
Runtime Distribution-Aware Dynamic Voltage Scaling

Sungpack Hong, Sungjoo Yoo, Hoonsang Jin,
Kyu-Myung Choi, Jeong-Taek Kong, and Soo-Kwan Eo

CAE Team, System LSI Division, Semiconductor Business,

Samsung Electronics. CO., LTD

{sp7.hong, sungjoo.yoo, hoonsang.jin, kmchoi, jkong, sookwan.eo}@samsung.com

ABSTRACT
We propose a new intra-task dynamic voltage scaling

(DVS) method to capture an important fact of ‘software
runtime distribution’ and integrate it into DVS effectively.
Specifically, the proposed method finds performance levels,
for a given software runtime distribution, i.e. statistical
profiling of execution cycles (neither the execution cycle of
worst-case execution path nor the worst-case execution
cycles of basic blocks), which leads to a minimal energy
consumption while satisfying the given deadline constraints.
Experimental results report that the proposed method gives
19.2%~33.3% further energy reduction compared with the
best-known methods for two industrial multimedia software
programs, H.264 decoder and MPEG4 decoder.

1. INTRODUCTION
Dynamic voltage scaling (DVS) is a well-known and

effective method for low-power design, especially lowering
the processor energy consumption in battery-powered mobile
devices. In DVS, the frequency and voltage of a processor
are adjusted dynamically, in the middle of execution, to their
lowest possible level while meeting the deadline constraints
of executing software (SW) program, or task. This
performance adjustment is possible when a slack (= deadline
– completion time at current performance level) becomes
available, i.e. becomes positive in value. Therefore, one of
key problems in DVS is to determine a performance level to
maximize energy savings without violating the deadline
constraints when a slack becomes available.

Most of the previous DVS methods can be classified into
two groups in terms of the granularity of performance setting

period1: inter-task and intra-task DVS. In inter-task DVS, the
voltage and the frequency are adjusted only once at the
beginning of each task activation assuming the worst-case
execution time (WCET) of the task [1-2, 12-13]. On the other
hand, intra-task DVS utilizes the slack more aggressively by
further adjustments of performance levels in the middle of
the execution of the task [3-6]. In this paper, we focus on
intra-task DVS.

Existing intra-task DVS methods exploit the fact that as
SW execution advances, the remaining workload of SW
program may become smaller than observed in the worst
case. At each performance setting point in the SW code, the
methods determine the minimum processor performance
level from the pre-calculated prediction value of remaining
workload and the value of current slack while meeting the
given deadline constraints. The more accurate the prediction
is (i.e. close to the real workload), the more energy gain can
be obtained from DVS. Thus, the accurate prediction of
workload is required to make the best use of DVS capability.

Observation: SW Runtime Distribution
To predict the remaining execution cycles of workload

accurately, two factors need to be considered. One is control
dependency caused by control statements, e.g. if/else. The
variation of execution paths to be taken in the remaining run
of SW program may result in huge impact in workload
prediction. The other is data and architecture-dependency. To
be more specific, we need to take into account the effects of
data access patterns (e.g. delay variation due to hit/miss in
cache/TLB/write buffer, off-chip memory access delay
variation due to the page access locality in the memory
controller, etc.) and the effects of dynamic states in the
hardware architecture (e.g., branch prediction, out-of-order
execution, etc.).

1 A performance setting point is a place in the SW code where the

performance level of processor is adjusted. The performance
setting period is the time duration between two performance
setting points in the SW code.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

587

Figure 1. An example of SW runtime distribution

Figure 1 gives an example of SW runtime distribution
caused by the data and architectural effects. Figure 1 (a)
shows a function consisting of four basic blocks each of
which is implemented as a macro2. We ran this code on an
ARM926 processor while changing the size of I/D cache
from 4KB to 32KB. Figure 1 (b) gives the statistics of
execution cycle for the case of macro block_filter1 (with
total 60 times of execution3). For instance, in the case of
32KB cache, the macro gives about 7500 clock cycles as the
execution cycle 50 times among total 60 times of execution.

As shown in Figure 1 (b), the shape of the histogram
changes as the cache size changes. It is interesting to see the
long right tails (denoted with a dashed oval in the figure) that
belong to the cases of cache size 16KB and 32KB. Related
with cache behavior, such long tails can be caused by well-
known cache miss sources: cold miss (when the first
execution of the macro), conflict miss (when the cache lines
containing the code/data of the macro are replaced by the
intervening code executed between previous and current
executions of the macro), and capacity miss (when the macro
handles bigger code/data than the cache size). Due to such
long tails, the WCEC (worst-case execution cycles) of
block_filter1 becomes much greater than the average
execution cycle, especially, in the case of cache size 16KB
and 32KB.

