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ABSTRACT
Temperature monitoring using thermal sensors is an essential tool 
for evaluating the thermal behavior and sustaining the reliable 
operation in high-performance and high-power systems. With 
current technology scaling and integration trends timely and 
accurate detection of localized heating will be evermore important. 
In this work, we address the creation of a resource efficient sensor 
infrastructure for computing systems that are of regular nature, 
such as logic array-based computing platforms. We propose 
algorithms to embed thermal sensors into a regular structure to 
minimize the number of sensors and determine sensor locations 
required to maintain a given accuracy in temperature sensing for a 
given design. Our algorithms are tailored for minimal usage of 
thermal sensors to suit a variety of architectural conditions. For 
programmable logic arrays the highly application-specific usage of 
the hardware resources leads to unpredictable thermal profiles. As 
a result, post-manufacture instantiation of thermal sensors is 
desired, which in turn demands the use of native hardware 
resources, which can be scarce. We demonstrate that using our 
techniques the number of sensors required to monitor a set of 
hotspots is reduced by 75% on an average, across different sizes of 
logic arrays for different hotspot distributions compared to a 
uniform distribution of sensors throughout the fabrics.

Categories and Subject Descriptors: J.6 [Computer Applications]: 
Computer-aided Engineering (CAD):

General Terms: Algorithms, Measurement, Experimentation.

Keywords: Temperature, Sensor, Allocation, Placement. 

1. INTRODUCTION 
Continuous technology scaling has enabled high logic densities on 
integrated circuits. FPGA devices [1], [2] are among the first to use 
the 90nm process. Xilinx and IBM have a roadmap to produce 
chips at 65 nm. Increase in logic density leads to higher power 
density, which results in high die temperature. For commercial 
grade FPGAs the maximum die temperature without performance 
degradation is reported as 80 C and the absolute maximum 
temperature is 125 C [3]. An average design mapped onto Virtex-E 
with 90% device utilization could lead to a die temperature that is 
50 C above ambient temperature. Considering the temperature of 

