had huge negative slack were the first
candidates for logic changes (logic optimization, logic re-
partitioning or pipelining). High fan out and fan-in logic cones
were analyzed in detail and heavily loaded signals were replicated
(in some cases, many times). At all times, the floorplan and timing
budgets were kept in-sync with these logic changes and congestion
and route-ability were evaluated. Pipeline convergence efforts in
the CONTROL1 block based on early CBD feedback resulted in
significant acceleration of the overall design convergence. Figure 3
below shows the convergence trend over time of pipeline
convergence effort for the CONTROL1 block. It does not show the
state of the design at tapeout. The figure shows the decreasing
trend in total negative slack (TNS), worst negative slack (WNS)
and the number of paths (PATHS) in CONTROL1 over this period.

0

100

200

300

400

500

600

700

Project Time

ne
ga

tiv
e

sl
ac

k

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
r o

f p
at

hs

tns 555.6 643.2 572.9 395.5 424.1 554.2 523 150.8 72.5 25.15 73.02 99.62 36.45 7.45 6.97 1.37 26.94 41.05 0.373

wns 39.2 40.4 64.1 38.2 41.5 42.5 42.7 45.4 14.8 10.6 18.9 25.4 22.7 4.5 2.5 1.5 9.3 16.9 1.1

paths 5406 6814 5278 4778 4181 5049 6719 2146 2815 1197 2457 2323 1175 683 704 257 1027 854 92

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 3: Pipeline Convergence Trend for CONTROL1

3.3. Power Reduction
The CBC was designed to strict power constraints. CBC blocks
were placed into one of two categories based on their average
activity factor (AF) and performance sensitivity or timing
criticality. Timing critical blocks with high average AF were
initially designed using primarily nominal transistor based cells.
Once a desired level of timing convergence was met, cells along
non-timing critical paths were selectively swapped to cells
containing low leakage transistors (LL-cells) without impacting
any of the design convergence metrics. For lower activity factor
blocks the design was built using LL-cells and a few Nominal cells
were then used to converge the last few timing paths. It was
observed that the cell count and total capacitance was higher with
the use of LL-cells only, thus the use of nominal cells for high AF
blocks resulted in lower dynamic power. This two pronged
strategy enabled fast design convergence, as well as activity
appropriate power reduction strategy to be applied.

608

4. INTEGRATION METHODS
The key goal for our full-chip integration methodology was to
decouple the full-chip layout and block layout, so that work could
proceed on both in parallel, to meet the aggressive schedule for the
project. This section describes some of the techniques that were
used to achieve this decoupling.

4.1. Full Chip Signal Pitches and Routing
The die size for this chip was largely set by the fixed components –
the cores and cache – and did not depend as critically on the
integration methodology. Additionally, the performance trade-off
in the CBC enabled the creation of a full-chip integration
methodology that was optimized for rapidly converging the timing
and layout of full-chip and CBC blocks, virtually independent of
each other.

The first parameters to be tuned were the signal routing pitches. By
using a pre-defined set of discrete wire widths and spacing values
that were much wider than the process minimum width and
spacing, and by making all full-chip wires half-shielded to reduce
Miller coupling, the repeating distances for full-chip routing were
made as long as possible. Also, the repeating distances on
different layers were adjusted such that they had a simple
relationship to each other. For example, metal8 repeating distance
was twice the metal6 repeating distance, which in turn was twice
the metal4 repeating distance. This simplified the placement of
repeater stations, as described in the next section.

Simultaneously, the CBC implementation team diligently adjusted
the aspect ratios of blocks so that no block was wider than the
repeating distance on metal8, the highest horizontal routing layer.
This ensured that full-chip routes crossing over a block on metal8
would not need to dive down into the block to get repeated. After
studying global routing requirements, minimal wiring channels
were allocated in the floorplan to accommodate less critical global
wires on lower level metal layers. This approach significantly
simplified the process of multiple instantiation of custom blocks
such as tag arrays, since no top level routes or repeaters were
pushed into these blocks. This also eliminated the need to re-
characterize the electrical characteristics of the highly leveraged
core design providing maximum reuse and fastest overall time to
market.