Limitation of Existing Intra-task DVS Methods
Most of existing intra-task DVS methods [4-6] focus only

on control dependency in predicting the remaining workload.
However, as shown in Figure 1, the data access patterns and
the dynamic states of underlying hardware architecture can
be more crucial in the prediction. Even the same execution
path taken on the same processor can have significantly
different execution cycles (per each execution of the path)
depending on the data access patterns and the dynamic states
of hardware architecture. Thus, it is required to exploit the
data and architecture dependency to better predict the
remaining workload thereby maximizing energy reduction.

2 In the case of multimedia software, it is usual to unroll compute-

intensive loops for performance reasons thereby giving big basic
blocks. The code details of the macro used in the figure is
available at appendix A.

3 In order to normalize the frequency, we use probability
distribution function to be explained in Section 3.

When predicting the remaining workload at a given
performance setting point, existing intra-task DVS methods
based on execution paths (which we call path-based
methods) perform the predictions based only on the WCEC’s
of remaining execution paths (or basic blocks). For instance,
in the case of cache size 16/32KB, the WCET of macro
block_filter1 may be estimated to be greater than 11,000
cycles while its execution cycle ranges between 7,000 and
8,500 cycles in most cases. Thus, path-based DVS methods
may suffer from the error in workload prediction causing less
energy reduction than possible otherwise.

Our Contribution
In this paper, we propose a new DVS method which

exploits not only execution path-dependent runtime
distributions but also data/architecture-dependent ones.
Compared to existing path-based intra-task DVS methods
which exploit the execution path-dependent runtime
distribution only with a worst-case assumption for the data
and architecture-dependent runtime distribution, the
proposed method gives less energy consumption.

2. RELATED WORK
Lee and Sakurai proposed an intra-task DVS method [3]

which exploits workload variation to reduce the energy
consumption in multimedia SW program execution. In their
work, the workload variation is a slack which is calculated as
the difference between expected and real program runtimes
of already executed SW code at a performance setting point.
For the remaining workload, this work assumes the WCEC.

Azevedo et al. proposed a method that adjusts the
performance level at performance setting points during SW
run [4]. In their work, the predicted remaining workload is
the execution cycle of worst-case execution path from a
performance setting point to the end of SW program run.
Shin et al. presented a method of predicting the remaining
workload to be the execution cycle of the average-case (i.e.
the most frequently taken) execution path [5]. Seo et al.
presented a concept of virtual execution path to find an
optimal performance level for minimum average energy
consumption [6]. The method also uses the WCEC’s of
remaining basic blocks to predict the remaining workload.
Some of recent studies apply data flow analysis to path-based
intra-task DVS in order to set performance levels more
aggressively (i.e. at earlier program points than in previous
methods) by identifying the earliest program points where
the remaining execution path is determined [14][15].

There has been little work on exploiting the information of
runtime variation in DVS. Hua et al. presented a method that
exploits the information of runtime distribution in task
execution times to trade off between energy reduction and
timing violation while giving probabilistic guarantees of
completion ratio in the case of soft real-time systems [7].
Recently, S. Yaldiz, et al. presented an inter-task DVS
method of exploiting the information of correlation among
the runtime distributions of tasks [8]. Although this work

588

focuses originally on inter-task DVS with static scheduling,
it may also be very effective in the case of strong correlation
among big code sections in a task. However, when applied to
intra-task DVS, the work may suffer from an exponential
complexity while ours has a polynomial complexity. We will
give a more detailed comparison between the work in [8] and
ours in Section 3.7.

3. Proposed Method
When applying DVS to real variable voltage processors,

there are several problems as follows.
- How to select performance setting points?
- How to adjust the performance level at a performance
setting point?
- How to take into account the overhead (runtime and energy
consumption) of voltage and frequency transition?
- How to handle discrete voltage levels?

In this paper, our main concern is to tackle the second
problem, to find a performance setting method. However,
when applying the method, we will explain the practical
consideration, regarding the other three problems, which we
made in our work.

