
An Adaptive Two-Level Management for the Flash
Translation Layer in Embedded Systems

Chin-Hsien Wu
Department of Computer Science and

Information Engineering
N at ion al Taiwan U n ivers i ty

Taipei, Taiwan, ROC
d90003@csie. nt u . ed u . tw

ABSTRACT
While the capacity of flash-memory storage systems keeps
increasing significantly, effective and efficient management
of flash-memory space has become a critical design issue!
Different granularities in space management impose differ-
ent management costs and mapping efficiency. In this pa-
per, we explore an address translation mechanism that can
dynamically and adaptively switch between two granulari-
ties in the mapping of logical block addresses into physical
block addresses in flash memory management. The objec-
tive is to provide good performance in address mapping and
space utilization and, at the same time, to have the mem-
ory space requirements, and the garbage collection overhead
under proper management. The experimental results show
that the proposed adaptive mechanism could provide signif-
icant performance improvement over the well-known coarse-
grained management mechanism NFTL (NAND Flash Trans-
lation Layer) over realistic workloads.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]:
Real-time and embedded systems; D.4.2 [Operating Sys-
tems]: Storage Management: Secondary storage; B.3.2 [
Memory Structures]: Mass storage

General Terms
Design, Performance, Algorithm

Keywords
Flash Memory, Flash Translation Layer, Storage Systems,
Embedded Systems

*Supported in part by a research grant from the Na-
tional Science Council under Grant NSC 93-2752-E-002-008-
PAE and 94-2213-E-002-007, and a research grant from the
Academia Sinica.

Tei-Wei Kuo*
Department of Computer Science and

Information Engineering,
Graduate Institute of Networking and Multimedia

National Taiwan University
Taipei, Taiwan, ROC

ktw@csie. n t u . ed u . tw

1. INTRODUCTION
Flash memory [l] is now among the top choices for storage

media in embedded systems. Due to the very distinct char-
acteristics of flash memory, the management of flash memory
as a storage system is significantly different from those based
on main memory and disks. In particular, flash memory is
write-once such that updates to existing data on a page are
only possible after an erase operation. Data must be written
to free space, and the old versions of data are invalidated.
Therefore, free space on flash memory could become low
after a number of writes, and activities (i.e., garbage col-
lection) in the recycling of available space on flash memory
must be done from time to time. In order to resolve the
write-once and the garbage collection problems for data on
flash memory, a flash translation layer is proposed to em-
ulate flash memory as block devices so that many existing
file systems (e.g., FAT/DOS, EXT/EXT2, and NTFS, etc)
could be built on them without any modifications.

There are currently two popular types of flash translation
layers: FTL [12, 14, 15, 161 and NFTL [3, 131. Because FTL
is a fine-grained address translation mechanism, FTL can
provide good address translation time, less garbage collec-
tion overhead, and high space utilization but with significant
memory space in management. On the contrary, NFTL is a
coarse-grained address translation mechanism such that the
memory space requirements is small, but the address trans-
lation time, the garbage collection overhead, and the space
utilization are worse than those of FTL. However, a fine-
grained address translation mechanism (e.g., FTL) could not
be applicable to resource-limited embedded systems due to
its large memory space requirements, especially when the
capacity of a flash-memory device is growing rapidly'. As a
result, a coarse-grained address translation mechanism (e.g.,
NFTL) is proposed for large-scale flash-memory storage sys-
tems. In this paper, we propose an address translation
mechanism that can dynamically and adaptively switch the
mapping information of logical block addresses into physi-
cal block addresses between the fine-grained and the coarse-
grained address translation mechanisms. The objective is
v

to provide good performance in address mapping and space
and, at the Same time, to have the memory 'pace

requirements, and the garbage collection overhead under

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for orofit or commercial advantage and that conies

L

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

proper management.

permission and/or a fee.
ICCAD'O6, November 5 9,2006, San Jose, CA
Copyright 2006 ACM 1 59593 389 1/06/0011 ... $5.00.

'32Gb NAND flash memory chips [18] are, in fact, under
mass production at this time point.

601

The rest of this paper is organized as follows: Section 2
introduces an overview of flash memory. Related work and
motivation are summarized in Section 3. Section 4 intro-
duces an adaptive two-level management of a flash transla-
tion layer. Section 5 provides performance evaluation of the
proposed method. Section 6 is the conclusion.

