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ABSTRACT 
We propose a new intra-task dynamic voltage scaling 

(DVS) method to capture an important fact of ‘software 
runtime distribution’ and integrate it into DVS effectively. 
Specifically, the proposed method finds performance levels, 
for a given software runtime distribution, i.e. statistical 
profiling of execution cycles (neither the execution cycle of 
worst-case execution path nor the worst-case execution 
cycles of basic blocks), which leads to a minimal energy 
consumption while satisfying the given deadline constraints. 
Experimental results report that the proposed method gives 
19.2%~33.3% further energy reduction compared with the 
best-known methods for two industrial multimedia software 
programs, H.264 decoder and MPEG4 decoder. 

1. INTRODUCTION 
Dynamic voltage scaling (DVS) is a well-known and 

effective method for low-power design, especially lowering 
the processor energy consumption in battery-powered mobile 
devices. In DVS, the frequency and voltage of a processor 
are adjusted dynamically, in the middle of execution, to their 
lowest possible level while meeting the deadline constraints 
of executing software (SW) program, or task. This 
performance adjustment is possible when a slack (= deadline 
– completion time at current performance level) becomes 
available, i.e. becomes positive in value. Therefore, one of 
key problems in DVS is to determine a performance level to 
maximize energy savings without violating the deadline 
constraints when a slack becomes available.  

Most of the previous DVS methods can be classified into 
two groups in terms of the granularity of performance setting 

period1: inter-task and intra-task DVS. In inter-task DVS, the 
voltage and the frequency are adjusted only once at the 
beginning of each task activation assuming the worst-case 
execution time (WCET) of the task [1-2, 12-13]. On the other 
hand, intra-task DVS utilizes the slack more aggressively by 
further adjustments of performance levels in the middle of 
the execution of the task [3-6]. In this paper, we focus on 
intra-task DVS.  

Existing intra-task DVS methods exploit the fact that as 
SW execution advances, the remaining workload of SW 
program may become smaller than observed in the worst 
case. At each performance setting point in the SW code, the 
methods determine the minimum processor performance 
level from the pre-calculated prediction value of remaining 
workload and the value of current slack while meeting the 
given deadline constraints. The more accurate the prediction 
is (i.e. close to the real workload), the more energy gain can 
be obtained from DVS. Thus, the accurate prediction of 
workload is required to make the best use of DVS capability. 

Observation: SW Runtime Distribution 
To predict the remaining execution cycles of workload 

accurately, two factors need to be considered. One is control 
dependency caused by control statements, e.g. if/else. The 
variation of execution paths to be taken in the remaining run 
of SW program may result in huge impact in workload 
prediction. The other is data and architecture-dependency. To 
be more specific, we need to take into account the effects of 
data access patterns (e.g. delay variation due to hit/miss in 
cache/TLB/write buffer, off-chip memory access delay 
variation due to the page access locality in the memory 
controller, etc.) and the effects of dynamic states in the 
hardware architecture (e.g., branch prediction, out-of-order 
execution, etc.).   

                                                             
1 A performance setting point is a place in the SW code where the 

performance level of processor is adjusted. The performance 
setting period is the time duration between two performance 
setting points in the SW code. 
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Figure 1. An example of SW runtime distribution 

Figure 1 gives an example of SW runtime distribution 
caused by the data and architectural effects. Figure 1 (a) 
shows a function consisting of four basic blocks each of 
which is implemented as a macro2. We ran this code on an 
ARM926 processor while changing the size of I/D cache 
from 4KB to 32KB. Figure 1 (b) gives the statistics of 
execution cycle for the case of macro block_filter1 (with 
total 60 times of execution3). For instance, in the case of 
32KB cache, the macro gives about 7500 clock cycles as the 
execution cycle 50 times among total 60 times of execution. 