the case to be 40 C, the die temperature would be 90 C in still air 
and with a fan it would drop to 75 C [3]. Preventive measures for 
convective cooling (such as large heat sinks) or air-cooling (such as 
fans) may not be feasible to deploy in certain embedded 
applications due to size constraints. Therefore, the operating 
conditions can be expected to remain well above 75 C.
High temperature has adverse effects on switching speed of 
transistors, resistance of interconnects and reliability. Therefore, 
thermal monitoring is vital in understanding the thermal behavior 
in a system and providing directives for run-time preventive 
measures such as clock throttling. Successful realization of the 
latter has been demonstrated for microprocessors [4]. Limited 
versions of dynamic thermal management can be done for FPGAs 
using their embedded diode to monitor the temperature. In the 
Virtex family external pins connect to the temperature-sensing 
diode creating a remote sensor. The interrupt from the sensor can 
be used to turn off the clock or turn on a fan [5].  
Thermal monitoring for FPGAs is relevant for two reasons: (a) 
FPGAs dissipate high power and their operating temperature can 
exceed the critical die temperature in the absence of elaborate 
cooling mechanisms. The high power dissipation trend and 
consequent thermal stress is going to become more severe for 
technology nodes at 65nm and below. (b) FPGAs are often used for 
rapid prototyping and emulation. Gathering thermal data from the 
logic array is important to characterize the mapped application. In 
this paper, we address the problem of allocating and placing 
thermal sensors for FPGAs, where the following architecture-
specific constraints exist: 
- Reasonably accurate profiling information about the expected 
thermal gradients on the system can only be obtained after the 
system has been manufactured and the particular application, 
which will utilize the device, is known. Therefore, it is not 
practical to embed sensors into the system at manufacture time. 
- If the thermal sensors will be inserted at the post-manufacture 
stage they can only be generated using the native resources of the 
system, i.e. configurable logic blocks. 
- Collection and interpretation of data supplied by the thermal 
sensors will be interleaved with computation.  
The exact utilization of programmable components and resulting 
physical factors such as power and temperature are not known a 
priori, since the same FPGA device can be programmed to perform 
various tasks. The Configurable Logic Blocks (CLBs) can be 
occupied or unoccupied depending on the particular application. 
The power distribution and power density observed on the same 
FPGA device can be different for two different applications. As a 
result, locations of hotspots are application dependent. Moreover 
modern FPGAs contain embedded DSP blocks and microprocessor 
cores. These embedded cores can either remain unused or exhibit 
localized heating if they are utilized by the application. There can 
be multiple hotspots in the FPGA due to the uneven activity at 
different parts of the homogenous logic array and stripes of 
embedded cores. It is difficult to determine locations for thermal 
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sensing at the time of device fabrication. Also in presence of 
multiple hotspots, a fixed single thermal sensor is a poor 
representation of the die temperature. Moreover, since the thermal 
characteristics of the FPGA will greatly depend on the application, 
thermal monitoring has to be done using native resources only. 
Hence, placing thermal sensors during manufacturing of the 
reconfigurable device will not be efficient. 
Programmability presents a unique opportunity for embedding 
thermal sensors into an application immediately before mapping it 
onto the target device. Once the application to be mapped is 
determined, the candidate hotspot locations can be identified and 
sensors can be instantiated using unoccupied reconfigurable logic 
on the FPGA device [6]. Ring oscillators are used for thermal 
monitoring and can be implemented on all FPGA architectures [7].
One alternative is to embed thermal diodes on the device. As we 
have argued, it will not be possible to determine the best locations 
to insert thermal diodes during manufacturing since the same 
device can be used for widely different applications. Moreover, 
ring oscillators are better than thermal diodes because of their fully 
digital output and more linear characteristics [6, 7]. However, static 
placement of ring oscillator-based sensors requires significant 
amount of resources and incurs communication overhead to read 
back values from sensors. One technique to circumvent the 
resource overhead is to perform dynamic reconfiguration to insert 
sensors, take readings, and then vacate the resources occupied by 
the sensors for the use of the application [7]. However, for a large 
number of sensors distributed across the device this will incur 
significant overhead, especially if thermal monitoring is used for 
taking preventive measures during the run-time of the application. 
Therefore, it is important to reduce the number of sensors and 
control their locations (while maintaining a given level of 
accuracy) in order to reduce the run-time reconfiguration and read 
back delay in such a scenario. Using less real estate to implement 
sensors may allow static placement. This also simplifies the 
microcontroller and peripheral design used to control such 
statically placed sensors. Hence, there is a need for a systematic 
approach to determine the minimal number and best locations of 
thermal sensors in such resource constrained devices. 
Given a design exhibiting a certain thermal profile, we propose an 
algorithm to minimize the number of sensors and determine their 
placement to monitor the hotspots within a given accuracy. Note 
that within the same application, number and location of hotspots 
may shift depending on the input behavior. In that case, multiple 
instances of the same application and their respective thermal maps 
would be superimposed to obtain the map of hotspots. We present 
an efficient Recursive Bisection algorithm to create clusters of 
hotspots. An initial rectangle bounding all hotspots is then 
recursively bisected into smaller rectangles until their perimeter 
bound hotspots can be covered by a sensor.  
Our specific contributions in this paper are as follows: 
- Propose a novel methodology for thermal monitoring for fine 

grain reconfigurable fabrics, 
- Formulate the problem of minimization of sensors required to 

monitor a given distribution of hotspots within a pre-defined 
error margin, 

- Develop Recursive Bisection algorithm to effectively 
minimize the number of sensors and determine their 
placement.  

The remainder of the paper is organized as follows: Section 2 gives 
an overview of the related work. In Section 3.2 we elaborate the 
paradigm for sensor placement in reconfigurable logic. We discuss 

our sensor placement algorithm in Section 3.2.4. Section 4 presents 
our results. We conclude with a summary in Section 5. 