2. FLASH-MEMORY CHARACTERISTICS
A NAND [l, 181 flash memory chip consists of many blocks,

and each block is of a fixed number of pages. A block is the
smallest unit for erase operations, while reads and writes are
done in pages. A page contains a user area and a spare area,
where the user area is for the storage of a logical block, and
the spare area stores ECC and other house-keeping informa-
tion (i.e., LBA). The typical sizes of the user area and spare
area of a page are 512B and 16B, respectively. The typical
block size of a NAND flash memory chip is 16KB. Because
flash memory is write-once, we do not overwrite data on
each update. Instead, data are written to free space, and
the old versions of data are invalidated (or considered as
dead). The update strategy is called “out-place update”. In
other words, any existing data on flash memory could not be
over-written (updated) unless it is erased. The pages store
live data and dead data are called “valid pages” and “invalid
pages”, respectively.

After a certain number of page writes, free space on flash
memory would become low. Activities that consist of a se-
ries of reads, writes, and erases with the intention to re-
claim free spaces would then start. The activities are called
“garbage collection’’ and considered as overheads in flash-
memory management. The objective of garbage collection
is to recycle invalid pages scattered over blocks so that they
could become free pages after erasings. How to smartly
choose blocks for erasing is the responsibility of a block-
recycling policy. The block-recycling policy should try to
minimize the overheads of garbage collection, due to live
data copyings. Under the current technology, each flash-
memory block has a limitation on the erase cycle count,
e.g., 1 million (lo6) . A worn-out block could suffer from fre-
quent write errors. The “wear-levelling” policy should try
to erase blocks over flash memory evenly so that a longer
overall lifetime could be achieved.

3. RELATED WORK AND MOTIVATION
In recent years, issues on flash-memory management had

drawn a lot of attention. Excellent research results and im-
plementations have been reported on performance enhance-
ment, especially on file systems, garbage collection, and sys-
tem architecture designs [2, 3, 4, 5, 6, 7 , 8, 9, 10, 111.

3.1 FTL and NFTL
FTL [12, 14, 15, 161 adopts a page-level address trans-

lation mechanism (i.e., a fine-grained address translation).
The translation table in Figure 1 is one kind of fine-grained
address translation. The LBA ”3” is mapped to the phys-
ical block address (PBA) ” (0,6)” by the translation table.
Note that LBA’s are addresses of pages mentioned by the
operating system, and each PBA has two parts, i.e., the
residing block number and the page number in the block!
On the contrary, NFTL [3, 131 adopts a block-level address
mechanism (for coarse-grained address translation).

An LBA under NFTL is divided into a virtual block ad-

Acccs I R A = 3 .

I uglcal Block I’hyiiciil Blucl
Addrcri Addrew

(m d y ~ndeh) (block p a w)
Addrc\\ Translation ‘l‘ablc

(in main-memory) Flash memory

Figure 1: A RAM-resident Translation Table

Phyucni Block Addieu
(blockpge) .

I
6
1.3
1.1
1.1
I .0
0.7

A U.3

0.2
0. I
0.0

H

A Primary Block A Rcplaccmcnt Block

The mi +recent
content of the

writc rcqucst of
LBA A=100 1

Thc most-rcccnt Thc most-rcccnt
content ol the content of the

write request of write request of
LBA F=105 LBA B=101

Figure 2: A Primary Block and a Replacement
Block.

dress and a block offset, where the virtual block address
(VBA) is the quotient (i.e., that of the LBA divided by the
number of pages in a block), and the block offset is the
remainder of the division. A VBA can be translated to a
(primary) physical block address by the block-level address
translation. When a write request is issued, the content of
the write request is written to the page with the correspond-
ing block offset in the primary block. Since the following
write requests can not overwrite the same pages in the pri-
mary block, a replacement block is needed to handle subse-
quent write requests, and the contents of the (overwritten)
write requests are sequentially written to the replacement
block. As shown in Figure 2, suppose that write requests
to three LBA’s A = 100, B = 101, and F = 105 are issued
for 2 times, 8 times, and 1 time to a primary block and a
replacement block, respectively, the most-recent contents of
A, B , and F are also shown in the figure. NFTL must main-
tain a table in which each entry has a PBA of its primary
block (and a PBA of its replacement block if needed).