As shown in Figure 1 (b), the shape of the histogram 
changes as the cache size changes. It is interesting to see the 
long right tails (denoted with a dashed oval in the figure) that 
belong to the cases of cache size 16KB and 32KB. Related 
with cache behavior, such long tails can be caused by well-
known cache miss sources: cold miss (when the first 
execution of the macro), conflict miss (when the cache lines 
containing the code/data of the macro are replaced by the 
intervening code executed between previous and current 
executions of the macro), and capacity miss (when the macro 
handles bigger code/data than the cache size). Due to such 
long tails, the WCEC (worst-case execution cycles) of 
block_filter1 becomes much greater than the average 
execution cycle, especially, in the case of cache size 16KB 
and 32KB. 

Limitation of Existing Intra-task DVS Methods 
Most of existing intra-task DVS methods [4-6] focus only 

on control dependency in predicting the remaining workload. 
However, as shown in Figure 1, the data access patterns and 
the dynamic states of underlying hardware architecture can 
be more crucial in the prediction. Even the same execution 
path taken on the same processor can have significantly 
different execution cycles (per each execution of the path) 
depending on the data access patterns and the dynamic states 
of hardware architecture. Thus, it is required to exploit the 
data and architecture dependency to better predict the 
remaining workload thereby maximizing energy reduction. 

                                                             
2 In the case of multimedia software, it is usual to unroll compute-

intensive loops for performance reasons thereby giving big basic 
blocks. The code details of the macro used in the figure is 
available at appendix A.   

3  In order to normalize the frequency, we use probability 
distribution function to be explained in Section 3. 

When predicting the remaining workload at a given 
performance setting point, existing intra-task DVS methods 
based on execution paths (which we call path-based 
methods) perform the predictions based only on the WCEC’s 
of remaining execution paths (or basic blocks). For instance, 
in the case of cache size 16/32KB, the WCET of macro 
block_filter1 may be estimated to be greater than 11,000 
cycles while its execution cycle ranges between 7,000 and 
8,500 cycles in most cases. Thus, path-based DVS methods 
may suffer from the error in workload prediction causing less 
energy reduction than possible otherwise. 

Our Contribution 
In this paper, we propose a new DVS method which 

exploits not only execution path-dependent runtime 
distributions but also data/architecture-dependent ones. 
Compared to existing path-based intra-task DVS methods 
which exploit the execution path-dependent runtime 
distribution only with a worst-case assumption for the data 
and architecture-dependent runtime distribution, the 
proposed method gives less energy consumption.  

2. RELATED WORK 
Lee and Sakurai proposed an intra-task DVS method [3] 

which exploits workload variation to reduce the energy 
consumption in multimedia SW program execution. In their 
work, the workload variation is a slack which is calculated as 
the difference between expected and real program runtimes 
of already executed SW code at a performance setting point. 
For the remaining workload, this work assumes the WCEC. 

Azevedo et al. proposed a method that adjusts the 
performance level at performance setting points during SW 
run [4]. In their work, the predicted remaining workload is 
the execution cycle of worst-case execution path from a 
performance setting point to the end of SW program run. 
Shin et al. presented a method of predicting the remaining 
workload to be the execution cycle of the average-case (i.e. 
the most frequently taken) execution path [5]. Seo et al. 
presented a concept of virtual execution path to find an 
optimal performance level for minimum average energy 
consumption [6]. The method also uses the WCEC’s of 
remaining basic blocks to predict the remaining workload. 
Some of recent studies apply data flow analysis to path-based 
intra-task DVS in order to set performance levels more 
aggressively (i.e. at earlier program points than in previous 
methods) by identifying the earliest program points where 
the remaining execution path is determined [14][15]. 

