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ABSTRACT 
While the capacity of flash-memory storage systems keeps 
increasing significantly, effective and efficient management 
of flash-memory space has become a critical design issue! 
Different granularities in space management impose differ- 
ent management costs and mapping efficiency. In this pa- 
per, we explore an address translation mechanism that can 
dynamically and adaptively switch between two granulari- 
ties in the mapping of logical block addresses into physical 
block addresses in flash memory management. The objec- 
tive is to provide good performance in address mapping and 
space utilization and, at the same time, to have the mem- 
ory space requirements, and the garbage collection overhead 
under proper management. The experimental results show 
that the proposed adaptive mechanism could provide signif- 
icant performance improvement over the well-known coarse- 
grained management mechanism NFTL (NAND Flash Trans- 
lation Layer) over realistic workloads. 
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C.3 [Special-Purpose And Application-Based Systems]: 
Real-time and embedded systems; D.4.2 [Operating Sys- 
tems]: Storage Management: Secondary storage; B.3.2 [ 
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1. INTRODUCTION 
Flash memory [l] is now among the top choices for storage 

media in embedded systems. Due to the very distinct char- 
acteristics of flash memory, the management of flash memory 
as a storage system is significantly different from those based 
on main memory and disks. In particular, flash memory is 
write-once such that updates to existing data on a page are 
only possible after an erase operation. Data must be written 
to free space, and the old versions of data are invalidated. 
Therefore, free space on flash memory could become low 
after a number of writes, and activities (i.e., garbage col- 
lection) in the recycling of available space on flash memory 
must be done from time to time. In order to resolve the 
write-once and the garbage collection problems for data on 
flash memory, a flash translation layer is proposed to em- 
ulate flash memory as block devices so that many existing 
file systems (e.g., FAT/DOS, EXT/EXT2, and NTFS, etc) 
could be built on them without any modifications. 

There are currently two popular types of flash translation 
layers: FTL [12, 14, 15, 161 and NFTL [3, 131. Because FTL 
is a fine-grained address translation mechanism, FTL can 
provide good address translation time, less garbage collec- 
tion overhead, and high space utilization but with significant 
memory space in management. On the contrary, NFTL is a 
coarse-grained address translation mechanism such that the 
memory space requirements is small, but the address trans- 
lation time, the garbage collection overhead, and the space 
utilization are worse than those of FTL. However, a fine- 
grained address translation mechanism (e.g., FTL) could not 
be applicable to resource-limited embedded systems due to 
its large memory space requirements, especially when the 
capacity of a flash-memory device is growing rapidly'. As a 
result, a coarse-grained address translation mechanism (e.g., 
NFTL) is proposed for large-scale flash-memory storage sys- 
tems. In this paper, we propose an address translation 
mechanism that can dynamically and adaptively switch the 
mapping information of logical block addresses into physi- 
cal block addresses between the fine-grained and the coarse- 
grained address translation mechanisms. The objective is 
v 

to provide good performance in address mapping and space 
and, at the Same time, to have the memory 'pace 

requirements, and the garbage collection overhead under 
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'32Gb NAND flash memory chips [18] are, in fact, under 
mass production at this time point. 
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The rest of this paper is organized as follows: Section 2 
introduces an overview of flash memory. Related work and 
motivation are summarized in Section 3. Section 4 intro- 
duces an adaptive two-level management of a flash transla- 
tion layer. Section 5 provides performance evaluation of the 
proposed method. Section 6 is the conclusion. 

2. FLASH-MEMORY CHARACTERISTICS 
A NAND [l, 181 flash memory chip consists of many blocks, 

and each block is of a fixed number of pages. A block is the 
smallest unit for erase operations, while reads and writes are 
done in pages. A page contains a user area and a spare area, 
where the user area is for the storage of a logical block, and 
the spare area stores ECC and other house-keeping informa- 
tion (i.e., LBA). The typical sizes of the user area and spare 
area of a page are 512B and 16B, respectively. The typical 
block size of a NAND flash memory chip is 16KB. Because 
flash memory is write-once, we do not overwrite data on 
each update. Instead, data are written to free space, and 
the old versions of data are invalidated (or considered as 
dead). The update strategy is called “out-place update”. In 
other words, any existing data on flash memory could not be 
over-written (updated) unless it is erased. The pages store 
live data and dead data are called “valid pages” and “invalid 
pages”, respectively. 

