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ABSTRACT
We present global routing optimization methods which are
not based on rip-up and re-route framework. In particular,
the routing optimization is based on trunk decomposition
[13] of the global routing. In this framework, the route of a
net is decomposed into sets of wiring segments. By viewing
a wiring segment as an “atomic object” of perturbation, we
can efficiently evaluate the effect of routing tree perturba-
tion. We propose two complementary routing optimization
methods, namely segment partitioning and segment migra-
tion. These targeted optimizers can improve congestion re-
lated routing objectives by quickly shuffling wiring segments
across different routing channels. Our routing approach pro-
duces better results compared to rip-up and re-route method
based router Labyrinth [14] with average total overflow re-
duction of more than 88% while taking only 61% of runtime
required by ripup and reroute phase of Labyrinth. When ap-
plied to the output of Labyrinth, the approach, on average,
reduces the total overflow by more than 97% with complete
overflow elimination for four circuits, while requiring addi-
tional runtime of just 33%. On a larger benchmark suite,
the total overflow reduction of more than 86% is obtained,
with complete overflow elimination for eight circuits, while
requiring only 19% additional runtime.

1. INTRODUCTION
Routing is a crucial part of the VLSI design process and

this is increasingly true in modern designs in which design
closure and total design time are impacted by the effective-
ness and speed of the routing engine. In the nanometer de-
signs, variability and manufacturability related issues have
posed new challenges in routing domain, making it even
more critical for achieving closure. In a traditional design
flow, the routing problem is divided in two phases: global
routing and detailed routing. The focus of this paper is on
the global routing phase in which “rough” routes for nets
are determined so as to manage the routing demand over
the chip (given the guidelines of the global routing, detailed
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routing determines exact routes). During global routing,
the routing region is typically divided into a 2-D array of
tiles. A routing graph is constructed in which each node
corresponds to a routing tile and each edge corresponds to a
routing channel connecting two adjacent tiles. Each of these
tiles has physical dimensions which determines the capacity
of edges incident on the tile – i.e., maximum number of wires
which may flow through an edge. The simplest version of
the global routing problem then is to find a routing tree in
the routing graph for each net in the design such that no
edge capacity is exceeded. Optimization variants might at-
tempt to minimize the maximum edge usage (or density) or
to minimize the total overflow (violation of edge capacities).

The techniques employed for solving routing problems can
broadly be classified into the following categories: ripup and
reroute based techniques, multicommodity flow based tech-
niques and hierarchical/multilevel techniques. Ripup and
reroute techniques are essentially sequential routing meth-
ods in which each net is routed in some order while tak-
ing into account the demand contribution from nets already
routed [16], [14], [10], [8]. For individual net routing, a num-
ber of heuristic methods have been proposed, e.g. maze rout-
ing [15] or Steiner tree construction heuristics [12]. These
techniques differ from each other in terms of the objective
to be optimized and the criteria for the selection of the nets
to be ripped up and rerouted.

To the best of our knowledge, the majority of industry
tools are based, at least in part, on the general concept of
ripup and reroute. Thus, the idea has stood the test of time.
Nevertheless, there are some obvious issues associated with
the approach – the results can be sensitive to net ordering;
defining “edge cost” functions in the best way is a techni-
cal challenge; runtime tends to be substantial, particularly
as tile-size is decreased (to better model what the detailed
router sees) and as the design size increases.

A second class of techniques is based on multicommod-
ity flow [17] [6] [2] and can model the simultaneous rout-
ing of multiple nets. The main idea here is to model nets
as different commodities that flow through the network of
routing resource graph. In general the linear programming
formulation will result in fractional flows corresponding to
nets “partially” using certain routing resources. Therefore,
a randomized rounding procedure is used to discretize the
solution. Since solving the LP itself is a computationally
intensive task, Albrecht [2] developed methods to approxi-
mate the LP solution with provable error bounds. To deal
efficiently with multi-pin nets (i.e., to avoid enumerating
all possible Steiner trees), a limited number of candidate
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Steiner trees are usually constructed for each net and LP re-
laxation of the flow problem (or an approximation thereof)
is solved, followed of course by randomized rounding. Ripup
and reroute can be used at the end to further optimize the
routing.