There has been little work on exploiting the information of 
runtime variation in DVS. Hua et al. presented a method that 
exploits the information of runtime distribution in task 
execution times to trade off between energy reduction and 
timing violation while giving probabilistic guarantees of 
completion ratio in the case of soft real-time systems [7]. 
Recently, S. Yaldiz, et al. presented an inter-task DVS 
method of exploiting the information of correlation among 
the runtime distributions of tasks [8]. Although this work 
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focuses originally on inter-task DVS with static scheduling, 
it may also be very effective in the case of strong correlation 
among big code sections in a task. However, when applied to 
intra-task DVS, the work may suffer from an exponential 
complexity while ours has a polynomial complexity. We will 
give a more detailed comparison between the work in [8] and 
ours in Section 3.7. 

3. Proposed Method 
When applying DVS to real variable voltage processors, 

there are several problems as follows.  
-  How to select performance setting points? 
- How to adjust the performance level at a performance 
setting point? 
- How to take into account the overhead (runtime and energy 
consumption) of voltage and frequency transition? 
- How to handle discrete voltage levels? 

In this paper, our main concern is to tackle the second 
problem, to find a performance setting method. However, 
when applying the method, we will explain the practical 
consideration, regarding the other three problems, which we 
made in our work. 

3.1 Terminology and Assumptions 
We define our terminology in this subsection. 

Task_main (img, x, y, flag)
{

PS(i-1); // PSPi-1
block_transform1 (img,x,y);

if (flag) {
PS(i); // PSPi
block_filter1 (img,x,y);

}
else {

PS(…); // PSP…
block_filter2 (img,x,y);

}
PS(i+1); // PSPi+1
block_transform2 (img,x,y);

} Xi+1

WCECi

Pi

Pi+1

Xi

PR i

P R i+1

<xi(k),pi(k)>
p

p

 
Figure 2. Histograms of performance regions 

- Performance setting point (PSP): A code location where 
the performance level of processor is adjusted. In the left-
hand side of Figure 2, each basic block (denoted with a 
shaded area) has a performance setting point denoted with 
function PS(). 
- Performance region (PR): A code section which starts 
with a single PSP in the beginning and ends before another 
PSP belonging to another code section. In Figure 2, each 
basic block corresponds to a PR. However, in reality, a PR 
will be a complex code section (including control statements 
such as if/else) bigger than a single basic block. Note that a 
PSP belongs only to a single PR. 

- Histogram of PR (P): The normalized histogram (i.e. 
probability distribution function) of execution cycles of PR. 
The right-hand side of Figure 2 shows the histogram, Pi, 
which corresponds to the histogram of macro block_filter1 
denoted with PRi. In reality, we quantize the histogram into a 
set of M tuples <Xi(k),pi(k)>, 1≤ k≤M, where Xi(k) is the k-
th quantized value of execution cycle for PRi and pi(k) is the 
probability that the execution of PRi  actually amounts to 
Xi(k). The maximum value of Xi(k)’s is therefore worst-case 
execution cycle as indicated by WCECi in the figure. 
- Leaf, non-leaf and root PR: A PR is defined as a leaf PR 
if no other PR is executed after it; otherwise it is defined as a 
non-leaf PR. The PR that contains program entry point is 
called as the root PR.   

Assumption of Calculating Energy Consumption: E ~ f2 * 
ntotal 

We assume that the amount of energy consumption E 
during an execution of one PR is expressed as E ~ f 2 * ntotal  
as in [6], where f is the performance level (i.e. clock 
frequency) set for this PR and ntotal is the total number of 
execution cycles of that PR. The justification is as follows: 
First, from the equation E ~ Vdd

2 *f *t, we can substitute 
execution time t as ntotal /f, since f is constant during a PR. 
Second, the clock frequency f is known to be related to the 
supply voltage as f ~ (Vdd – VT)α / Vdd ~ Vdd, where Vdd is the 
supply voltage, VT is the threshold voltage and α (1.4 < α < 
2) is the velocity saturation index. Practically, α is 
considered to be 2 and f is shown to be proportional to V (f ~ 
Vdd) [18]. Consequently, E ~ Vdd

2 *f *t ~ f 2 *f * (ntotal /f) ~ f 2 
* (ntotal). 