3.1 Terminology and Assumptions
We define our terminology in this subsection.

Task_main (img, x, y, flag)
{

PS(i-1); // PSPi-1
block_transform1 (img,x,y);

if (flag) {
PS(i); // PSPi
block_filter1 (img,x,y);

}
else {

PS(…); // PSP…
block_filter2 (img,x,y);

}
PS(i+1); // PSPi+1
block_transform2 (img,x,y);

} Xi+1

WCECi

Pi

Pi+1

Xi

PR i

P R i+1

<xi(k),pi(k)>
p

p

Figure 2. Histograms of performance regions

- Performance setting point (PSP): A code location where
the performance level of processor is adjusted. In the left-
hand side of Figure 2, each basic block (denoted with a
shaded area) has a performance setting point denoted with
function PS().
- Performance region (PR): A code section which starts
with a single PSP in the beginning and ends before another
PSP belonging to another code section. In Figure 2, each
basic block corresponds to a PR. However, in reality, a PR
will be a complex code section (including control statements
such as if/else) bigger than a single basic block. Note that a
PSP belongs only to a single PR.

- Histogram of PR (P): The normalized histogram (i.e.
probability distribution function) of execution cycles of PR.
The right-hand side of Figure 2 shows the histogram, Pi,
which corresponds to the histogram of macro block_filter1
denoted with PRi. In reality, we quantize the histogram into a
set of M tuples <Xi(k),pi(k)>, 1≤ k≤M, where Xi(k) is the k-
th quantized value of execution cycle for PRi and pi(k) is the
probability that the execution of PRi actually amounts to
Xi(k). The maximum value of Xi(k)’s is therefore worst-case
execution cycle as indicated by WCECi in the figure.
- Leaf, non-leaf and root PR: A PR is defined as a leaf PR
if no other PR is executed after it; otherwise it is defined as a
non-leaf PR. The PR that contains program entry point is
called as the root PR.

Assumption of Calculating Energy Consumption: E ~ f2 *
ntotal

We assume that the amount of energy consumption E
during an execution of one PR is expressed as E ~ f 2 * ntotal
as in [6], where f is the performance level (i.e. clock
frequency) set for this PR and ntotal is the total number of
execution cycles of that PR. The justification is as follows:
First, from the equation E ~ Vdd

2 *f *t, we can substitute
execution time t as ntotal /f, since f is constant during a PR.
Second, the clock frequency f is known to be related to the
supply voltage as f ~ (Vdd – VT)α / Vdd ~ Vdd, where Vdd is the
supply voltage, VT is the threshold voltage and α (1.4 < α <
2) is the velocity saturation index. Practically, α is
considered to be 2 and f is shown to be proportional to V (f ~
Vdd) [18]. Consequently, E ~ Vdd

2 *f *t ~ f 2 *f * (ntotal /f) ~ f 2
* (ntotal).

3.2 Workload Prediction with the Information
of Runtime Distribution: Basic Idea

In this subsection, we explain our basic idea of workload
prediction. Figure 3 shows an example of the case of a
program with two PR’s (denotes as PRi and PRi+1 in Figure
2). Here, the rectangles represent the PRs and the arrow
represents the precedence relation between PR’s; the
execution of PRi+1 starts after PRi finishes its execution. The
figure also shows that the two PR’s have their own
histograms, Pi and Pi+1.

Our framework is based on the legacy two-step approach:
i) during the design time we determine wi, the prediction of
remaining workload to the end of program, for each PRi, and
ii) during the runtime whenever SW execution reaches PSPi,
the processor’s performance level is adjusted using wi and Ti,
the remaining time at that moment: fi = wi / Ti.4 However, in
this framework our objective is to select wi values for all PRi
such that average energy consumption for whole program
execution is to be minimized, while taking it into

4 V will be adjusted proportionally to f. For instance, assuming that

fmax = 500MHz, Vmax = 1.0V, T=0.4sec, and wi=100M cycles,
then fi = (100M cycles / 0.4sec) = 250MHz, and V = 0.5V.

589

consideration the known runtime distribution of each PR.
Before proceeding, note that the workload prediction is

trivial for a leaf PR; it must be equal to its WCEC otherwise
the deadline is not met for the worst-case. Consequently,
when there is only one PR for a program, the performance
level will be adjusted to f = WCEC / T at the program entry
where T denotes the deadline or timing constraint, which is
identical to applying inter-task DVS methods. We can
normalize the timing constraint T to unity 5 in following
discussions for the brevity of equations without affecting the
result.

Now, the problem of workload prediction for the program
having two PRs is defined as follows.
Problem of Workload Prediction: The problem is to predict
the remaining workload wi, of program region PRi, which
gives the minimum total average energy consumption, given
wi+1, Pi and Pi+1.

Pi

xi

Pi(xi) Pi+1(xi+1)

wi for PSPi wi+1 for PSPi+1

Pi+1

xi+1
Figure 3. Two performance regions with runtime
distributions

First, the total energy consumption is expressed as
follows.6

2
1

2
12

1
2
1

2
1),,(

i

ii
iiiiiiiii r

xwxwxfxfwxxE ++
+++ +=+=

 (1)

i

i
i w

xr −=1
 (2)

where xi and xi+1 are the random variables of distribution
functions Pi and Pi+1, respectively. As explained earlier, wi+1
is WCECi+1 here.