Hierarchical and multilevel techniques [4], [7] use, as the
name suggests, multilevel optimization approach to reduce
the complexity of the problem. Hierarchical techniques solve
the routing problem in top-down flow, while multilevel tech-
niques use combination of bottom-up and top-down flows.
In [7], the authors compute resource capacities in a bottom
up phase and start routing at the highest level using multi-
commodity flow based algorithm. During a top-down phase,
maze routing is used to refine the routes.

Contributions
The goal of this paper is to explore routing optimization
from different point of view and devise optimizers for this
alternative view. This may be complementary to the other
views of the solution space.

In particular, the view of the solution space we propose is
based on the trunk decomposition [13] of existing global rout-
ing structures (determined by any desired means) and then
perform congestion optimization by moving wiring segments
in the decomposition. Within this framework, we propose
a set of perturbation operators for optimizing routing con-
figuration of a net. We prove that the set of perturbation
operator is “complete.” In other words, with the perturba-
tion operators in this set, all global routing configurations
are reachable. Within trunk decomposition framework, we
propose two complementary optimizers. The first one exam-
ines vertical (horizontal) segments flowing through a pair of
tiles in adjacent columns (rows) in the routing grid. These
segments are partitioned between the two columns (rows)
to minimize congestion related objectives (details of these
objectives are important and discussed in section 3). Seg-
ment partitioning can simultaneously change the routing
topologies of multiple nets. The second optimizer is based
on greedy segment migration which allows segments to be
displaced greater distance.

Similar concepts have been employed in the iterative im-
provement of Steiner trees (e.g. [3], [11]). In [3], the authors
use the flexibility of the Steiner tree to flip the corners in
order to reduce the overflow. But in this case the topol-
ogy of the Steiner tree is never changed. In [11], a Steiner
tree is improved by including non-hannan points to reduce
the arrival time violation at sinks. The characteristics of
the Elmore delay function are used to efficiently reconnect
the sink with violation. Both these works, and several oth-
ers, target individual Steiner trees. Thus, the similarities
with our work is limited by the fact that we consider mod-
ification of Steiner trees of multiple nets at the same time.
Moreover, unlike [3], we allow the changes in the topology of
the original Steiner tree of nets. In [13], the authors intro-
duced a simultaneous placement and routing optimization
by capturing placement and routing structures in a unified
combinatorial framework. But the dynamic programming
formulation proposed has stringent requirements on nature
of the objective functions it can optimize and it is difficult
to implement and has relatively high computational com-
plexity.

The rest of the paper is organized as follows: section 2
discusses the preliminaries. We also discuss trunk decom-

position [13] for the sake of completeness in this section,
followed by the partitioning algorithm for the routing seg-
ments in section 3. Another simple and fast greedy heuristic
to reduce routing congestion is discussed in section 4. The
experimental set up and the results are discussed in section
5 and we draw some conclusions in section 6.

2. PRELIMINARIES
A netlist is a set of logic gates or cells (C) and a set of

interconnections (N), also known as nets. The placement
phase determines the exact location of each cell c ∈ C. Dur-
ing global routing the entire chip is divided into routing
tiles and pin locations are mapped onto this routing grid
in a straightforward way. A routing graph G = (V, E) is
then constructed where each vertex v ∈ V corresponds to
a global routing tile and an edge (u, v) ∈ E exists between
the vertices u and v, if and only if the corresponding global
routing tiles are adjacent. A global router must find a re-
alization of each net as a Steiner tree in G connecting all
of the vertices (tiles) belonging to the net. Each routing
edge e = (u, v) ∈ E has a capacity c(e) determined by the
technology and the granularity of the global routing grid;
it models how many wires are available between the corre-
sponding global routing tiles.