3.2 Workload Prediction with the Information 
of Runtime Distribution: Basic Idea 

In this subsection, we explain our basic idea of workload 
prediction. Figure 3 shows an example of the case of a 
program with two PR’s (denotes as PRi and PRi+1 in Figure 
2). Here, the rectangles represent the PRs and the arrow 
represents the precedence relation between PR’s; the 
execution of PRi+1 starts after PRi finishes its execution. The 
figure also shows that the two PR’s have their own 
histograms, Pi and Pi+1.   

Our framework is based on the legacy two-step approach: 
i) during the design time we determine wi, the prediction of 
remaining workload to the end of program, for each PRi, and 
ii) during the runtime whenever SW execution reaches PSPi, 
the processor’s performance level is adjusted using wi and Ti, 
the remaining time at that moment: fi = wi / Ti.4  However, in 
this framework our objective is to select wi values for all PRi 
such that average energy consumption for whole program 
execution is to be minimized, while taking it into 

                                                             
4 V will be adjusted proportionally to f. For instance, assuming that 

fmax = 500MHz, Vmax = 1.0V, T=0.4sec, and wi=100M cycles, 
then fi =  (100M cycles /  0.4sec) = 250MHz, and V = 0.5V. 
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consideration the known runtime distribution of each PR.  
Before proceeding, note that the workload prediction is 

trivial for a leaf PR; it must be equal to its WCEC otherwise 
the deadline is not met for the worst-case. Consequently, 
when there is only one PR for a program, the performance 
level will be adjusted to f = WCEC / T at the program entry 
where T denotes the deadline or timing constraint, which is 
identical to applying inter-task DVS methods. We can 
normalize the timing constraint T to unity 5  in following 
discussions for the brevity of equations without affecting the 
result.  

Now, the problem of workload prediction for the program 
having two PRs is defined as follows. 
Problem of Workload Prediction: The problem is to predict 
the remaining workload wi, of program region PRi, which 
gives the minimum total average energy consumption, given 
wi+1, Pi and Pi+1.  

Pi

xi

Pi(xi) Pi+1(xi+1)

wi for PSPi wi+1 for PSPi+1

Pi+1

xi+1  
Figure 3. Two performance regions with runtime 
distributions 

First, the total energy consumption is expressed as 
follows.6 
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where xi and xi+1 are the random variables of distribution 
functions  Pi and Pi+1, respectively. As explained earlier, wi+1 
is WCECi+1 here.  

In the previous work of intra-task DVS, wi is predicted to 
be the execution cycle of remaining worst-case execution 
path [4], that of average case execution path [5] ([4] and [5] 
give the same result in this example since there is only one 
remaining execution path) or that of virtual execution path 
[6] (in this case, the prediction gives WCECi +WCECi+1).7  

Assuming that the two histograms are independent of each 
other, Eqn. (3) gives the average of total energy consumption 
for Pi and Pi+1.  

                                                             
5 Also, maximum frequency fmax and maximum voltage Vmax are 

normalized to unity.  
6 fi = wi / Ti, fi+1 = wi+1 / Ti+1, Ti = T, Ti+1 = Ti – xi / fi, and T  

normalized to 1.  
7 If there are no runtime variations for the PRs, all these values 

become identical.  
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where ix  and 1+ix are the average execution cycles of PRi 
and PRi+1, respectively.  

What Eqn. (3) means is that the average of total energy 
consumption is a function of wi only. Figure 4 illustrates one 
instance of this function (obtained from the case of H.264 
decoder SW in our experiments) Note the optimal prediction 
of wi, wi

opt corresponds to the inflection point in the curve of 
Figure 4. 
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Figure 4. Total average energy consumption w.r.t. wi 

We can calculate wi
opt by solving the following differential 

equation: 
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Note that the only variable in Eqn. (4) is wi. Solving 
Equation (4) requires a numerical analysis. Since the curve of 
average energy consumption, as illustrated in Figure 4, is a 
convex8, we can apply the Bisection method to solve Eqn. (4). 
Remind that this numerical analysis is performed at design 
time. The result of the numerical analysis, i.e. wi

opt is saved 
in a table and used to set the performance level to the optimal 
level, fi

opt  (= wi
opt / T) during runtime.  