In the previous work of intra-task DVS, wi is predicted to
be the execution cycle of remaining worst-case execution
path [4], that of average case execution path [5] ([4] and [5]
give the same result in this example since there is only one
remaining execution path) or that of virtual execution path
[6] (in this case, the prediction gives WCECi +WCECi+1).7

Assuming that the two histograms are independent of each
other, Eqn. (3) gives the average of total energy consumption
for Pi and Pi+1.

5 Also, maximum frequency fmax and maximum voltage Vmax are

normalized to unity.
6 fi = wi / Ti, fi+1 = wi+1 / Ti+1, Ti = T, Ti+1 = Ti – xi / fi, and T

normalized to 1.
7 If there are no runtime variations for the PRs, all these values

become identical.

∑

∫

∫∫∫

∫ ∫

=
++

++

++++

+++

−
+=

+=

+=

=

M

K ii

i
iiii

i
i

i
iiii

i
i

i
iiiiiiii

iiiiiiii

wkX
kpxwxw

dx
r
pxwxw

dx
r
pdxpxwdxpxw

dxdxppwxxEwE

1
21

2
1

2

21
2

1
2

2111
2

1
2

111

)/)(1(
)(

),,()(

 (3)

where ix and 1+ix are the average execution cycles of PRi
and PRi+1, respectively.

What Eqn. (3) means is that the average of total energy
consumption is a function of wi only. Figure 4 illustrates one
instance of this function (obtained from the case of H.264
decoder SW in our experiments) Note the optimal prediction
of wi, wi

opt corresponds to the inflection point in the curve of
Figure 4.

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

580000 605000 630000 655000 680000 705000 730000 755000

103350

103370

103390

103410

103430

103450

103470

iw
E

∂
∂

E

iw

Inflection
point

Figure 4. Total average energy consumption w.r.t. wi

We can calculate wi
opt by solving the following differential

equation:

0
))((

)()(0
1

31
2

1 =







−

−⋅+⇒=∂ ∑
=

++

M

K ii

ii
iii

i kXw
kpkXxwx

w
E

 (4)

Note that the only variable in Eqn. (4) is wi. Solving
Equation (4) requires a numerical analysis. Since the curve of
average energy consumption, as illustrated in Figure 4, is a
convex8, we can apply the Bisection method to solve Eqn. (4).
Remind that this numerical analysis is performed at design
time. The result of the numerical analysis, i.e. wi

opt is saved
in a table and used to set the performance level to the optimal
level, fi

opt (= wi
opt / T) during runtime.

8 The derivative of the left-hand side of Eqn. (4) is always positive,

meaning that Eqn. (3) is always a convex.

590

3.3 Workload Prediction with Cascaded PR’s

Pi

xi

Pi(xi) Pi+1(xi+1)

wi for PSPi wi+1 for PSPi+1

Pi+1

xi+1

Pi+N

xi+N

Pi+N(xi+N)

wi+N for PSP/i+N

Figure 5. Cascaded PR’s

Now, we will extend our discussion to the case of more
than two cascaded PR’s. This situation is depicted in Figure
5. We use mathematical induction letting our discussions in
section 3.2 be the induction basis. And the induction
hypothesis is that we already have all the average-energy-
optimal workload predictions for the following PRs after PRi
(i.e we have values from wi+1 to wi+N). Our goal is again to
find wi that minimizes average energy consumption.

In this case, the total energy consumption is calculated as
in Eqn. (5).

22
1

2

2

2
1

2
2

2
2

2
1

2
12

1),,...,,(

Niii

NiNi

ii

ii

i

ii
ii

iNiii

rrr
xw

rr
xw

r
xwxw

wxxxE

++

++

+

++++

++

++++=
 (5)

Assuming the independence among wi’s and Pi’s, the
average energy consumption is calculated as follows.