After a certain number of page writes, free space on flash 
memory would become low. Activities that consist of a se- 
ries of reads, writes, and erases with the intention to re- 
claim free spaces would then start. The activities are called 
“garbage collection’’ and considered as overheads in flash- 
memory management. The objective of garbage collection 
is to recycle invalid pages scattered over blocks so that they 
could become free pages after erasings. How to smartly 
choose blocks for erasing is the responsibility of a block- 
recycling policy. The block-recycling policy should try to 
minimize the overheads of garbage collection, due to live 
data copyings. Under the current technology, each flash- 
memory block has a limitation on the erase cycle count, 
e.g., 1 million ( lo6) .  A worn-out block could suffer from fre- 
quent write errors. The “wear-levelling” policy should try 
to erase blocks over flash memory evenly so that a longer 
overall lifetime could be achieved. 

3. RELATED WORK AND MOTIVATION 
In recent years, issues on flash-memory management had 

drawn a lot of attention. Excellent research results and im- 
plementations have been reported on performance enhance- 
ment, especially on file systems, garbage collection, and sys- 
tem architecture designs [2, 3, 4, 5, 6, 7 ,  8, 9, 10, 111. 

3.1 FTL and NFTL 
FTL [12, 14, 15, 161 adopts a page-level address trans- 

lation mechanism (i.e., a fine-grained address translation). 
The translation table in Figure 1 is one kind of fine-grained 
address translation. The LBA ”3” is mapped to the phys- 
ical block address (PBA) ” (0,6)” by the translation table. 
Note that LBA’s are addresses of pages mentioned by the 
operating system, and each PBA has two parts, i.e., the 
residing block number and the page number in the block! 
On the contrary, NFTL [3, 131 adopts a block-level address 
mechanism (for coarse-grained address translation). 

An LBA under NFTL is divided into a virtual block ad- 
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Figure 1: A RAM-resident Translation Table 

Phyucni Block Addieu 
(blockpge) . 

I 
6 
1.3 
1.1 
1.1 
I .0 
0.7 

A U.3 

0.2 
0. I 
0.0 

H 

A Primary Block A Rcplaccmcnt Block 

The mi +recent 
content of the 

writc rcqucst of 
LBA A=100 1 

Thc most-rcccnt Thc most-rcccnt 
content ol  the content of the 

write request of write request of 
LBA F=105 LBA B=101 

Figure 2: A Primary Block and a Replacement 
Block. 

dress and a block offset, where the virtual block address 
(VBA) is the quotient (i.e., that of the LBA divided by the 
number of pages in a block), and the block offset is the 
remainder of the division. A VBA can be translated to a 
(primary) physical block address by the block-level address 
translation. When a write request is issued, the content of 
the write request is written to the page with the correspond- 
ing block offset in the primary block. Since the following 
write requests can not overwrite the same pages in the pri- 
mary block, a replacement block is needed to handle subse- 
quent write requests, and the contents of the (overwritten) 
write requests are sequentially written to the replacement 
block. As shown in Figure 2,  suppose that write requests 
to three LBA’s A = 100, B = 101, and F = 105 are issued 
for 2 times, 8 times, and 1 time to a primary block and a 
replacement block, respectively, the most-recent contents of 
A, B ,  and F are also shown in the figure. NFTL must main- 
tain a table in which each entry has a PBA of its primary 
block (and a PBA of its replacement block if needed). 