                                                             
8 The derivative of the left-hand side of Eqn. (4) is always positive, 

meaning that Eqn. (3) is always a convex. 
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3.3 Workload Prediction with Cascaded PR’s 

Pi

xi

Pi(xi) Pi+1(xi+1)

wi for PSPi wi+1 for PSPi+1

Pi+1

xi+1

Pi+N

xi+N

Pi+N(xi+N)

wi+N for PSP/i+N

 
Figure 5. Cascaded PR’s 

Now, we will extend our discussion to the case of more 
than two cascaded PR’s. This situation is depicted in Figure 
5.  We use mathematical induction letting our discussions in 
section 3.2 be the induction basis. And the induction 
hypothesis is that we already have all the average-energy-
optimal workload predictions for the following PRs after PRi 
(i.e we have values from wi+1 to wi+N). Our goal is again to 
find wi that minimizes average energy consumption.  

In this case, the total energy consumption is calculated as 
in Eqn. (5). 

22
1

2

2

2
1

2
2

2
2

2
1

2
12

1 ),,...,,(

Niii

NiNi

ii

ii

i

ii
ii

iNiii

rrr
xw

rr
xw

r
xwxw

wxxxE

++

++

+

++++

++

++++=
             (5) 

Assuming the independence among wi’s and Pi’s, the 
average energy consumption is calculated as follows. 

∑

∫

∫∫∫

∫∫∫

∫∫ ∫

=

+
+

+
+

+

+
++

+
+

+
++++

+++

−
⋅+=

⋅+=

⋅⋅

⋅⋅+⋅+=

=

M

k ii

i
iii

i
i

i
iii

Ni
Ni

Ni
i

i

i
i

i

i
NiNi

i
i

i
i

i

i
iii

i

i
iiii

NiiNiiiNiii

wkX
kpZxw

dx
r
pZxw

dx
r
pdx

r
pdx

r
pxw

dx
r
pdx

r
pxwdx

r
pxwxw

dxdxppwxxEwE

1
2

2

2
2

212
1

1
2

2

12
1

1
22

2
221

2
1

2

)/)(1(
)(

......),,,()(

 (6) 

where Zi is defined as in Eqn. (7) 
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From the induction hypothesis, Zi can be calculated. 
Therefore, we can again set up a differential equation to find 
wi which minimizes average energy consumption in the case 
of cascaded PRs, as Eqn (8).  Eqn (8) can be solved using the 
same technique as in Eqn (4).  
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Note that this inductive way of proof naturally gives a 
recursive way of solving, which will be presented in section 
3.5. 

3.4 Workload Prediction with Control Flow 
Conditional statements (e.g. if/else) can also be handled by 

introducing branch probabilities into Eqn. (4) and (8). Figure 
6 exemplifies a case of PR’s with two conditional branches.  

Pi(xi) Pi+1(xi+1)

wi for PSPi wi+1 for PSP/i+1

Pi+2(xi+2)

wi+2 for PSP/i+N

bi+1

bi+2  
Figure 6. PR’s with conditional branches 

The two branches (arrows in the figure) are denoted with 
branch probabilities, bi and bi+1, respectively. Eqn. (9) gives 
the total energy consumption in this case. Note that the 
branch probabilities are already obtained from the profiling 
data. Thus, they are constant values.  
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The predicted workload wi

opt is then obtained by solving 
the differential equation as follows.  

0
))((

)()(][0
1

32
2

21
2

1 21
=








−

−⋅++⇒=∂ ∑
=

++++ ++

M

K ii

ii
iiiii

i kXw
kpkXxwbxwbx

w
E

ii

 (10) 
Eqn. (10) can be solved in the same way as (4) and easily 

extended to the cases that there are multiple (>2) conditional 
branches. Loops are handled in the same way as in [6]. Thus, 
we group K iterations of a loop into a single PR or fully 
expand it.  