∑

∫

∫∫∫

∫∫∫

∫∫ ∫

=

+
+

+
+

+

+
++

+
+

+
++++

+++

−
⋅+=

⋅+=

⋅⋅

⋅⋅+⋅+=

=

M

k ii

i
iii

i
i

i
iii

Ni
Ni

Ni
i

i

i
i

i

i
NiNi

i
i

i
i

i

i
iii

i

i
iiii

NiiNiiiNiii

wkX
kpZxw

dx
r
pZxw

dx
r
pdx

r
pdx

r
pxw

dx
r
pdx

r
pxwdx

r
pxwxw

dxdxppwxxEwE

1
2

2

2
2

212
1

1
2

2

12
1

1
22

2
221

2
1

2

)/)(1(
)(

......),,,()(

 (6)

where Zi is defined as in Eqn. (7)

Ni
Ni

Ni
i

i

i
NiNi

i
i

i
iiiii

dx
r
pdx

r
pxw

dx
r
pxwxwZ

+
+

+
+

+

+
++

+
+

+
++++

∫∫

∫

⋅+

⋅+=

212
1

12

12
1

1
2

2
21

2
1

...
 (7)

From the induction hypothesis, Zi can be calculated.
Therefore, we can again set up a differential equation to find
wi which minimizes average energy consumption in the case
of cascaded PRs, as Eqn (8). Eqn (8) can be solved using the
same technique as in Eqn (4).

0
))((

)()(0
1

3 =







−

−⋅+⇒=∂ ∑
=

M

K ii

ii
ii

i kXw
kpkXZx

w
E

 (8)

Note that this inductive way of proof naturally gives a
recursive way of solving, which will be presented in section
3.5.

3.4 Workload Prediction with Control Flow
Conditional statements (e.g. if/else) can also be handled by

introducing branch probabilities into Eqn. (4) and (8). Figure
6 exemplifies a case of PR’s with two conditional branches.

Pi(xi) Pi+1(xi+1)

wi for PSPi wi+1 for PSP/i+1

Pi+2(xi+2)

wi+2 for PSP/i+N

bi+1

bi+2
Figure 6. PR’s with conditional branches

The two branches (arrows in the figure) are denoted with
branch probabilities, bi and bi+1, respectively. Eqn. (9) gives
the total energy consumption in this case. Note that the
branch probabilities are already obtained from the profiling
data. Thus, they are constant values.

2
2

2
2

22
1

2
1

1
2

21),,,(
i

ii
i

i

ii
iiiiiii r

xwb
r

xwbxwwxxxE ++
+

++
+++ ++=

 (9)
The predicted workload wi

opt is then obtained by solving
the differential equation as follows.

0
))((

)()(][0
1

32
2

21
2

1 21
=








−

−⋅++⇒=∂ ∑
=

++++ ++

M

K ii

ii
iiiii

i kXw
kpkXxwbxwbx

w
E

ii

 (10)
Eqn. (10) can be solved in the same way as (4) and easily

extended to the cases that there are multiple (>2) conditional
branches. Loops are handled in the same way as in [6]. Thus,
we group K iterations of a loop into a single PR or fully
expand it.

3.5 Workload Prediction: Summary

We calculate wi
opt of each PR in a recursive way starting

from a leaf PR up to the root PR. Figure 7 summarizes the
procedure of calculating wi

opt. In Figure 7, WCECi,total is the
clock cycle of the remaining worst-case execution path from
PSPi to the end of program which serves as a boundary for
the bisection method.

It is also notable that if we assume all the PRs have no
distributions at all, our method gives exactly the same
solution as in [6], which is proven to be optimal under that
assumption. The detailed proof is omitted here.

591

Figure 7. Calculation of wi

opt in a recursive way

3.6 Satisfying the Given Timing Constraint
When setting the performance level, we need to check the

feasibility, that is, to check whether the performance setting
will satisfy the given timing constraint T. To do that, first we
need to take into account the case that the worst-case
behavior occurs, i.e. the WCEC of PRi happens to occur. In
addition to that, we need to include the runtime overhead
caused by voltage/frequency transition. Figure 8 illustrates
all the factors to be counted in the check, and Inequality (11)
shows the feasibility check.9

Figure 8. Checking the feasibility of performance setting

i
itotali

itr
PSP

i

i
icurtr

cur

PSP

T
f

WCECWCEC
ffT

f
O

f
WCECffT

f
O

i

≤
−

+++

++

)),((

)),((

max

,
max

 (11)

, where fcur is the clock frequency just before PSPi. OPSP is
the delay overhead (in clock cycles) of performance setting
function, PS() as illustrated in Figure 2. The delay overhead
of voltage/frequency transition, Ttr(fold, fnew) depends on two
frequencies, fold and fnew. In reality, OPSP and Ttr have also
runtime variations. In our experiments, we assumed that they
have their worst-case delay values.