3.2 Comparison between FTL and NFTL

3.2.1 Memory Space Requirements
The main problem of FTL is on large memory space re-

quirements for storing the address translation information
because of its fine-grained address translation design (in the
page level). For example, 256MB NAND flash memory with

602

a page size of 512 bytes needs 524,288 (256*1024*1024/512)
entries of the address translation table to store the address
translation information. Let each entry require 4 bytes.
The address translation information of FTL would require
2,048KB memory space. However, suppose that a block con-
sists of 32 pages. NFTL would need roughly 64KB memory
space to store 16,384 (256*1024/16) entries.

3.2.2 Address Translation Time
Because FTL adopts a fine-grained address translation

mechanism, the translation from a given LBA to a PBA
is very fast. On the other hand, NFTL could suffer from
the slow address translation due to its coarse-grained ad-
dress translation mechanism. When a read request is is-
sued, NFTL must locate the most-recent content by search-
ing the primary block and the replacement block whenever
necessary. As shown in Figure 2, the address translation
from LBA F = 105 to a corresponding PBA would incur a
considerable access time of flash memory because the spare
areas of pages in the replacement block might be searched
entirely. Note that the read time of a spare area of flash
memory is about 3 0 p [18].

3.2.3 Garbage Collection Overhead
When all of the pages of a replacement block are con-

sumed, garbage collection should start to copy the valid
pages of the corresponding primary block and the replace-
ment block into a new primary block and then erase the
two blocks for recycling. However, this copy overhead could
be considerable because the number of valid pages could be
equal to the capacity of the pages in a block. Compared to
NFTL, FTL could choose a block that has the smallest valid
pages to erase so that the garbage collection overhead could
be less.

3.2.4 Space Utilization
Another problem for NFTL is the space utilization. When

a replacement block is full (i.e., all free pages in the re-
placement block are exhausted), the replacement block and
the corresponding primary block would be erased. However,
some pages in the primary block could be free during eras-
ing. As shown in Figure 2, the primary block still have 5
free pages during erasing. Compared to NFTL, FTL better
utilizes the space of each block, and no free pages are left in
a block before erasing.

3.3 Motivation

Table 1: The Summary of FTL and NFTL

Memory Space Requirements Large Small
Address Translation Time Short Long

Space Utilization

This research is motivated by the needs to seek a balance
between fine-grained and coarse-grained address translation
mechanisms. As shown in Table 1, FTL and NFTL are, in
fact, complementary to each other. In this work, we shall
propose an adaptive address translation mechanism that
could provide good performance in address mapping and
space utilization and, at the same time, to have the mem-

ory space requirements, and the garbage collection overhead
under proper management.

4. AN ADAPTIVE TWO-LEVEL MANAGEMENT
FOR THE FLASH TRANSLATION LAYER

4.1 Overview

to exploit the advantages of the fine-grained and coarse-
grained address translation mechanisms (referred to as the
fine-grained AddrTM and the coarse-grained AddrTM here-
after). AFTL provides a block-device emulation of flash
memory so that general file systems (e.g., FAT, NTFS, and
ext2) can be built over it without modification. We propose
an intelligent switching policy to switch the latest recently
used mapping information (i.e., the mapping of LBA’s into
PBA’s) to the fine-grained AddrTM, and at the same time,
switch the least recently used mapping information to the
coarse-grained AddrTM because of the limited resource of
the fine-grained AddrTM.

4.2

We propose an adaptive flash translation layer called AFTL

Fine-Grained and Coarse-Grained Address Trans-
lation Mechanisms

The fine-grained AddrTM, that provides efficient mapping
of the LBA of a page to its PBA, has a fine-grained hash ta-
ble, where each table entry is a link list of fine-grained slots.
Each fine-grained slot has two fields (LBA, PBA) , where
LBA and PBA are the LBA of a page and its correspond-
ing PBA, respectively. Any given LBA is first hashed to a
proper entry of the fine-grained hash table, and the corre-
sponding link list is searched. If a matching is found, then
the corresponding PBA is returned; otherwise, the LBA is
given to the coarse-grained AddrTM for PBA look-up. In
order to have the memory space requirements under control,
the total number of fine-grained slots should be bounded
(Please see the action in the switching of mapping informa-
tion later in this section).