Given a routing solution in which all nets are realized,
the number of wires actually passing through an edge e is
known as the demand on the edge e and is denoted as d(e).
If the number of nets passing through an edge is larger than
the capacity of the edge, the edge is denoted as an overflow-
ing edge. The amount of overflow on an edge (oflow(e)) is
defined as follows:

oflow(e) =

j
0 if d(e) ≤ c(e);
d(e) − c(e) otherwise.

Total overflow (OF) is the sum of the overflow over all the
edges in the routing graph (OF =

P
e∈E oflow(e)). Total

overflow has been used as an indicator of the quality of a
routing solution: generally, the higher the total overflow, the
less likely detailed routing will complete. Another important
metric of a routing solution is the maximum overflow, de-
fined as OFmax = max∀e∈E{oflow(e)}. The maximum rout-
ing density or demand is defined as Dmax = max∀e∈E{d(e)},
while number of edges at Dmax is nMax= |{e | d(e) =
Dmax}|. The total routed wirelength of a routing is defined
as WL =

P
∀e∈E len(e)× d(e), where len(e) is the length of

the edge e ∈ E. Traditionally, routing cost is some combi-
nation of total overflow, wirelength and maximum overflow.

Trunk Decomposition
In [13], the authors proposed a different way to represent
the routing information for a net, called trunk decomposi-
tion. Unlike traditional routing approaches, in which the
“atomic” object of perturbation is a net, in this framework,
individual wiring segments are the atomic objects of per-
turbation. This allows us to view the routing space from a
different point of view.

In this framework, the global route of a net is decomposed
and represented with the sets of two entities:

• Horizontal Trunk: A horizontal trunk is a continu-
ous horizontal wire of a routing tree. It can connect to
multiple cells and vertical segments. It can also have
a zero length.
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(a) Initial trunk decomposition (b) Effect of moving segment v1

(c) Effect of moving trunk t2 (d) Effect of moving segment v3

Figure 1: Trunk decomposition of global route and
effect of segment/trunk movement.

• Vertical Segment: A vertical segment is a contin-
uous vertical wire of a routing tree. It can connect
to multiple horizontal trunks and cells. If the vertical
segment is not connected to any cell, it is called a free
segment.

Fig. 1 (a) shows global route of a five-pin net. The global
route is decomposed into two sets: a set of vertical seg-
ments {v1, v2} and a set of horizontal trunks: {t1, t2, t3}.
These sets together exactly define the global route of a net.
It should be noted that the trunk decomposition shown in
Fig. 1 (a) is only one of many such decomposition possible
for a given global route of the net.

The main feature of trunk decomposition is that it allows
us to view the routing solution space differently. We de-
scribe a set of perturbation operators, which can be used
to optimize the routing configuration of a net in this frame-
work. Although we describe the perturbation operators for
the vertical segments, similar moves can also be defined for
the horizontal trunks. The perturbation set includes:

• Displacement: Each free vertical segment can be dis-
placed in horizontal direction, with possible contrac-
tion or elongation of the connected trunks.

• Break: We can “break” a vertical segment along its
length and create two vertical segments by inserting a
zero length trunk at their meeting point. This oper-
ation is useful in creating free vertical segments from
connected ones.

• Merge: Two or more overlapping segments passing
through same column or channel can be merged to-
gether to create a single vertical segment.

• Split: A vertical segment can be “split” by replicat-
ing a part of it and possibly introducing a zero length
trunk at one of the ends connecting the two segments.
As a result of this move, there will be two (or possi-
bly more) overlapping segments in the same routing
channel.