3.2 Comparison between FTL and NFTL 

3.2.1 Memory Space Requirements 
The main problem of FTL is on large memory space re- 

quirements for storing the address translation information 
because of its fine-grained address translation design (in the 
page level). For example, 256MB NAND flash memory with 
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a page size of 512 bytes needs 524,288 (256*1024*1024/512) 
entries of the address translation table to store the address 
translation information. Let each entry require 4 bytes. 
The address translation information of FTL would require 
2,048KB memory space. However, suppose that a block con- 
sists of 32 pages. NFTL would need roughly 64KB memory 
space to store 16,384 (256*1024/16) entries. 

3.2.2 Address Translation Time 
Because FTL adopts a fine-grained address translation 

mechanism, the translation from a given LBA to a PBA 
is very fast. On the other hand, NFTL could suffer from 
the slow address translation due to its coarse-grained ad- 
dress translation mechanism. When a read request is is- 
sued, NFTL must locate the most-recent content by search- 
ing the primary block and the replacement block whenever 
necessary. As shown in Figure 2, the address translation 
from LBA F = 105 to a corresponding PBA would incur a 
considerable access time of flash memory because the spare 
areas of pages in the replacement block might be searched 
entirely. Note that the read time of a spare area of flash 
memory is about 3 0 p  [18]. 

3.2.3 Garbage Collection Overhead 
When all of the pages of a replacement block are con- 

sumed, garbage collection should start to copy the valid 
pages of the corresponding primary block and the replace- 
ment block into a new primary block and then erase the 
two blocks for recycling. However, this copy overhead could 
be considerable because the number of valid pages could be 
equal to the capacity of the pages in a block. Compared to 
NFTL, FTL could choose a block that has the smallest valid 
pages to erase so that the garbage collection overhead could 
be less. 

3.2.4 Space Utilization 
Another problem for NFTL is the space utilization. When 

a replacement block is full (i.e., all free pages in the re- 
placement block are exhausted), the replacement block and 
the corresponding primary block would be erased. However, 
some pages in the primary block could be free during eras- 
ing. As shown in Figure 2, the primary block still have 5 
free pages during erasing. Compared to NFTL, FTL better 
utilizes the space of each block, and no free pages are left in 
a block before erasing. 

3.3 Motivation 

Table 1: The Summary of FTL and NFTL 

Memory Space Requirements Large Small 
Address Translation Time Short Long 

Space Utilization 

This research is motivated by the needs to seek a balance 
between fine-grained and coarse-grained address translation 
mechanisms. As shown in Table 1, FTL and NFTL are, in 
fact, complementary to each other. In this work, we shall 
propose an adaptive address translation mechanism that 
could provide good performance in address mapping and 
space utilization and, at the same time, to have the mem- 

ory space requirements, and the garbage collection overhead 
under proper management. 

4. AN ADAPTIVE TWO-LEVEL MANAGEMENT 
FOR THE FLASH TRANSLATION LAYER 

4.1 Overview 

to exploit the advantages of the fine-grained and coarse- 
grained address translation mechanisms (referred to as the 
fine-grained AddrTM and the coarse-grained AddrTM here- 
after). AFTL provides a block-device emulation of flash 
memory so that general file systems (e.g., FAT, NTFS, and 
ext2) can be built over it without modification. We propose 
an intelligent switching policy to switch the latest recently 
used mapping information (i.e., the mapping of LBA’s into 
PBA’s) to the fine-grained AddrTM, and at the same time, 
switch the least recently used mapping information to the 
coarse-grained AddrTM because of the limited resource of 
the fine-grained AddrTM. 