2. RELATED WORK 
Veluswamy et al. [8] validated the thermal simulator HotSpot for 
FPGAs against readings taken with statically configured ring 
oscillators. Recently sensor placement for FPGAs have been 
proposed in [9, 10]. 
Our sensor placement technique requires some form of partitioning 
of the hotspots, which we achieve through our Recursive Bisection 
method. There are various techniques to generate clusters from a 
set of elements, such as the K-means clustering algorithm 
commonly used in data mining [11]. Clustering in the general sense 
mostly deals with abstract distance functions, which do not directly 
correspond to actual spatial distribution on the 2-D plane (or 3-D 
space). In the context of wireless sensor networks, coverage refers 
to the quality of surveillance [12]. In contrast our algorithm aims to 
determine both the number and the positions to deploy sensors to 
achieve a successful coverage. The Art Gallery Problem [13] is yet 
another type of coverage problem often encountered in sensor 
networks settings. Placing sensors for thermal monitoring is 
constrained by the range of the sensor in contrast to the “line of 
sight” of the observer in Art Gallery Problem.   
Partitioning by recursive bisection is widely applied in placement 
algorithms in physical design [14]. During recursive bisection for 
placement the objective is to minimize the net cut cost and 
elements can be moved across bisections in each iteration. In our 
problem, the elements of clusters i.e. hotspots have fixed locations. 
Using our Recursive Bisection technique we group the elements 
such that the enclosing rectangle around the hotspots satisfies a 
given dimensional constraint. The center of the cluster is the 
location of the sensor. The goodness of the solution is measured in 
terms of the number of sensors, which is equivalent to reducing the 
number of clusters obeying the dimensional constraint.

3. THERMAL SENSOR PLACEMENT 
In this section we discuss our minimal sensor placement paradigm.  

3.1 Thermal Sensors on Reconfigurable Fabric 
A widely used technique to implement thermal sensors on FPGAs 
(post-fabrication) is based on ring oscillators. Transistor switching 
speed is related to temperature. This property is used to measure 
temperature by sensing the output frequency of the ring oscillator. 
The sensor consists of an odd number of inverters connected in a 
chain and can be implemented in FPGAs using LUTs [8]. The 
buffered output of the oscillator is used to clock the capture 
counter, which specifies the oscillation frequency. The thermal 
sensors can be statically placed or dynamically inserted, operated 
and eliminated from the circuit using full or run-time 
reconfiguration using the configuration port capabilities in Xilinx 
technology [7].  

3.2 Minimal Sensor Placement 
Our algorithm minimizes the number of sensors and determines 
their placement to monitor a set of hotspots, where a range of 
sensitivity for the sensor technology is defined to achieve certain 
accuracy.  

3.2.1 Assumptions and Definitions 
We assume that the ring oscillator based thermal transducers will 
be used as sensors as described in Section 3.1. We refer to placing 
a regular array of such sensors within a fixed grid across the entire 
CLB array as the Grid-based placement. This is equivalent to the 
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Figure 2. Sensor at the center of
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logic array being partitioned into grids equal to the number of 
sensors and each sensor being placed at the center of the grid. The 
Grid-based placement is shown in Figure 1(a). For example Beudo 
et al. [15] used a 4 8 array of sensors to uniformly cover the 
XCV800HQ240-4C Virtex FPGA. The CLB array size for this 
device is 56 84. This corresponds to each sensor being placed in 
the center of a 14 11 CLB array. We refer to this as a single sensor 
covering a 14 11 CLB array. The temperature read by a sensor 
placed at the center of the coverage area is representative of the 
temperature of the entire coverage area. However, different points 
within the coverage area can be at different temperatures. The error 
in approximating the temperature of the coverage area by the 
temperature at its center is tolerable if it is below a given error 
margin T. The largest distance from the sensor at which the error 
in approximating the temperature by that of sensor is less than T
determines the range SR of the sensor. We define coverage area 
dimension CD as a function of range SR such that a rectangular area 
with {height, width}  CD centered on a sensor covers all hotspots 
within that area. Thus coverage area dimension CD = 2.SR.
Although this type of grid based sensor placement works 
reasonably well, the number of sensors required increases 
proportional to the CLB array size. To mitigate the problem of 
increasing sensor array size, we propose an effective approach, 
which will be described in the following. 