We can always insert zero length trunk where a vertical
segment connects a cell so that we can make the vertical
segment free. By applying one of these operators, we can
change the routing configuration of a net. Fig. 1 (b) shows
the effect of displacing segment v1 left by one column after
inserting zero length trunk at connection with cell c2. By
doing so, trunk t1 gets contracted, while trunks t2 and t4 get
elongated. This move illustrates the fact that even though
we displace a vertical segment, there are implications in the
horizontal routing configuration as well. Fig. 1 (c) shows
the effect of displacing trunk t2, after introduces additional
vertical segment v3 and trunk t2 gets merged with trunk
t4. Finally Fig. 1 (d) shows the effect of moving vertical
segment v3 which again requires insertion of an additional
trunk. Fig. 1 demonstrates the fact that with the perturba-
tion operators we can essentially change the routing topol-
ogy of a net. Similarly, Fig. 2 (b) shows application of break
and split operator on segment v1.

Some observations about the trunk decomposition and the
perturbation set are in order:

• The atomic objects in a trunk decomposition are indi-
vidual wiring segments rather than entire nets.

• Individual moves or perturbation operators are quite
simple and can be evaluated quickly. In contrast, rerout-
ing an entire net often employs an expensive maze run-
ning while the ultimate perturbation of the solution
resulting from the reroute may be small.

• Moves can result in perturbation of topological struc-
ture of Steiner trees.

• All the operators described above are reversible.

A desirable property of any set of perturbation operators
is the ability to cover the entire search space, i.e. all pairs of
configurations are mutually reachable by some sequence of
perturbations. The following theorem captures some of the
generality of the perturbations.

Theorem 2.1. The operators defined in the move-set above
are sufficient to transform any valid routing configuration of
a net to any other valid configuration. (In this sense, the
perturbation set is complete.)

The proof of the theorem is straight forward and relies
on the fact that all the operators are reversible. We give
general idea of the proof here. For a given placement of
pins of a net, let’s define a canonical routing configuration
Γ. Fig. 2 (a) shows the canonical configuration for the net in
Fig. 1. In the canonical routing configuration, there is only
one vertical segment aligned with the left most pin on the
net. All the other pins connect to this segment by means
of a horizontal trunk, if necessary. We can transform any
routing configuration (γ1) to the canonical configuration by
moving all the vertical segments so that they are aligned
with the left most pin and perform necessary merging at
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(a) Canonical form for routing shown
in Fig. 1 (a)

(b) Splitting vertical segment v1. This can
give configuration in Fig. 1 (d) after displacement

of vertical segments.

Figure 2: Transformation from canonical form.

that point to generate a single vertical segment. As the
perturbation operators are reversible, we can revert back
to configuration γ1 from Γ. Similarly, for any other valid
routing configuration γ2, the same can be applied. So we
have following transformation: γ1 → Γ → γ2. As γ1 and
γ2 are arbitrarily chosen, we can say that any valid routing
configuration can be transformed to any other valid routing
configuration.

Fig. 2 shows how we can move from the canonical config-
uration (a) to the configuration shown in Fig. 1 (d). How-
ever, it should be noted that going through the canonical
configuration may not be the best way to reach the other
configuration.

3. SEGMENT PARTITIONING
In this section, we introduce an optimization technique

that modifies the routing configuration of multiple nets si-
multaneously by employing some of the perturbation oper-
ators described in the previous section.

Let’s consider the routing configuration shown in Fig. 3
(a), which is 2x2 routing subgrid. There are 12 routing edges
shown in the figure, with two congested edges (one in each
direction). Fig. 3 (b) shows the modified configuration in
which segments v1 and v3 swap their positions. This results
in merging on v1 and v2. While trunks elongate on the
top half of the grid, the density in the horizontal density in
lower half is reduced. This example illustrates the effect of
simultaneous perturbation of multiple nets.

(a) Initial Configuration.

(b) As a result of displacement, v1 and v3 swap channels.
So v1 and v2 can be merged and overflow in both

congested channels can be improved in both directions.

Figure 3: Illustration of a routing instance in a 2× 2
sub-grid. There are total of 12 routing edges in the
figure, out of which 2 are congested.