The net result was that full-chip wires on metal8 crossed over
blocks without requiring to be repeated in the blocks, and full-chip
wires on lower metals were routed in the whitespace surrounding
the blocks and did not need to cross over the blocks. From the
block perspective, this resulted in a relatively stable physical
environment in which the block design happened, with the block
gaining complete ownership of routing resources up to metal7, and
having some well-defined metal sharing with full-chip on metal8.
Furthermore, the block netlist did not need to be augmented with
full-chip signals and repeaters that would change in each
integration cycle. This stable environment contributed greatly to
the rapid convergence of block-level layout and timing. While this
approach involved a small penalty in die area, it was far
outweighed by enabling significant design re-use and accelerated
time to market (TTM).

4.2. Full Chip Repeater Methodology
For maximum productivity on this project, a virtual repeater
methodology was used. Virtual repeaters are symbolic annotations
placed on wires, with information about the repeater cell that they
represent. The extraction and timing tools recognize these
annotations and can calculate delays and slopes as if real repeater
cells were inserted at the indicated locations, without requiring the
overhead of netlist and wire fracturing. The repeaters were
maintained in virtual form until quite late in the project – about a
quarter before tapeout. Once the design was stable, real repeaters
were inserted into the netlist based on the virtual repeater locations.
Keeping the repeaters virtual allowed the integration team to
respond quickly to late design changes, while maintaining
acceptable accuracy in the timing model.

The virtual repeater insertion tool minimized the total delay while
meeting slope targets at every receiver and repeater input. As
mentioned in the previous section, all full-chip repeaters were
inserted in the whitespace between full-chip blocks. The floorplan
was populated with a grid of repeater stations, which are narrow
horizontal or vertical blocks placed in the whitespace in the
floorplan that mark the location of legal repeater placement sites.
These were spaced according to the repeating distance of the
lowest full-chip routing layer in that direction. For example, in the
horizontal direction, repeater stations were placed approximately
600u apart. Metal4 wires would need to be repeated every time
they crossed a station, while Metal6 wires would need to be
repeated in every other station and Metal8 wires could skip over 3
stations before requiring a repeater. The virtual repeater insertion
tool was constrained to insert repeaters only in the keep-in regions
defined by the unpopulated repeater station sites. Figure 4 below
shows the grid of repeater stations in the CBC area.

Figure 4: Repeater Stations in CBC Area

To further simplify data flows and decouple repeater insertion
from timing tools, the repeater insertion engine did its own
parasitic estimation, and used default “tail” data for block internal
parasitics, as opposed to stitching in RC from a block extraction
run. The default tails could be overridden by a control file, as
explained in the next section.

Converting the virtual repeaters into real repeaters was done by a
tool that traced the routing for each net, breaking the wires as they
crossed over repeater stations with virtual repeater annotations
over them. The broken segments of the nets were assigned unique

609

names. Pins were created on the repeater station boundaries, and
the repeater cell was inserted into the station netlist. The repeater
stations were then assembled by a simple custom place-and-route
flow.

4.3. Full-Chip Convergence Techniques
Since time to market was an important parameter on this project, it
was essential to leverage as much automation as possible for full-
chip routing and repeating. However, one typical drawback of this
is the slower convergence caused by variation in the results
produced by automation tools. A spec-based mechanism in the
auto-router and a fine-grained control mechanism for the repeater
insertion tool helped to keep the variations under control and to
generate predictable results.

The auto-router allowed routing specs to be specified with
different levels of granularity. In the early stages of the project, the
specs were simple layer-pair directives. However, as the design
stabilized and more paths met their timing, additional constraints
were provided in the form of topology directives to the router,
effectively “soft-freezing” the routes. When the design was near-
converged, almost every FC net had topology specs attached, to
prevent unnecessary variations.

Since virtual repeaters were converted to physical repeaters just
one quarter before tapeout, it became necessary to ensure that the
virtual repeater insertion results were predictable, and that any
manual tuning of the virtual repeater locations could be reproduced
the next time we ran the tool. To this end, a control file mechanism
was devised which allowed the user to specify how far the first or
last repeater got inserted from a specific block pin, which subset of
repeater stations to use to repeat a specific net, or overrides for the
default slope target values for some set of nets, etc. By maintaining
this control file, the virtual repeater insertion tool was able to
generate highly reproducible results even though it was run from
scratch in each integration cycle.