After calculating fi
opt, Inequality (11) (fi = fi

opt) checks to
see if the timing constraint T is satisfied in the case of setting
performance level to fi

opt even when the execution cycle of
PRi happens to be WCECi. In the cases that Inequality (11) is

9 If you scan for f which satisfies Xi/f + Yi/fmax = Ti under

Xi≤WCECi, Yi≤WCECi+1,total, and Xi+Yi≤WCECi,total, the
maximum value of f (= minimally required fi) is found at
Xi=WCECi and Xi+Yi = WCECi,total.

not satisfied, we set fi to the minimum value satisfying the
Inequality.

3.7 Limitations, Complexity and Future Work
The proposed method has limitations as other existing

intra-task DVS methods [3-6] do. To achieve energy-
optimality for the multi-task environment, there must be
some improvements to our method: i) the integration with
inter-task DVS methods as in [16] and ii) accurate estimation
of the preemption (especially, cache-related) delay in
determining a performance level at a performance setting
point [17].

Our method has also the limitation of existing profile-
based intra-task DVS methods [5,6,8]: the dependency of
efficiency in energy reduction on the profiled information.
For our future work, we will work on this issue to improve
the efficiency, e.g. by runtime profiling.

In terms of exploiting SW runtime distribution, there is a
similar approach in [8]. However, the method in [8] has an
exponential complexity, O(LP) where L is the number of
voltage/frequency levels and P is that of performance setting
points. Thus, it may be infeasible to be applied to intra-task
DVS problems when P is a large number. In our experiments
of a H.264 decoder SW, L is 16 and P can be 212 (maximum
case). In this case, the method is not likely to find a feasible
solution in a reasonable time. The complexity of our method
is O(M*P) where M is the number of quantization points in
the histogram.

In Eqn (3) and (6), we assume that there is no correlation
between two PR’s. However, in reality, there can be
correlations, especially when cache behavior is concerned.
Our future work includes the investigation and exploitation
of the correlation among arbitrary code sections, which will
be more difficult to identify than in the case of task-level
correlation in [8].

3.8 Notes for Practical Application
In spite of aforementioned limitations, our method still has

advantages for practical application. Most of all, ours is not
only be applicable to basic-block PRs as in [5-6, 14-15], but
also can be applied in a coarse-grained way 10 without
violating its assumptions. This is a big advantage since real
applications can easily have millions of distinguished basic
blocks11.

Also, in a multi-task environment, ours can be
orthogonally applied to kernel-level inter-task DVS; kernel
adjusts frequency at normal task entries while an intra-DVS-
enabled task (IDET) changes frequency autonomously during
its execution. If an IDET is interrupted, the frequency gets
back to kernel-set level, and when execution is returned back
to the IDET, it will adjust the frequency at the next PSP

10 PR is not restricted to a single basic block, but can be complex

routines. e.g. a series of function calls.
11 All the activations of basic blocks in a loop or multiply called

functions should be distinguished.

592

regarding updated remaining time.

4. EXPERIMENTS
In our experiments, we build a target architecture

consisting of an ARM926 (16K I$/D$), AHB bus, a memory
controller and SDRAM (off-chip). The maximum supply
voltage of the processor is 1.2v. The frequency ranges
between 120 MHz and 480 MHz with 12 discrete
voltage/frequency levels. In our experiments, a performance
level, which is the lowest but higher than or equal to fi

opt , is
selected as a performance level from a given set of discrete
frequency.

The delay overhead of performance setting function call,
OPSP and that of voltage/frequency transition are assumed to
be 1k cycles and 30µs, respectively. We assume also that the
energy overhead of voltage/frequency transition is that of
processor execution at the higher frequency of the two
frequency levels (fold and fnew).

For the collection of runtime distribution, i.e. histograms,
we set up a transaction-level cycle-accurate simulation model
of the target architecture with a commercial environment,
MaxSim [9] and built a proprietary C source-level profiler of
SW execution cycles on top of the environment. The
profiling takes about one hour on a PC (Pentium 4, 2.4GHz,
764MB) in running 100 frames of MPEG4 decoding.
H.264 Decoder Case: We applied the proposed method to an
industrial H.264 decoder (QCIF, 30fps)12. Figure 9 (a) shows
the code structure of H.264 decoder. The rectangles in the
figure correspond to the performance regions, PR’s. Each PR
is denoted with its average runtime at fmax. Each of functions,
MB-decode and Deblock consists of a loop with 99
iterations. Inside of each of the two functions, we make PR’s
by grouping K iterations of the loop into a PR. We collected
the profiling data of runtime distribution by running the
H.264 decoder with the H.264 compliance test pictures [10]
as the input13.