The example discussed above motivates the idea of devel-
oping a segment-shuffling technique to improve routing con-
gestion. Segment partitioning, based on the idea of general
partitioning, can shuffle the segments in neighboring chan-
nels efficiently. In the partitioning problem, we are given a
set of entities and the goal is to partition this set into two
disjoint subsets such that some cost function is optimized.
Usually, there is also a balance constraint on the size of each
subset. In the case of routing optimization, the idea is to
choose segments from neighboring channels (by row or by
column) and find new channel assignment of these segments
so that some cost function is optimized.

We now describe the details of the partitioning algorithm.
For the sake of simplicity, we only describe the algorithm
with respect to vertical segment partitioning, however, it
should be noted that the ideas are also valid for the hori-
zontal trunk partitioning problem. Our partitioning method
is based on the FM partitioning method [9]. FM partition-
ing is a method for graph partitioning to minimize cut-size.
It starts with an initial partitioning of the graph and iter-
atively makes best “move” to improve current partitioning
until all vertices are moved exactly once. During this pro-
cess, it also keeps track of the best solution obtained. At the
end all the moves made after the best solution was achieved
are “undone.” This process is called one pass of the algo-
rithm, and additional passes are invoked until there is no
improvement in the solution quality.

The segment partitioning method also works pass by pass.
We choose certain number of vertical segments passing through
neighboring routing channels. This assignment acts as the
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Algorithm Segment Partition Pass:
Input: A, B : Initial Segment Partitions
Output: A, B: Modified Segment Partitions

1 unlockAllSegments
2 moveNum ← 1
3 bestMoveNum ← 0
4 bestCost ←∞
5 Loop
6 a← minCostSegmentA2B
7 costa ← costA2B(a)
8 b← minCostSegmentB2A
9 costb ← costB2A(b)

10 If costa < costb Then
11 moveA2B(a)
12 lockSegment(a)
13 If costa < bestCost Then
14 bestCost ← costa
15 bestMoveNum ← moveNum
16 End If
17 Else
18 moveB2A(b)
19 lockSegment(b)
20 If costb < bestCost Then
21 bestCost ← costb
22 bestMoveNum ← moveNum
23 End If
24 End If
25 moveNum ← moveNum + 1
26 Until All segments are locked
27 undoMoves(bestMoveNum)

Figure 4: Single pass of segment partitioning algo-
rithm.

initial partitioning. In each pass, each vertical segment
changes partition exactly once. The details of the each
pass of partitioning is shown in Fig. 4. Each pass starts
by unlocking all the segments taking part in partitioning
(procedure unlockAllSegments). During the pass, we locate
the best unlocked segment to move (procedures minCostSeg-
mentA2B and minCostSegmentB2A). Once we find the best
segment to move, we make the move (procedures moveA2B
and moveB2A) and lock the segment for the rest of the pass
(procedure lockSegment). During the pass, we also keep
track of the sequence of moves leading up to the best so-
lution. At the end, when all segments are moved once, we
“undo” all the moves past the best solution (procedure undo-
Moves). This completes one pass. We repeat this procedure
until there is no improvement in the solution quality.

3.1 Cost Objective
In this subsection we describe the cost objective optimized

during segment partitioning. Usually, the total overflow of a
global routing solution is used as a metric for the quality of
the solution. We employ lexicographic combination of the
maximum overflow (OFmax), the total overflow (OF) and
the routed wirelength (WL) as the cost objective:

< OFmax,OF,WL >

Having described the segment partitioning algorithm for
vertical segments, it is important to emphasize that the cost
computation involves contribution for both directions. The
move of a segment from one partition to the other is an
application of displacement operator from the perturbation
set described in the previous section. So it has implication
not only in the vertical direction, but also in the horizontal
direction, since the connected trunks may get elongated or
contracted by this displacement. Similarly, for partitioning

of horizontal trunks, there are cost implications in the or-
thogonal direction. Also, when segments move in the routing
channels, they can potentially overlap with other segments
of the same nets in the some routing channels, this helps
reduce the overflow.

It should also be noted that although we use the cost
objective described here, the method is flexible enough to
accommodate wide variety of cost components, e.g. via den-
sity.