The coarse-grained AddrTM, that adopts an NFTL-like
mechanism, is also associated with a coarse-grained hash
table, where each table entry is a link list of coarse-grained
slots. Each coarse-grained slot is a tuple (VBA, PPBA,
RPBA), where V B A , PPBA, and RPBA are the virtual
block address (VBA), the PBA of a primary block of the
VBA, and the PBA of a replacement block of the VBA (if
needed), respectively. When an LBA of a page is received
by the coarse-grained AddrTM, the corresponding virtual
block address (VBA) is derived and hashed into the coarse-
grained hash table. The corresponding link list of coarse-
grained slots is then searched. The primary block and re-
placement block (if any) of the coarse-grained slot with the
corresponding VBA is checked up in the NFTL way. In the
following sections, we shall present the switching of the map-
ping information between the fine-grained AddrTM and the
coarse-grained AddrTM.

4.2.1 Coarse-to-Fine Switches
When all of the pages in a replacement block in the coarse-

grained AddrTM are used, the valid pages in the replace-
ment block are identified, and the mapping information of
the valid pages are moved to the fine-grained hash table
by adding new fine-grained slots. They are considered as
candidates for more efficient LBA mapping. As shown in

603

Figure 3, when all of the pages in the replacement block are
used, the valid pages in the block are belonging to LBA’s
A and B. The mapping information of LBA’s A and B
are stored in two new fine-grained slots (A,S,,.RPBA + 5)
and (B,&,.RPBA + 7) and inserted to proper link lists of
the fine-grained AddrTM. The mapping of LBA’s A and B
would be found through the fine-grained AddrTM there-
after. Here the residing block of LBA’s A and B, i.e.,
6,,.RPBA, is not recycled and is no longer used as the re-
placement block for the corresponding primary block. Af-
ter the switches of mapping information, the PBA of the
replacement block of the corresponding coarse-grained slot
(i.e., RPBA) is nullified so that there is no replacement block
for the corresponding primary block. Any subsequent write
requests to LBA’s C, D , or E in the example will be written
to a new replacement block. Note that the corresponding
coarse-grained slot and its primary block should be removed
if all of the LBA’s of the pages in its primary block appear in
the replacement block. Different from many coarse-grained
translation layers (e.g., NFTL) , the replacement block and
the corresponding primary block are not recycled immedi-
ately. Such two switches of mapping information are referred
to as coarse-to-fine switches for the rest of this paper. The
rationale behind the design of the coarse-to-fine switch pro-
cedure is as follows:

AFTL
A Fine-Gram
Hash Table

A Coarse-Gram
Hash Table

* _ _ _

4 Primary Block A Replacement Block
(8 P P M) (8, R P R I 1

A A

B B
C A
D B
E A

A -
B

Figure 3: The Moving of Frequent Used Mapping
Information to the Fine-Grained Hash Table

Because the valid pages in a replacement block are
potentially belonging to frequently used LBA’s, i.e.,
those with hot data, they would become invalid soon.
The delayed recycling of any replacement block under
AFTL might reduce the potential number of valid data
copyings and the garbage collection overhead.

Because of the delayed recycling of any primary block
under AFTL, free pages of a primary block might be
used in the future. As a result, the space utilization
might be better.

Because the valid pages in a replacement block are po-
tentially belonging to frequently used LBA’s, the mov-
ing of their mapping information to the fine-grained
hash table might improve the address translation per-
formance. On the other hand, the address translation

performance for LBA’s residing in the corresponding
primary block is also improved because the RPBA
field of the corresponding coarse-grained slot is nul-
lified (such that there is no needs to scan the replace-
ment block).

4.2.2 Fine- to- Coarse Switches
Because the number of the fine-grained slots is limited,

some least recently used mapping information of fine-grained
slots should be moved to the coarse-grained hash table when-
ever necessary. In order to maintain the access time infor-
mation of fine-grained slots, an LRU double-link list is main-
tained, where each fine-grained slot is associated with two
LRU pointers for the maintenance of the LRU double-link
list.

Given an LRU fine-grained slot (LBA, PBA) , the slot
is first removed from the corresponding link list of the fine-
grained hash table. The corresponding VBA of LBA is then
derived, and the data stored in the page with the given
PBA is copied to the primary or replacement block of the
corresponding coarse-grained slot, as defined by the coarse-
grained AddrTM. The original page with the given PBA
is invalidated. If there does not exist any corresponding
coarse-grained slot, a new coarse-grained slot is created, and
its primary block is allocated. Such a switch of mapping
information introduces valid-page-copying overhead due to
the differences of address translation mechanisms, and it
is referred to as a fine-to-coarse switch for the rest of this
paper.