3.5 Workload Prediction: Summary 

We calculate wi
opt of each PR in a recursive way starting 

from a leaf PR up to the root PR. Figure 7 summarizes the 
procedure of calculating wi

opt. In Figure 7, WCECi,total is the 
clock cycle of the remaining worst-case execution path from 
PSPi to the end of program which serves as a boundary for 
the bisection method.  

It is also notable that if we assume all the PRs have no 
distributions at all, our method gives exactly the same 
solution as in [6], which is proven to be optimal under that 
assumption. The detailed proof is omitted here. 
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Figure 7. Calculation of wi

opt in a recursive way 

3.6 Satisfying the Given Timing Constraint 
When setting the performance level, we need to check the 

feasibility, that is, to check whether the performance setting 
will satisfy the given timing constraint T. To do that, first we 
need to take into account the case that the worst-case 
behavior occurs, i.e. the WCEC of PRi happens to occur. In 
addition to that, we need to include the runtime overhead 
caused by voltage/frequency transition. Figure 8 illustrates 
all the factors to be counted in the check, and Inequality (11) 
shows the feasibility check.9 
 

 
Figure 8. Checking the feasibility of performance setting 
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, where fcur is the clock frequency just before PSPi. OPSP is 
the delay overhead (in clock cycles) of performance setting 
function, PS() as illustrated in Figure 2. The delay overhead 
of voltage/frequency transition, Ttr(fold, fnew) depends on two 
frequencies, fold and fnew. In reality, OPSP and Ttr have also 
runtime variations. In our experiments, we assumed that they 
have their worst-case delay values.  

After calculating fi
opt, Inequality (11) (fi = fi

opt) checks to 
see if the timing constraint T is satisfied in the case of setting 
performance level to fi

opt even when the execution cycle of 
PRi happens to be WCECi. In the cases that Inequality (11) is 
                                                             
9  If you scan for f which satisfies Xi/f + Yi/fmax = Ti under 

Xi≤WCECi, Yi≤WCECi+1,total, and Xi+Yi≤WCECi,total, the 
maximum value of f (= minimally required fi) is found at 
Xi=WCECi and Xi+Yi = WCECi,total. 

not satisfied, we set fi to the minimum value satisfying the 
Inequality. 

3.7 Limitations, Complexity and Future Work 
The proposed method has limitations as other existing 

intra-task DVS methods [3-6] do.  To achieve energy-
optimality for the multi-task environment, there must be 
some improvements to our method: i) the integration with 
inter-task DVS methods as in [16] and ii) accurate estimation 
of the preemption (especially, cache-related) delay in 
determining a performance level at a performance setting 
point [17]. 

Our method has also the limitation of existing profile-
based intra-task DVS methods [5,6,8]: the dependency of 
efficiency in energy reduction on the profiled information. 
For our future work, we will work on this issue to improve 
the efficiency, e.g. by runtime profiling. 

In terms of exploiting SW runtime distribution, there is a 
similar approach in [8]. However, the method in [8] has an 
exponential complexity, O(LP) where L is the number of 
voltage/frequency levels and P is that of performance setting 
points. Thus, it may be infeasible to be applied to intra-task 
DVS problems when P is a large number. In our experiments 
of a H.264 decoder SW, L is 16 and P can be 212 (maximum 
case). In this case, the method is not likely to find a feasible 
solution in a reasonable time. The complexity of our method 
is O(M*P) where M is the number of quantization points in 
the histogram.  

In Eqn (3) and (6), we assume that there is no correlation 
between two PR’s. However, in reality, there can be 
correlations, especially when cache behavior is concerned. 
Our future work includes the investigation and exploitation 
of the correlation among arbitrary code sections, which will 
be more difficult to identify than in the case of task-level 
correlation in [8]. 