3.2 Complexity Analysis
In this subsection, we analyze the complexity of one pass

of the segment partitioning algorithm. The loop starting on
line 5 of Fig. 4, goes over each vertical segment taking part
in the partitioning process exactly once. So if there are nseg

number of segments taking part in the partitioning process,
the number of iterations of the loop are O(nseg). In order to
determine best segment to move, a linear search method is
used. If H is the average height of a segment, it takes O(H)
to compute the vertical component of the cost. If degree
is the average number of trunks connecting a segment, it
takes O(degree) time to compute horizontal component of
the cost. Hence, after cost computation and linear search,
the time required to find the best vertical segment to move
is: O(nseg × (H + degree)). So overall complexity of each
pass of partitioning is:

O(n2
seg × (H + degree))

4. SEGMENT MIGRATION
In this section, we describe the second optimization method

called segment migration. This method is essentially a greedy
local search method. The idea is very simple: choose a seg-
ment passing through a congested channel and find an opti-
mal location for the segment in a window around its current
location. If x is the current location of the vertical segment,
and window size is δ, we search for its best location in win-
dow [x − δ, x + δ], with a caveat that the window span is
always within the chip boundaries. It is easy to deduce that
the complexity of this optimizer is less compared to segment
migration. Moreover, it can cover parts of the solution space
not covered by segment partitioning. But segment migra-
tion can change routing topology of only one net at a time.
So both the optimizers are complementary in nature.

Segment migration can be applied to wiring segments in
both the directions. When the cost of displacement of wiring
segment in one direction is computed, it also includes the
component of the cost in the orthogonal direction as well.

In the context of the perturbation set described in the
Section 2, this method employs displacement as the main
perturbation operator with merge as a post-processing op-
erator. Although, it should be noted that the cost com-
putation takes into account the effect of overlapping wiring
segments in same channel. It can also use break and split
pre-processing operators to further enhance solution space
exploration.

5. EXPERIMENTS AND ANALYSIS
We have implemented segment partitioning and segment

migration methods in C++. We have conducted experi-
ments on 2.4 GHz Pentium 4 Linux workstation with 1 GB
RAM. The standard IBM placement benchmarks are used
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Figure 5: Experimental set up. There are four
stages in experiments and two test suites. R & R
stands for ripup and reroute.

Table 1: Characteristics of the benchmark circuits
used for experiments.

Circuit Vcap Hcap Grid
ibm01 12 14 64x64
ibm02 22 34 80x64
ibm03 20 30 80x64
ibm04 20 23 96x64
ibm05 42 63 128x64
ibm06 20 33 128x64
ibm07 21 36 192x64
ibm08 21 32 192x64
ibm09 14 28 256x64
ibm10 27 40 256x64

ibm11 22 32 128x128
ibm12 33 43 128x128
ibm13 20 32 196x128
ibm14 29 39 256x128
ibm15 38 48 256x128
ibm16 48 56 256x128
ibm17 49 69 256x128
ibm18 45 55 256x128

as the test suite. The general experimental set up is shown
in Fig. 5. The set up revolves around Labyrinth router [1].
Labyrinth is a ripup and reroute (R & R) method based
router. It also has an option of using pattern routing for
some nets. The first stage of Labyrinth generates initial
routing for each net, using either maze routing or pattern
routing. This stage is denoted as A in the experimental flow.
Then it starts R & R phase, in which nets passing through
overflowing edges are ripped up and rerouted. This stage
is denoted as B in the experimental set up. In stage C of
the flow, we apply segment optimization, i.e. segment par-
titioning and segment migration, on output of the stage B,
while in stage D, we apply segment optimization on output
of stage A.

In general, segment partitioning and segment migration,
on their own produce good results. Segment partitioning
can reduce the overflow quickly and it ultimately saturates.
While segment migration is fast, it takes comparatively more
invocations and its search space is slightly more global. Af-
ter trying out with different order of applications of these
two optimizers, it is observed that, usually, segment migra-
tion followed by segment partitioning yields better results.
In the rest of the discussion, segment optimization stage in-
cludes migration followed by partitioning followed by two
more passes of migration.