Full-chip timing feedback was incorporated into the floorplan by
one of several manual approaches. Scenic routes, layer changes,
topology changes, etc. were fixed either by manually routing the
net and preserving it as a hard pre-route, or by editing the spec for
the net so that the auto router could generate the preferred topology.
Tweaks to the repeater solution were captured as changes to the
control file.

In order to further decouple and speed up the convergence of full-
chip and block-level timing paths, the virtual repeater insertion tool
was directed to insert the first repeater on a signal emanating from
a CBD block as close to the driving pin as possible. Similarly, the
last repeater on a signal entering a CBD block was constrained to
be within a specific radius of the input pin. This ensured that the
CBD blocks saw very stable external loads on driver pins and
slopes on receiver pins, enabling faster convergence.

The total number of CBC signals that required routing at full-chip
level was about 7000. Nearly 99% of these nets were routed within
20% of their optimal wire length, which indicates that the
restrictions imposed on routing over the blocks did not hurt route
optimality significantly. 231 repeater stations were placed in the
floorplan, and over 30,000 repeaters were inserted on CBC signals
at the full-chip level.

5. CONCLUSION
Block design and integration methods are key elements of bringing
billion+ transistor server processor to market. We have presented
a number of novel strategies and methods used in the design and
integration of a Xeon server processor that have enabled delivery
of industry leading performance on an accelerated development
timeline. Aggressive usage of cell based design methods enabled
early pipeline convergence using placement based timing. Power
targets were achieved by block appropriate power reduction
methods, including upfront design with high threshold voltage
cells. Use of multiple wire pitches and half shielding allowed
maximal repeating distances per metal layer thereby enabling
bigger block sizes, minimizing repeater count, and eliminating the
need for embedded FC repeating inside functional blocks. This
correct by construction approach to FC metallization significantly
increased electrical robustness of the overall design (minimal effort
for FC noise, EM, self heat convergence), enabled maximum hard
IP reuse of the core, and significantly decoupled the design
convergence of functional blocks from convergence at the full chip
level. Virtual repeating methodology achieved near final timing
quality early in the design cycle with minimal perturbation in the
design process.

Through a set of comprehensive and coordinated methodology
decisions made early in the design cycle we were able to
strategically decouple several aspects of IC design. RTL
development, full chip assembly, timing, cell based design, core,
and cache physical design were largely completed in parallel.
Decoupling of FC assembly, timing, and robustness from
functional block convergence was achieved by reducing the FC
interfaces through bigger functional block sizes, pre-defined metal
sharing, eliminating embedded repeater stations, and spec-based
timing budgeting. By making calculated trade offs in area,
schedule, performance and complexity we were able to deliver a
robust design with market leadership performance, in break though
development times. Many of the methodology innovations
described in this paper are now a standard part of the processor
design process for bringing the highest performance, most reliable
server processors to market.

6. ACKNOWLEDGMENTS
The authors gratefully acknowledge the work of the talented and
dedicated Intel team that implemented this processor.

7. REFERENCES
[1] Hyper-Threading Technology, Intel Technology Journal, Vol. 6
Issue 1, Feb 2002

 [2] S. Rusu, S. Tam, H. Muljono, D. Ayers, J. Chang, “A Dual-
Core Multi-Threaded Xeon® Processor with 16MB L3 Cache”,
International Solid State Circuits Conference, pp 102-104, January
2006.

[3] J. Chang, J. Shoemaker, M. Haque, M. Huang, K. Truong, M.
Karim, S. Chiu, G. Leong, K. Desai, R. Goe, S. Kulkarni, A. Rao,
D. Hannoun, S. Rusu, "A 0.13/spl mu/m triple-Vt 9MB third level
on-die cache for the Itanium/spl reg/ 2 processor", International
Solid State Circuits Conference, January 2004.

610

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