3.2.2 Overview 
The designer can perform thermal simulation on a set of 
applications and representative input data sets to obtain the map of 
potential hotspots. To effectively monitor this map with minimal 
resource overhead judicious selection of the number and position 
of sensors is necessary. Our algorithm solves this sensor placement 
problem by creating bounding rectangles around hotspots by 
Recursive Bisection. The sensors are placed at the center of such 
bounding rectangles. The sensor placement for a given set of 
hotspots is illustrated in Figure 1(b).

Table 1 shows the number of sensors required to monitor different 
logic arrays using Grid-based placement.  
Table 1. Number of sensors required for different array sizes 
using Grid-based placement vs. minimized number of sensors for 
Recursive Bisection (RB) covering up to 50 hotspots on these arrays. 

CLB Array 64 42 96 64 128 86 160 110 192 128

Sensors (Grid-Based) 18 40 72 114 160 

Sensors - RB for 50 Hotspots  8 19 20 24 30 

Using 2 slices per CLB a sensor takes 16 CLBs to implement and 
the sensor array occupies over 10% of the CLBs. Dynamically 
reconfiguring a large sensor array can be expensive in terms of 
reconfiguration time and read back from the sensor counter. We 
also show the number of sensors required to monitor up to 50 
randomly distributed hotspots in the same logic arrays in Table 1. 
Using our Recursive Bisection algorithm the number of sensors 

required for 128 86 and 192 128 CLB arrays is 20 and 30 
respectively as compared to placing a fixed 72 and 160 sensors 
using the Grid-based approach. 

3.2.3 Problem Formulation 
Given,
- a p×q array of configurable logic blocks 
- a set of hotspots H = {h1 (xh1, yh1), h2 (x h2, y h2), …, hk (x hk,
yhk)}, where (xhi, yhi) are coordinates associated with each hotspot 
- a sensor with associated maximum coverage area dimension CD

Our goal is to determine the minimum cardinality set of sensors S = 
{s1, s2, …, sn} and the position (xsi, ysi) of each sensor si  S such 
that:
- each hotspot hi is covered by some sensor sj, denoted by the one-
to-many relation sj  Hsj{hu, …, hv}, s.t. the minimum enclosing 
rectangle for each Hsj is at most of dimension CD on each side. 

3.2.4 Sensor Placement by Recursive Bisection 
Our goal is to minimize the number of sensors and determine their 
placement to cover a set of hotspots. Each sensor has a coverage 
area dimension CD. Sensor si can monitor hotspots that lie within 
the coverage area of height and width at most equal to CD. Our 
algorithm tries to create a set of rectangles each having their height 
and width at most CD containing a set of hotspots. The sensor is 
placed at the center of such a rectangle. We will show the actual 
region formed can be smaller than this dimension depending on the 
location of the hotspots that the sensor covers. That is why we refer 
to the shape of the region as a rectangle as opposed to a square of 
maximum dimensions of CD CD. Let us assume that a bounding 
rectangle R is created around five hotspots h1, h2, … h5. The sensor 
S is at the center of R. Let the distance of the hotspot h1 from the 
sensor be r1. Similarly the distances of other hotspots are denoted 
by r2, … r5. Since the sides of the bounding rectangle are at most 
CD, the maximum distance of any hotspot within R can be SR from 
S, if CD = 2.SR. This is shown Figure 2. 
The hotspots h1 and h5 are at the 
two corners and farthest from 
sensor S. r1= r5= SR in this case. 
The other hotspots are closer to 
S i.e. r2, 3, 4  SR. Thus placing 
the sensor at the center of the 
bounding rectangle of height 
and width of at most CD