Figure 9 (b) shows the energy consumption as we increase
the number of PR’s (or PSP’s) by changing the K value in
the grouping of loop iterations. Since the H.264 code has two
loops in the two functions, MB decode and Deblock as
shown in Figure 9 (a), we changed the number of PSP’s in
each loop from 1 to 99 (99 to 1 in terms of K value). The X-
axis of Figure 9 (b) shows the number of PSP’s in the
function MB-decode (L1 as denoted in Figure 9 (a)). In the
figure, the two different sets of data correspond to the two
different numbers of PR’s in function Deblock (L2 as
denoted in Figure 9 (a)). In Figure 9 (b), Inter represents the
case that inter-task DVS is used. Thus, the WCET of the
entire program is set to be the performance level in the
beginning of the H.264 code and the performance level does

12 The H.264 and MPEG4 decoder programs are optimized at
source/assembly level by designers at Samsung Electronics.

13 We used four test pictures, NL1_SONY_D, SVA_BA2_D,
NLMQ1_JVC_C, and MR1_MW_A.

not change during the execution. WT and Wn represent the
methods based on remaining worst-case execution path [4]14
and average-energy execution path [6], respectively.

0

20

40

60

80

1 3 9 33 99 1 3 9 33 99

O urs

W n

W T

IN TE R

VLD

Start

Init

MB decode
Loop
(L1)

Deblock
Loop
(L2)

Store

End

VLD

Start

Init

MB decode
Loop
(L1)

MB decode
Loop
(L1)

Deblock
Loop
(L2)

Deblock
Loop
(L2)

Store

End

0.3 ms

0.15 ms

99x
0.04 ms

99x
0.004 ms

1.2 ms

Runtime
@ fmax

(a) Code structure (b) Energy consumption

L2 Splits: 1 # L2 Splits: 9

L1 Splits

Energy (mJ)

Figure 9. H.264 decoder software case

As shown in Figure 9 (b), our method outperforms existing
ones for any combination of K values of L1 and L2. Table 1
summarizes the best cases of ours and existing methods.
Ours gives the minimum energy reduction 35.27mJ at (33, 9)
which corresponds to 33.3% reduction compared with the
best result of existing methods, 52.84mJ at (9,1) with WT.
The column Reduction shows the energy reduction
compared with the case that DVS is not applied, i.e. after the
completion of one frame, the processor is turned off until the
start of the next frame.

Table 1. Comparison of energy consumption: H.264 decoder

 Loop Split (L1, L2) Energy (mJ) Reduction (%)
Ours (33, 9) 35.27 47.5
Inter (1, 1) 56.77 15.5
WT [4] (9, 1) 52.84 21.4
Wn [6] (9, 1) 54.89 18.4

Table 2. Comparison of energy consumption: MPEG4 decoder

 Loop Split (L1, L2) Energy (mJ) Reduction (%)
Ours (11, 9) 26.18 75.8
Inter (1, 1) 91.36 15.5
WT [4] (12, 18) 32.41 70.0
Wn [6] (9, 9) 34.32 68.2

MPEG4 Decoder Case:
We applied the proposed method to an industrial MPEG4

decoder (CIF, 60fps). The code structure of MPEG4 is
similar to that of H.264 decoder shown in Figure 9 (a). We
collected the profiling data of runtime distribution by running

14 In this example, the average-case execution path [5] corresponds

to the worst-case execution path [6] at performance setting points
since the H.264 code has two loops whose iterations are fixed to
99 times.

593

the MPEG4 decoder with 150 frame test pictures. Table 2
gives the comparison of energy consumption. Ours gives the
minimum energy reduction 26.18mJ at (11,9) which
corresponds to 19.2% reduction compared with the best
result of existing methods, 32.41mJ at (12,18) with WT.

Figure 10 explains why the proposed method gives less
energy reduction in the MPEG4 decoder than in the H.264
decoder. The figure shows the histogram of each of the two
loops, L1 and L2, in both programs. As the figure shows, the
runtime distribution of H.264 decoder is bigger than that of
MPEG4 decoder. Especially, loop L2 of H.264 has a long tail
in the runtime distribution, which prevents the existing
methods from aggressively reducing the performance level
while the proposed method does. Thus, the proposed method
showed more relative effectiveness in the H.264 decoder
than in the MPEG4 decoder.