4.2 

We propose an adaptive flash translation layer called AFTL 

Fine-Grained and Coarse-Grained Address Trans- 
lation Mechanisms 

The fine-grained AddrTM, that provides efficient mapping 
of the LBA of a page to its PBA, has a fine-grained hash ta- 
ble, where each table entry is a link list of fine-grained slots. 
Each fine-grained slot has two fields (LBA,  PBA) ,  where 
LBA and PBA are the LBA of a page and its correspond- 
ing PBA, respectively. Any given LBA is first hashed to a 
proper entry of the fine-grained hash table, and the corre- 
sponding link list is searched. If a matching is found, then 
the corresponding PBA is returned; otherwise, the LBA is 
given to the coarse-grained AddrTM for PBA look-up. In 
order to have the memory space requirements under control, 
the total number of fine-grained slots should be bounded 
(Please see the action in the switching of mapping informa- 
tion later in this section). 

The coarse-grained AddrTM, that adopts an NFTL-like 
mechanism, is also associated with a coarse-grained hash 
table, where each table entry is a link list of coarse-grained 
slots. Each coarse-grained slot is a tuple (VBA,  PPBA, 
RPBA),  where V B A ,  PPBA, and RPBA are the virtual 
block address (VBA), the PBA of a primary block of the 
VBA, and the PBA of a replacement block of the VBA (if 
needed), respectively. When an LBA of a page is received 
by the coarse-grained AddrTM, the corresponding virtual 
block address (VBA) is derived and hashed into the coarse- 
grained hash table. The corresponding link list of coarse- 
grained slots is then searched. The primary block and re- 
placement block (if any) of the coarse-grained slot with the 
corresponding VBA is checked up in the NFTL way. In the 
following sections, we shall present the switching of the map- 
ping information between the fine-grained AddrTM and the 
coarse-grained AddrTM. 

4.2.1 Coarse-to-Fine Switches 
When all of the pages in a replacement block in the coarse- 

grained AddrTM are used, the valid pages in the replace- 
ment block are identified, and the mapping information of 
the valid pages are moved to the fine-grained hash table 
by adding new fine-grained slots. They are considered as 
candidates for more efficient LBA mapping. As shown in 
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Figure 3,  when all of the pages in the replacement block are 
used, the valid pages in the block are belonging to LBA’s 
A and B. The mapping information of LBA’s A and B 
are stored in two new fine-grained slots (A,S,,.RPBA + 5 )  
and (B,&,.RPBA + 7)  and inserted to proper link lists of 
the fine-grained AddrTM. The mapping of LBA’s A and B 
would be found through the fine-grained AddrTM there- 
after. Here the residing block of LBA’s A and B,  i.e., 
6,,.RPBA, is not recycled and is no longer used as the re- 
placement block for the corresponding primary block. Af- 
ter the switches of mapping information, the PBA of the 
replacement block of the corresponding coarse-grained slot 
(i.e., RPBA) is nullified so that there is no replacement block 
for the corresponding primary block. Any subsequent write 
requests to LBA’s C, D ,  or E in the example will be written 
to a new replacement block. Note that the corresponding 
coarse-grained slot and its primary block should be removed 
if all of the LBA’s of the pages in its primary block appear in 
the replacement block. Different from many coarse-grained 
translation layers (e.g., NFTL) , the replacement block and 
the corresponding primary block are not recycled immedi- 
ately. Such two switches of mapping information are referred 
to as coarse-to-fine switches for the rest of this paper. The 
rationale behind the design of the coarse-to-fine switch pro- 
cedure is as follows: 

AFTL 
A Fine-Gram 
Hash Table 

A Coarse-Gram 
Hash Table 

* _ _ _  

4 Primary Block A Replacement Block 
(8 P P M )  ( 8, R P R I  1 

A A 

B B 
C A 
D B 
E A 

A -  
B 

Figure 3: The Moving of Frequent Used Mapping 
Information to the Fine-Grained Hash Table 

Because the valid pages in a replacement block are 
potentially belonging to frequently used LBA’s, i.e., 
those with hot data, they would become invalid soon. 
The delayed recycling of any replacement block under 
AFTL might reduce the potential number of valid data 
copyings and the garbage collection overhead. 

Because of the delayed recycling of any primary block 
under AFTL, free pages of a primary block might be 
used in the future. As a result, the space utilization 
might be better. 