For example, let a fine-grained slot (LBA = 1234,PBA =
5678) be an LRU slot to be moved to a coarse-grained Ad-
drTM. The fine-grained slot is removed from the correspond-
ing link list of the fine-grained hash table. The coarse-
grained AddrTM first derives the VBA and the block offset
of LBA 1234. Let a,, be the coarse-grained slot that would
store the mapping information of LBA 1234. Suppose that
each block contains 32 pages. The block offset of LBA 1234
is 18 because 1234 % 32 = 18. If the page with the block
offset 18 of the primary block (S,,.PPBA) is free, then the
data in the page of PBA 5678 is copied to the page in the
primary block; otherwise, the page of PBA 5678 is copied
to the first free page in the replacement block (S,,.RPBA).
If there is no free page in the replacement block, then the
coarse-grained AddrTM should first rearrange pages on the
primary block and replacement block as defined previously
(Please see NFTL in Section 3). The page of PBA 5678
is then copied to the proper page in the primary block as
defined.

Since the number of the fine-grained slots is limited, coarse-
to-fine switches would introduce fine-to-coarse switches and
overhead in valid page copying. One way to manage the
overhead in valid page copying is to stop any coarse-to-fine
switch when some frequency bound in coarse-to-fine switches
is reached. It could be done by rearranging pages on the
primary block and replacement block as defined for NFTL
in Section 3 , instead of moving some mapping information
belonging to valid pages in the replacement block to the fine-
grained hash table. In the experiments, we set up different
thresholds to control the frequency of coarse-to-fine switches
and to observe the performance issues versus the overhead.

5. PERFORMANCE EVALUATION

604

5.1 Experimental Setup and Performance Metrics

Table 2: Trace Characteristics

Operating System Windows XP
File System NTFS

Storage Capacity 20GB
Applications Web Applications, E-mail Clients, MP3

Player, MSN Messenger, Word, Excel,
Power Point, Media Player, Programming,

and Virtual Memory Activities

13,198,805 / 2,797,996 sectors
Duration 1 week

~

Total Write/
Read Requests
Different LBA's 1,669,228

~

The characteristics of the experiment trace over a 20GB
disk is summarized in Table 2. In the trace, there were
13,198,805 and 2,797,996 sectors that were written and read,
respectively, where each sector was of 512B. We must point
out that there were 1,669,228 different LBA's that were ac-
cessed. The trace shows that many written data had spatial
locality, where each LBA was written for 7.9 times averagely.
During the collection of the trace, real applications were ex-
ecuted to have realistic workloads in daily life. In the experi-
ments, AFTL was emulated over an 20GB NAND type flash
memory, and the experiments were conducted with AFTL
and NFTL by running the collected trace. The block size,
the page size, and the size of the spare area of each page
were 16KB, 512B, and 16B, respectively, where there were
32 pages per block. The maximum number of fine-grained
slots was controlled by a parameter M F S . The larger the
M F S value is, the more the memory space to store the fine-
grained slots, where each fine-grained slot occupied 20B. The
switching threshold was set by a parameter ST that controls
the frequency of coarse-to-fine switches. In the experiments,
ST ranged from 64, 32, 16, to 0. If ST is not 0, then AFTL
could have n/ST coarse-to-fine switches at most, where n is
the total number of the requests. If ST is 0, then there is no
constraint on the number of coarse-to-fine switches. Note
that NFTL (e.g., a traditional coarse-grained AddrTM) is
adopted for many large-scale NAND flash storage systems
because of its reasonable memory space requirements. In the
experiments, we have NFTL being a baseline to evaluate the
performance of AFTL.