Now we shall describe the detailed results of experiments
on test suite I and II.

Table 2: Change in solution quality of stage D and
of stage C over output of Chi router. Runtime com-
parison is not included because the router was not
available. For ibm05 circuit, no overflow result is
reported by Chi.

Circuit Chi Output Stage D change Stage C change
OF WL OF% WL% OF% WL%

ibm01 189 64355 -40.74 10.22 -78.31 18.39
ibm02 66 175368 -40.91 9.20 -86.36 17.04
ibm03 7 149695 85.71 8.59 -85.71 23.32
ibm04 411 170440 0.73 8.02 -68.37 13.41
ibm06 16 184700 -100.00 70.02 -93.75 84.44
ibm07 251 373739 -94.82 16.36 -100.00 16.36
ibm08 71 410507 -42.25 8.60 -100.00 19.69
ibm09 35 420691 -54.29 9.04 -100.00 13.80
ibm10 116 589508 -96.55 8.55 -100.00 14.46
Average -42.57 16.51 -90.28 24.55

5.1 Test Suite I
The test suite I is based on ISPD98 IBM placement bench-

marks with the cell placements and the routing parameters
given by [1]. It has first 10 IBM benchmarks, ibm01 to
ibm10. The routing parameters of the test suite are given
in the first part of Table 1. As recommended in [10], we run
Labyrinth (both stages A and B) by routing 70% of smaller
nets using pattern routing.

The first part of Table 3 shows the output of stages B, D
and C from Fig. 5. The improvement by segment optimiza-
tion over output of stage B of Labyrinth, for test suite I is
shown in the second part of Table 3. The results of Stage
D reduce the maximum overflow by more than 2 tracks on
average with the maximum reduction of 5 tracks for circuit
ibm08. The total overflow reduction of more than 88% is
obtained on average with maximum reduction of 100% for
ibm06 circuit. The wirelength output of this stage is always
better than Labyrinth phase B. The maximum wirelength
reduction of more than 7% is obtained for circuit ibm01.
For runtime comparison, runtime of stage B of Labyrinth is
taken as normalizing factor. So on average, stage D takes
about 61% of time taken by R & R phase of Labyrinth. Ap-
plication of segment optimization on the output of Labyrinth
stage B, yields even better results, with complete overflow
elimination for four of the circuits and average total over-
flow reduction of 97%. The average reduction in maximum
overflow for stage C is more than 3 tracks with maximum
reduction of 7 tracks for circuit ibm08. The wirelength
results are always better compared to stage B output as
well. For runtime comparison, we take combined runtime of
Labyrinth stage A and stage B as normalizing factor. So
the improvement in the solution quality, during stage C is
obtained with 33% additional runtime over and above total
runtime of Labyrinth router.

Table 2 shows the comparison of the results of stages D
and C with Chi router [10]. Since we did not have access to
the router itself, we do not provide runtime comparison here.
Moreover, the maximum overflow results were not reported
in [10], so that is also excluded from the table. Both stages
D and C produce good results in terms of total overflow
reduction. On average, the total overflow reduction of more
than 42% is obtained at the end of stage C, while stage D
shows more than 90% reduction in the same. However, these
stages do rely on input from Labyrinth, which tends to have
larger wirelength. And hence, the wirelength of Chi router
is better than the wirelength at the end of stage C and stage

477



Table 3: Performance of stage B, D and C of the experimental set up on the test suite I.