Because the valid pages in a replacement block are po- 
tentially belonging to frequently used LBA’s, the mov- 
ing of their mapping information to the fine-grained 
hash table might improve the address translation per- 
formance. On the other hand, the address translation 

performance for LBA’s residing in the corresponding 
primary block is also improved because the RPBA 
field of the corresponding coarse-grained slot is nul- 
lified (such that there is no needs to scan the replace- 
ment block). 

4.2.2 Fine- to- Coarse Switches 
Because the number of the fine-grained slots is limited, 

some least recently used mapping information of fine-grained 
slots should be moved to the coarse-grained hash table when- 
ever necessary. In order to maintain the access time infor- 
mation of fine-grained slots, an LRU double-link list is main- 
tained, where each fine-grained slot is associated with two 
LRU pointers for the maintenance of the LRU double-link 
list. 

Given an LRU fine-grained slot (LBA,  PBA) ,  the slot 
is first removed from the corresponding link list of the fine- 
grained hash table. The corresponding VBA of LBA is then 
derived, and the data stored in the page with the given 
PBA is copied to the primary or replacement block of the 
corresponding coarse-grained slot, as defined by the coarse- 
grained AddrTM. The original page with the given PBA 
is invalidated. If there does not exist any corresponding 
coarse-grained slot, a new coarse-grained slot is created, and 
its primary block is allocated. Such a switch of mapping 
information introduces valid-page-copying overhead due to 
the differences of address translation mechanisms, and it 
is referred to as a fine-to-coarse switch for the rest of this 
paper. 

For example, let a fine-grained slot (LBA = 1234,PBA = 
5678) be an LRU slot to be moved to a coarse-grained Ad- 
drTM. The fine-grained slot is removed from the correspond- 
ing link list of the fine-grained hash table. The coarse- 
grained AddrTM first derives the VBA and the block offset 
of LBA 1234. Let a,, be the coarse-grained slot that would 
store the mapping information of LBA 1234. Suppose that 
each block contains 32 pages. The block offset of LBA 1234 
is 18 because 1234 % 32 = 18. If the page with the block 
offset 18 of the primary block (S,,.PPBA) is free, then the 
data in the page of PBA 5678 is copied to the page in the 
primary block; otherwise, the page of PBA 5678 is copied 
to the first free page in the replacement block (S,,.RPBA). 
If there is no free page in the replacement block, then the 
coarse-grained AddrTM should first rearrange pages on the 
primary block and replacement block as defined previously 
(Please see NFTL in Section 3). The page of PBA 5678 
is then copied to the proper page in the primary block as 
defined. 

Since the number of the fine-grained slots is limited, coarse- 
to-fine switches would introduce fine-to-coarse switches and 
overhead in valid page copying. One way to manage the 
overhead in valid page copying is to stop any coarse-to-fine 
switch when some frequency bound in coarse-to-fine switches 
is reached. It could be done by rearranging pages on the 
primary block and replacement block as defined for NFTL 
in Section 3 ,  instead of moving some mapping information 
belonging to valid pages in the replacement block to the fine- 
grained hash table. In the experiments, we set up different 
thresholds to control the frequency of coarse-to-fine switches 
and to observe the performance issues versus the overhead. 

5. PERFORMANCE EVALUATION 
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5.1 Experimental Setup and Performance Metrics 