5.2 Memory Space Requirements
If a fine-grained (or page-level) address translation mech-

anism, e.g., the fine-grained AddrTM, was the only adopted
mechanism to run the trace, then there would be 1,669,228
fine-grained slots. Even when a fine-grained slot occupied
4B, there would be 6.37MB (i.e., 1,669,228*4B) memory
space needed for address translation. Such memory space
requirements would make a fine-grained address translation
mechanism (e.g., FTL) being infeasible to large-scale NAND
flash-memory storage systems. In order to constrain the
memory space requirements, the maximum number of fine-
grained slots had to be bounded, where the number of coarse-
grained slots was not restricted. In the experiments, M F S
ranged from 2,500, 5,000, 7,500, 10,000, 12,500, to 15,000,
and the memory space requirements for fine-grained slots
ranged from 49K, 98K, 147K, 196K, 245K, to 293K. Com-
pared to a coarse-grained address translation mechanism,
e.g., the coarse-grained AddrTM or NFTL, all of the coarse-

grained slots would need 741K memory space, when each
coarse-grained slot occupied 12B. Since AFTL adopts a two-
level address translation mechanism, i.e., fine-grained and
coarse-grained AddrTM's, the increased ratio of memory
space requirements ranged from 6.6% (i.e., 49K/741k), 13.2%
(Le., 98K/741K), 19.8% (Le., 147K/741K), 26.5% (Le., 196K
/741K), 33.1% (i.e., 245K/741K), and 39.5% (i.e., 293K/741K)
for different settings of M F S , compared to that of NFTL.

(a) Address Translation Performance
1 I O ~ ~ $ T = ~ ~ ~ $ T = ~ Z O F ~ T = I ~ ~ $ T = O ~ U F ~ 1 1 3 ~ 0 0 0 0 - 1 ~ s ~ a msr 32 OST-16 BST 0 1

(b) The Number of Erased blocks

(c) The Average Number of Valid
Page Copyings per Block Erasing

(d) The Number of Coarse-to-Fine
Switches

~ 2 i ~ /osr<Amsr 3207T I ~ B S T ~ O ~ F ~ ~ 1
5 1 5

: : I

(e) The Average Number of Free
Pages Left per Block Erasing

Figure 4: Experimental Results

5.3 Address Translation Time
Figure 4.(a) shows the performance of AFTL under differ-

ent numbers of fine-grained slots, i.e., M F S , and the coarse-
to-fine switching threshold, i.e., n/ST (where n was the total
number of requests so far). The larger the M F S value was,
the smaller the address translation time. It was because
a larger number of address translations went through the
fine-grained AddrTM when M F S was larger. When M F S
was 15,000 and ST was 64, the improvement ratio could be
18.4%, compared to NFTL. On the other hand, the smaller
the ST value was, the larger the address translation time.
It was because a small ST value encouraged a significant
number of coarse-to-fine switches. As a result, the map-
ping information of LBA's rotated quickly between the fine-
grained AddrTM and the coarse-grained AddrTM so that
fine-grained slots were not used effectively before they faced

605

fine-to-coarse switches again. The problem became more se-
rious when M F S was not large enough to contain enough
mapping information for frequently accessed LBA’s. In sum-
mary, M F S and ST should have sufficiently large values to
have good system performance.

5.4 Garbage Collection Overhead
The objective of garbage collection is to recycle the space

occupied by invalid pages scattered over blocks. Before eras-
ing a to-be-recycled block, data of all of the valid pages of
the block must be copied to other free pages. Figures 4.(b)
and 4.(c) show that the number of erased blocks and the
average number of valid page copyings per block erasing
are much lower than the corresponding numbers of NFTL
(Le., 53,7000 erased blocks and 8.9 valid page copyings per
block erasing), respectively. It was due to the fact that
coarse-to-fine switches sent the mapping information of fre-
quently accesses data under the management of fine-grained
AddrTM and avoid immediately recycling of their primary
and replacement blocks and related valid data copyings, i.e.,
their block erasing. Figure 4.(d) shows that the number of
coarse-to-fine switches increased when ST became small. It
was because a small ST value encouraged more coarse-to-
fine switches.

5.5 Space Utilization
The space utilization was defined as the ratio of the num-

ber of used pages to the maximum number of pages in a
block. It also denotes the number of free pages in a block.
The figure was important because it reflected the effective-
ness in the space utilization under a coarse-grained address
translation mechanism, such as NFTL, especially when we
had rearrangement and recycling of primary and replace-
ment blocks. Figure 4.(e) shows the average number of free
pages per block erasing, where the average number was al-
most 0 when ST = 0. As shown in the experiments, the
number of free pages per block erasing under NTFL was
around 2.816996 so that its space utilization ratio was 91.2%
(i.e., (32-2.816996)/32). AFTL was better with all of the
ST values. When ST = 0, the space utilization was al-
most 100%. Even when ST = 64 and M F S = 2500, the
space utilization of AFTL was still as high as 97.9%. In
general, a small ST value had a better space utilization be-
cause coarse-to-fine switches were encouraged such that free
pages in primary blocks had higher chances to be used before
their block erasings.