3.8 Notes for Practical Application 
In spite of aforementioned limitations, our method still has 

advantages for practical application. Most of all, ours is not 
only be applicable to basic-block PRs as in [5-6, 14-15], but 
also can be applied in a coarse-grained way 10  without 
violating its assumptions. This is a big advantage since real 
applications can easily have millions of distinguished basic 
blocks11.  

Also, in a multi-task environment, ours can be 
orthogonally applied to kernel-level inter-task DVS; kernel 
adjusts frequency at normal task entries while an intra-DVS-
enabled task (IDET) changes frequency autonomously during 
its execution. If an IDET is interrupted, the frequency gets 
back to kernel-set level, and when execution is returned back 
to the IDET, it will adjust the frequency at the next PSP 
                                                             
10 PR is not restricted to a single basic block, but can be complex 

routines. e.g. a series of function calls. 
11 All the activations of basic blocks in a loop or multiply called 

functions should be distinguished.  
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regarding updated remaining time.  

4. EXPERIMENTS 
In our experiments, we build a target architecture 

consisting of an ARM926 (16K I$/D$), AHB bus, a memory 
controller and SDRAM (off-chip). The maximum supply 
voltage of the processor is 1.2v.  The frequency ranges 
between 120 MHz and 480 MHz with 12 discrete 
voltage/frequency levels. In our experiments, a performance 
level, which is the lowest but higher than or equal to fi

opt , is 
selected as a performance level from a given set of discrete 
frequency. 

The delay overhead of performance setting function call, 
OPSP and that of voltage/frequency transition are assumed to 
be 1k cycles and 30µs, respectively. We assume also that the 
energy overhead of voltage/frequency transition is that of 
processor execution at the higher frequency of the two 
frequency levels (fold and fnew). 

For the collection of runtime distribution, i.e. histograms, 
we set up a transaction-level cycle-accurate simulation model 
of the target architecture with a commercial environment, 
MaxSim [9] and built a proprietary C source-level profiler of 
SW execution cycles on top of the environment. The 
profiling takes about one hour on a PC (Pentium 4, 2.4GHz, 
764MB) in running 100 frames of MPEG4 decoding. 
H.264 Decoder Case: We applied the proposed method to an 
industrial H.264 decoder (QCIF, 30fps)12. Figure 9 (a) shows 
the code structure of H.264 decoder. The rectangles in the 
figure correspond to the performance regions, PR’s. Each PR 
is denoted with its average runtime at fmax. Each of functions, 
MB-decode and Deblock consists of a loop with 99 
iterations. Inside of each of the two functions, we make PR’s 
by grouping K iterations of the loop into a PR. We collected 
the profiling data of runtime distribution by running the 
H.264 decoder with the H.264 compliance test pictures [10] 
as the input13. 

Figure 9 (b) shows the energy consumption as we increase 
the number of PR’s (or PSP’s) by changing the K value in 
the grouping of loop iterations. Since the H.264 code has two 
loops in the two functions, MB decode and Deblock as 
shown in Figure 9 (a), we changed the number of PSP’s in 
each loop from 1 to 99 (99 to 1 in terms of K value). The X-
axis of Figure 9 (b) shows the number of PSP’s in the 
function MB-decode (L1 as denoted in Figure 9 (a)). In the 
figure, the two different sets of data correspond to the two 
different numbers of PR’s in function Deblock (L2 as 
denoted in Figure 9 (a)). In Figure 9 (b), Inter represents the 
case that inter-task DVS is used. Thus, the WCET of the 
entire program is set to be the performance level in the 
beginning of the H.264 code and the performance level does 

                                                             
12 The H.264 and MPEG4 decoder programs are optimized at 
source/assembly level by designers at Samsung Electronics. 

13 We used four test pictures, NL1_SONY_D, SVA_BA2_D, 
NLMQ1_JVC_C, and MR1_MW_A. 

not change during the execution. WT and Wn represent the 
methods based on remaining worst-case execution path [4]14 
and average-energy execution path [6], respectively.  
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Figure 9. H.264 decoder software case 