Table 2: Trace Characteristics 

Operating System Windows XP 
File System NTFS 

Storage Capacity 20GB 
Applications Web Applications, E-mail Clients, MP3 

Player, MSN Messenger, Word, Excel, 
Power Point, Media Player, Programming, 

and Virtual Memory Activities 

13,198,805 / 2,797,996 sectors 
Duration 1 week 

~ 

Total Write/ 
Read Requests 
Different LBA's 1,669,228 

~ 

The characteristics of the experiment trace over a 20GB 
disk is summarized in Table 2. In the trace, there were 
13,198,805 and 2,797,996 sectors that were written and read, 
respectively, where each sector was of 512B. We must point 
out that there were 1,669,228 different LBA's that were ac- 
cessed. The trace shows that many written data had spatial 
locality, where each LBA was written for 7.9 times averagely. 
During the collection of the trace, real applications were ex- 
ecuted to have realistic workloads in daily life. In the experi- 
ments, AFTL was emulated over an 20GB NAND type flash 
memory, and the experiments were conducted with AFTL 
and NFTL by running the collected trace. The block size, 
the page size, and the size of the spare area of each page 
were 16KB, 512B, and 16B, respectively, where there were 
32 pages per block. The maximum number of fine-grained 
slots was controlled by a parameter M F S .  The larger the 
M F S  value is, the more the memory space to store the fine- 
grained slots, where each fine-grained slot occupied 20B. The 
switching threshold was set by a parameter ST that controls 
the frequency of coarse-to-fine switches. In the experiments, 
ST ranged from 64, 32, 16, to 0. If ST is not 0, then AFTL 
could have n/ST coarse-to-fine switches at most, where n is 
the total number of the requests. If ST is 0, then there is no 
constraint on the number of coarse-to-fine switches. Note 
that NFTL (e.g., a traditional coarse-grained AddrTM) is 
adopted for many large-scale NAND flash storage systems 
because of its reasonable memory space requirements. In the 
experiments, we have NFTL being a baseline to evaluate the 
performance of AFTL. 

5.2 Memory Space Requirements 
If a fine-grained (or page-level) address translation mech- 

anism, e.g., the fine-grained AddrTM, was the only adopted 
mechanism to run the trace, then there would be 1,669,228 
fine-grained slots. Even when a fine-grained slot occupied 
4B, there would be 6.37MB (i.e., 1,669,228*4B) memory 
space needed for address translation. Such memory space 
requirements would make a fine-grained address translation 
mechanism (e.g., FTL) being infeasible to large-scale NAND 
flash-memory storage systems. In order to constrain the 
memory space requirements, the maximum number of fine- 
grained slots had to be bounded, where the number of coarse- 
grained slots was not restricted. In the experiments, M F S  
ranged from 2,500, 5,000, 7,500, 10,000, 12,500, to 15,000, 
and the memory space requirements for fine-grained slots 
ranged from 49K, 98K, 147K, 196K, 245K, to 293K. Com- 
pared to a coarse-grained address translation mechanism, 
e.g., the coarse-grained AddrTM or NFTL, all of the coarse- 

grained slots would need 741K memory space, when each 
coarse-grained slot occupied 12B. Since AFTL adopts a two- 
level address translation mechanism, i.e., fine-grained and 
coarse-grained AddrTM's, the increased ratio of memory 
space requirements ranged from 6.6% (i.e., 49K/741k), 13.2% 
(Le., 98K/741K), 19.8% (Le., 147K/741K), 26.5% (Le., 196K 
/741K), 33.1% (i.e., 245K/741K), and 39.5% (i.e., 293K/741K) 
for different settings of M F S ,  compared to that of NFTL. 

(a) Address Translation Performance 
1 I O  ~ ~ $ T = ~ ~ ~ $ T = ~ Z O F ~ T = I ~ ~ $ T = O ~ U F ~  1 1 3 ~ 0 0 0 0  - 1 ~ s ~  a msr 32 OST-16 BST 0 1  