Circuit
Labyrinth stage B Segment Optimization stage D Segment Optimization stage C

OFmax OF WL Time(sec) OFmax OF WL Time(sec) OFmax OF WL Time(sec)
Part Mig Part Mig

ibm01 3 432 76845 21.4 3 112 70932 11.78 28.78 2 41 76191 8.28 19.18
ibm02 6 670 206317 52.66 2 39 191504 16.83 20.26 1 9 205251 13.47 16.96
ibm03 3 215 185222 51.92 1 13 162555 12.58 17.02 1 1 184604 10.87 11.01
ibm04 5 889 194086 93.23 4 414 184107 23.37 42.45 3 130 193300 19.69 33.07
ibm06 5 515 341466 68.08 0 0 314036 8.91 5.96 1 1 340658 20.77 19.55
ibm07 3 259 435181 125.62 1 13 434889 23.02 24.36 0 0 434889 0.14 6.08
ibm08 7 773 492487 205.26 2 41 445804 35.59 42.25 0 0 491321 26.9 9.52
ibm09 3 412 479413 173.63 1 16 458708 25.06 26.16 0 0 478729 25.83 7.64
ibm10 3 407 675577 243.95 1 4 639936 38.37 36.77 0 0 674745 6.13 10.99

Circuit Stage D change Stage C change
OFmax OF% WL% Timea OFmax OF% WL% Timeb

ibm01 0 -74.07 -7.69 1.90 -1 -90.51 -0.85 1.11
ibm02 -4 -94.18 -0.07 0.70 -5 -98.66 -0.52 0.46
ibm03 -2 -93.95 -0.12 0.57 -2 -99.53 -0.33 0.36
ibm04 -1 -53.43 -0.05 0.71 -2 -85.38 -0.40 0.50
ibm06 -5 -100.00 -0.08 0.22 -4 -99.81 -0.24 0.32
ibm07 -2 -94.98 0.00 0.38 -3 -100.00 -0.07 0.02
ibm08 -5 -94.70 -0.09 0.38 -7 -100.00 -0.24 0.11
ibm09 -2 -96.12 -0.04 0.29 -3 -100.00 -0.14 0.10
ibm10 -2 -99.02 -0.05 0.31 -3 -100.00 -0.12 0.03

Average -2.56 -88.94 -0.91 0.61 -3.33 -97.10 -0.32 0.33

aTime = TD/TB
bTime = TC/(TA + TB)

D1.

5.2 Test Suite II
In order to test the scalability of the approach, more ex-

periments are needed with larger circuits in the IBM place-
ment benchmarks. Hence, we generated additional set of
benchmarks, called suite II for further experiments. The
details of the routing parameters of these benchmarks are
shown in Table 1. For first ten benchmarks, we have iden-
tical routing parameters with suite I. For additional eight
benchmarks, we generated routing grids such that there are
on average 5-6 cells per routing tile. The placements for
these benchmarks are obtained using Capo (version 9.3) [5]
placement tool. Again, the experimental set up is same as
the one described in Fig. 5.

The first part of Table 4 shows the performance of stages
B, D and C of the experimental set up. In this case, we
compare the results of D and C stages with the result from
stage B in the second part of the Table 4. The results of
stage D show an average reduction of more than 3 tracks
in maximum overflow with maximum reduction of 10 tracks
for ibm14 circuit. The average reduction in total overflow
of more than 75% is observed, with complete overflow elim-
ination for four circuits. The runtime of stage D is less
than 60% of runtime for stage B of Labyrinth. The results
of stage C looks even better. For eight circuits, the total
overflow is reduced to zero with average reduction of more
than 86%. The runtime of this stage is compared against
the combined runtime of stages A and B of Labyrinth. So
stage C takes about 19% of additional runtime to obtain its
results.

6. CONCLUSION
We have presented a set of complementary routing opti-

mizers within the framework of trunk decomposition. Per-
turbation operators from a complete move-set are used for
routing optimization. The application of these methods on

1We intend to do further analysis with alternate initial
router.

two benchmarks suite shows promising improvements in to-
tal and maximum overflow in relatively quick time.

Ongoing work includes devising new methods for generat-
ing better initial routing results, improving runtime and fur-
ther enhancement of the techniques with applications other
interesting areas, such as design for manufacturability. The
implementation of the techniques is right now in beta phase
and will eventually be made available to the CAD commu-
nity for further research.
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