As shown in Figure 9 (b), our method outperforms existing 
ones for any combination of K values of L1 and L2. Table 1 
summarizes the best cases of ours and existing methods. 
Ours gives the minimum energy reduction 35.27mJ at (33, 9) 
which corresponds to 33.3% reduction compared with the 
best result of existing methods, 52.84mJ at (9,1) with WT. 
The column Reduction shows the energy reduction 
compared with the case that DVS is not applied, i.e. after the 
completion of one frame, the processor is turned off until the 
start of the next frame.  

Table 1. Comparison of energy consumption: H.264 decoder 

  Loop Split (L1, L2) Energy (mJ) Reduction (%) 
Ours (33, 9) 35.27 47.5 
Inter (1, 1) 56.77 15.5 
WT [4] (9, 1) 52.84 21.4 
Wn [6] (9, 1) 54.89 18.4 

Table 2. Comparison of energy consumption: MPEG4 decoder 

  Loop Split (L1, L2) Energy (mJ) Reduction (%) 
Ours (11, 9) 26.18 75.8 
Inter (1, 1) 91.36 15.5 
WT [4] (12, 18) 32.41 70.0 
Wn [6] (9, 9) 34.32 68.2 

MPEG4 Decoder Case: 
We applied the proposed method to an industrial MPEG4 

decoder (CIF, 60fps). The code structure of MPEG4 is 
similar to that of H.264 decoder shown in Figure 9 (a). We 
collected the profiling data of runtime distribution by running 

                                                             
14 In this example, the average-case execution path [5] corresponds 

to the worst-case execution path [6] at performance setting points 
since the H.264 code has two loops whose iterations are fixed to 
99 times. 
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the MPEG4 decoder with 150 frame test pictures. Table 2 
gives the comparison of energy consumption. Ours gives the 
minimum energy reduction 26.18mJ at (11,9) which 
corresponds to 19.2% reduction compared with the best 
result of existing methods, 32.41mJ at (12,18) with WT. 

Figure 10 explains why the proposed method gives less 
energy reduction in the MPEG4 decoder than in the H.264 
decoder. The figure shows the histogram of each of the two 
loops, L1 and L2, in both programs. As the figure shows, the 
runtime distribution of H.264 decoder is bigger than that of 
MPEG4 decoder. Especially, loop L2 of H.264 has a long tail 
in the runtime distribution, which prevents the existing 
methods from aggressively reducing the performance level 
while the proposed method does. Thus, the proposed method 
showed more relative effectiveness in the H.264 decoder 
than in the MPEG4 decoder. 
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Figure 10. Runtime distributions of H.264 and MPEG 

programs 

5. CONCLUSION 
In this paper, we proposed a new intra-task DVS method 

to reduce energy consumption by exploiting the information 
of software runtime distribution. The key parts of the 
proposed method are i) the introduction of the concept of 
‘statistical profiling of execution cycles’ into intra-task DVS 
rather than worst-case execution cycles, and ii) the analytic 
solution of finding energy optimal performance settings. The 
experiments show the effectiveness (19.2% ~ 33.3% energy 
reduction) of the proposed method in two industrial 
multimedia applications. 
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Appendix A: Details of code example in Figure 1 (a) 
#define P(X,Y) *(img+(y)*XMAX+(x)) 
__inline void block_filter1(unsigned char* img, int x, int y)  { 

P(x, y) = P(x-2, y)*A[0] +P(x-1, y)*A[1] +P(x+0, y)*A[2] +P(x+1, y)*A[3]; 
// this pattern repeated for all pixels in 4x4 block until… 

P(x+3, y+3) = P(x+1, y+3) *A[0] +P(x+2, y+3)*A[1]  
+P(x+3, y+3)*A[2] +P(x+4, y+3)*A[3]; } 
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