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

10 0 2 0 0 3 0 0 4 0 0 5 0 0 60 0 7 0 0 8 0 0

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0 4 5 0 0

0

0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

0 .3 5

2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0 6 0 0 0 7 0 0 0 8 0 0 0 9 0 0 0

0

0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

0 .3 5

0 .4

0 .4 5

1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0 4 5 0 0

(b) M P E G 4 r u n t im e d is t r ib u t io n

(a) H .2 6 4 r u n tim e d is t r ib u t io n
E x e c u t io n c yc le (K)E x e c u tio n c y c le (K)

P r o b a b il ityP r o b a b il ity L o o p L 1 L o o p L 2

L o o p L 1 L o o p L 2

Figure 10. Runtime distributions of H.264 and MPEG

programs

5. CONCLUSION
In this paper, we proposed a new intra-task DVS method

to reduce energy consumption by exploiting the information
of software runtime distribution. The key parts of the
proposed method are i) the introduction of the concept of
‘statistical profiling of execution cycles’ into intra-task DVS
rather than worst-case execution cycles, and ii) the analytic
solution of finding energy optimal performance settings. The
experiments show the effectiveness (19.2% ~ 33.3% energy
reduction) of the proposed method in two industrial
multimedia applications.

6. REFERENCES
[1] D. Kwon and T. Kim, “Optimal Voltage Allocation Techniques
for Variable Voltage Processors”, DAC, 2003.
[2] R. Jejurikar and R. Gupta, “Dynamic Slack Reclamation with

Procrastination Scheduling in Real-time Embedded Systems”,
DATE, 2005.
[3] S. Lee and T. Sakurai, “Run-time Voltage Hopping for Low-
Power Real-Time Systems”, DAC, 2000.
[4] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A.
Veidenbaum, and A. Nicolau, “Profile-Based Dynamic Voltage
Scheduling Using Program Checkpoints”, DATE, 2002.
[5] D. Shin, J. Kim, and S. Lee, “Low-Energy Intra-Task Voltage
Scheduling using Static Timing Analysis”, DAC, 2001.
[6] J. Seo, T. Kim, and K. Chung, “Profile-Based Optimal Intra-
Task Voltage Scheduling for Hard Real-Time Applications”, DAC,
2004.
[7] S. Hua, G. Qu, and S. Bhattacharyya, “Energy Efficient Multi-
Processor Implementation of Embedded Software”, Int’l Workshop
on Embedded Software, Oct. 2003.
[8] S. Yaldiz, A. Demir, S.Tasiran, P.Ienne, and Y. Leblebici,
“Characterizing and Exploiting Task-Load Variability and
Correlation for Energy Management”, ESTiMedia, 2005.
[9] MaxSim Technology, ARM Co. Ltd, available at
http://www.arm.com/products/DevTools/.
[10] “Conformance specification for H.264 advanced video coding”,
http://ftp3.itu.ch/av-arch/jvt-ite/draft_conformance/00readme_suz
0420.html
[11] ARM IEM Technology, available at www.arm.com

[12] F. Yao, A. Demers, and S. Shenker, “A Scheduling Model for
Reduced CPU Energy”, Symposium on Foundations of Computer
Science, 1995.
[13] G. Guan and X. Hu, “Energy Efficient Fixed-Priority
Scheduling for Hard Real-Time Systems”, DAC, 2001.

[14] D. Shin and J. Kim, “Optimizing Intra-Task Voltage Scaling
Using Data Flow Analysis”, ASP-DAC 2005.

[15] D. Shin and J. Kim, “Look-Ahead Intra-Task Voltage Scaling
Using Data Flow Information, Int’l SoC Design Conference, 2004.
[16] J. Seo, T. Kim, and N. Dutt, “Optimal Integration of Inter-Task
and Intra-Task Dynamic Voltage Scaling Techniques for Hard Real-
Time Applications”, ICCAD, 2005.

[17] C. Lee, J. Hahn, Y. Seo, S. Min, R. Ha, S. Hong, C. Park, M.
Lee, and C. Kim, “Analysis of Cache-Related Preemption Delay in
Fixed-Priority Preemptive Scheduling”, IEEE Transactions on
Computers. Vol. 47, No. 6, pp. 700-713 June 1998.
[18] K. Flautner, D. Flynn, D. Roberts, and D. Patel, “IEM926: An
Energy Efficient SoC with Dynamic Voltage Scaling”, Designers’
Forum, DATE, 2004.

Appendix A: Details of code example in Figure 1 (a)
#define P(X,Y) *(img+(y)*XMAX+(x))
__inline void block_filter1(unsigned char* img, int x, int y) {

P(x, y) = P(x-2, y)*A[0] +P(x-1, y)*A[1] +P(x+0, y)*A[2] +P(x+1, y)*A[3];
// this pattern repeated for all pixels in 4x4 block until…

P(x+3, y+3) = P(x+1, y+3) *A[0] +P(x+2, y+3)*A[1]
+P(x+3, y+3)*A[2] +P(x+4, y+3)*A[3]; }

594

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