(b) The Number of Erased blocks 

(c) The Average Number of Valid 
Page Copyings per Block Erasing 

(d) The Number of Coarse-to-Fine 
Switches 

~ 2 i  ~ /osr<Amsr 3207T I ~ B S T ~ O ~ F ~ ~  1 
5 1 5  

: : I  

(e) The Average Number of Free 
Pages Left per Block Erasing 

Figure 4: Experimental Results 

5.3 Address Translation Time 
Figure 4.(a) shows the performance of AFTL under differ- 

ent numbers of fine-grained slots, i.e., M F S ,  and the coarse- 
to-fine switching threshold, i.e., n/ST (where n was the total 
number of requests so far). The larger the M F S  value was, 
the smaller the address translation time. It was because 
a larger number of address translations went through the 
fine-grained AddrTM when M F S  was larger. When M F S  
was 15,000 and ST was 64, the improvement ratio could be 
18.4%, compared to NFTL. On the other hand, the smaller 
the ST value was, the larger the address translation time. 
It was because a small ST value encouraged a significant 
number of coarse-to-fine switches. As a result, the map- 
ping information of LBA's rotated quickly between the fine- 
grained AddrTM and the coarse-grained AddrTM so that 
fine-grained slots were not used effectively before they faced 
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fine-to-coarse switches again. The problem became more se- 
rious when M F S  was not large enough to contain enough 
mapping information for frequently accessed LBA’s. In sum- 
mary, M F S  and ST should have sufficiently large values to 
have good system performance. 

5.4 Garbage Collection Overhead 
The objective of garbage collection is to recycle the space 

occupied by invalid pages scattered over blocks. Before eras- 
ing a to-be-recycled block, data of all of the valid pages of 
the block must be copied to other free pages. Figures 4.(b) 
and 4.(c) show that the number of erased blocks and the 
average number of valid page copyings per block erasing 
are much lower than the corresponding numbers of NFTL 
(Le., 53,7000 erased blocks and 8.9 valid page copyings per 
block erasing), respectively. It was due to the fact that 
coarse-to-fine switches sent the mapping information of fre- 
quently accesses data under the management of fine-grained 
AddrTM and avoid immediately recycling of their primary 
and replacement blocks and related valid data copyings, i.e., 
their block erasing. Figure 4.(d) shows that the number of 
coarse-to-fine switches increased when ST became small. It 
was because a small ST value encouraged more coarse-to- 
fine switches. 

5.5 Space Utilization 
The space utilization was defined as the ratio of the num- 

ber of used pages to the maximum number of pages in a 
block. It also denotes the number of free pages in a block. 
The figure was important because it reflected the effective- 
ness in the space utilization under a coarse-grained address 
translation mechanism, such as NFTL, especially when we 
had rearrangement and recycling of primary and replace- 
ment blocks. Figure 4.(e) shows the average number of free 
pages per block erasing, where the average number was al- 
most 0 when ST = 0. As shown in the experiments, the 
number of free pages per block erasing under NTFL was 
around 2.816996 so that its space utilization ratio was 91.2% 
(i.e., (32-2.816996)/32). AFTL was better with all of the 
ST values. When ST = 0, the space utilization was al- 
most 100%. Even when ST = 64 and M F S  = 2500, the 
space utilization of AFTL was still as high as 97.9%. In 
general, a small ST value had a better space utilization be- 
cause coarse-to-fine switches were encouraged such that free 
pages in primary blocks had higher chances to be used before 
their block erasings. 

6. CONCLUSION 
This paper proposes an adaptive two-level management 

design of a flash translation layer, called AFTL, to exploit 
the advantages of the fine-grained AddrTM and the coarse- 
grained AddrTM. AFTL can dynamically and adaptively 
switch the mapping information of logical block addresses 
between the fine-grained and the coarse-grained address trans- 
lation mechanisms. In the paper, we present our switch op- 
erations to handle the mapping information of logical block 
addresses, and an intelligent switching policy is presented 
to improve the system performance in address mapping and 
space Utilization. The capability of AFTL was evaluated 
by a series of experiments under realistic workloads. It 
shows that AFTL does provide good performance in address 
mapping and space utilization and, at the same time, have 
the memory space requirements, and the garbage collection 

overhead under proper management. 
For future research, we should further explore different 

application characteristics and different workloads in flash 
memory management. More research and tool designs in 
the customization of flash-memory storage systems for dif- 
ferent embedded application systems might prove being very 
rewarding. 
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