6. CONCLUSION
This paper proposes an adaptive two-level management

design of a flash translation layer, called AFTL, to exploit
the advantages of the fine-grained AddrTM and the coarse-
grained AddrTM. AFTL can dynamically and adaptively
switch the mapping information of logical block addresses
between the fine-grained and the coarse-grained address trans-
lation mechanisms. In the paper, we present our switch op-
erations to handle the mapping information of logical block
addresses, and an intelligent switching policy is presented
to improve the system performance in address mapping and
space Utilization. The capability of AFTL was evaluated
by a series of experiments under realistic workloads. It
shows that AFTL does provide good performance in address
mapping and space utilization and, at the same time, have
the memory space requirements, and the garbage collection

overhead under proper management.
For future research, we should further explore different

application characteristics and different workloads in flash
memory management. More research and tool designs in
the customization of flash-memory storage systems for dif-
ferent embedded application systems might prove being very
rewarding.

7.
[11

[31

[41

REFERENCES
R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti,
“Introduction to Flash Memory,” Proceedings of The
IEEE, Vol. 91, No. 4, April 2003.
L. P. Chang and T . W. Kuo, “An Adaptive Stripping
Architecture for Flash Memory Storage Systems of
Embedded Systems,” IEEE Eighth Real-Time and
Embedded Technology and Applications Symposium
(RTAS), San Jose, USA, Sept 2002.
J . Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, “A
Space-Efficient Flash Translation Layer for Compact-Flash
Systems,” IEEE Transactions on Consumer Electronics,
Vol. 48, No. 2, MAY 2002.
M. Wu, and W. Zwaenepoel, “eNVy: A Non-Volatile, Main
Memory Storage System,” Proceedings of the 6th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
1994), 1994.
A. Kawaguchi, S. Nishioka, and H. Motoda, “A
Flash-Memory Based File System,” USENIX Technical
Conference on Unix and Advanced Computing Systems,
1995.
H. J . Kim and S. G. Lee, “A New Flash Memory
Management for Flash Storage System,” Twenty-Third
Annual International Computer Software and Applications
Conference October 25 - 26, 1999 Phoenix, Arizona.
C. H. Wu, L. P. Chang, and T . W. Kuo, “An Efficient
B-Tree Layer for Flash-Memory Storage Systems,”
accepted and will appear in ACM Transactions on
Embedded Computing Systems (TECS).
C. H. Wu, T . W. Kuo, and L. P. Chang, “The Design of
Efficient Initialization and Crash Recovery for Log-based
File Systems over Flash Memory,” accepted and will appear
in ACM Transactions on Storage (TOS).
C. H. Wu, L. P. Chang, and T . W. Kuo, “An Efficient
R-Tree Implementation over Flash-Memory Storage
Systems,” The 11th International Symposium on Advances
in Geographic Information Systems (ACM-GIS 2003).
C. H. Wu, T . W. Kuo, and C. L. Yang, “Energy-Efficient
Flash-Memory Storage Systems with Interrupt-Emulation
Mechanism,” accepted and to appear in the
IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis,
Stockholm, Sweden, September, 2004.
C. H. Wu, T . W. Kuo, and C. L. Yang, “A Space-Efficient
Caching Mechanism for Flash-Memory Address
Translation,” The 9th IEEE International Symposium on
Object and component-oriented Real-time distributed
Computing (ISORC), Gyeongju, Korea, April, 2006.
U.S. Pat . No. 5,404,485 “FLASH FILE SYSTEM”
U.S. Pat . No. 5,937,425 “FLASH FILE SYSTEM
OPTIMIZED FOR PAGE-MODE FLASH
TECHNOLOGIES”
Intel Corporation, “Understanding the Flash Translation
Layer(FTL) Specification”.
Intel Corporation, “Software Concerns of Implementing a
Resident Flash Disk”.
Intel Corporation, “FTL Logger Exchanging Data with
FTL Systems”.
Intel Corporation, “LFS File Manager Software: LFM” .
Samsung Electronics. NAND flash-memory datasheet and
SmartMedia data book, 2006.

606

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