guarantees that all hotspots 
within this rectangle are within 
the range of the sensor. 
The algorithm works by recursively creating a bounding rectangle 
Ri around hotspots and bisecting the rectangle along an edge until 
both height and width of Ri is less than or equal to CD. The number 
of sensors n corresponds to the number of rectangles Rp, …, Rq.
Each Ri has a list of hotspots LH

i that its perimeter covers. Two 
pairs of (x, y) coordinates can be used to represent Ri, which we 
denote by {(xleft

i, ybottom
i), (xright

i, ytop
i)}. The steps of the algorithm 

are illustrated in Figure 3(a) - (f).
First, our algorithm creates the smallest bounding rectangle R1

around all hotspots. R1 is then pushed back into a list, which we 
denote by LRec. If the height and/or width of RInit is greater than CD,
it is deleted from the list and is bisected along the edge determined 
by the Edge Selection procedure and the point of bisection is 
determined by the Bisection Point Selection. We will discuss the 
details of the selection mechanisms in the following sub-sections.

Sensor
Sensor

Hotspot

(a) (b)

Hotspot

Sensor
Sensor

Hotspot

(a) (b)

Hotspot

Figure 1. (a) Grid-based placement of sensors. (b) Minimal sensor
placement for a set of hotspots. The rectangular coverage area of
each sensor is covering four hotspots.
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After vertical bisection we would get two new rectangles R2{(xleft
1,

ybottom
1), (xbisect, ytop

1)} and R3{(xbisect, ybottom
1), (xright

1, ytop
1)}.

Similarly after horizontal bisection the resulting rectangles are 
R2{(xleft

1, ybottom
1), (xright

1, ybisect)} and R3{(xleft
1, ybisect), (xright

1,
ytop

1)}. The list of hotspots contained in R2 and R3 are updated. 
This is shown in Figure 3(b). Then, the new rectangles R2 and R3

are adjusted such that they form tight bounding rectangles around 
the contained hotspots (shown in Figure 3(c)). Now in the second 
stage of the algorithm, LRec has two bounding boxes. The next 
rectangle of the list is then examined if its sides are CD. If not, the 
rectangle is bisected, erased from the list and the bisected 
rectangles are pushed back into the list. If the height and width of 
the rectangle is within the coverage area dimension CD the current 
rectangle is unchanged and the next rectangle is checked. The 
algorithm continues until it reaches the end of the list at which 
point we have a set of rectangles which all satisfy the height and 
the width constraint ( CD). These steps are shown in Figure 3(d) - 
(f). As shown in Figure 3(f) the final list of rectangles are R4, R5,
R8, R9, R10, and R11. Let us represent the final list as LRec. There are 
six rectangles and hence, six sensors are necessary to cover all the 
hotspots. The centers of rectangles Ri' represent the positions of the 
sensors si'. The pseudo code of the algorithm is shown in Figure 4. 
During bisection two decisions can be made (i) select the edge to 
bisect along and (ii) decide the point through which the selected 
edge is bisected. We have developed techniques to make intelligent 
choices for both. The different edge and bisection point selection 
strategies are described in the next sections. 

Figure 3. Stages of the Recursive Bisection algorithm. 

3.2.5 Edge Selection for Bisection  
At each stage of the algorithm a rectangle is bisected if its height 
and/or width are CD. If both the height and the width are CD, the 
edge to bisect first can be selected in two ways. 
Longest Edge: The longest edge of the rectangle is selected. 
Look-Ahead: During bisection it is better to have the majority of 
the hotspots concentrated in one of the bisected rectangles rather 
than sparsely distributing hotspots in both bisections. Such a sparse 
distribution may lead to a higher number of sensors each covering 
fewer hotspots. The Look-ahead edge selection considers 
bisections in both vertical and horizontal directions. It identifies the 
number of hotspots that are left on either side of the bisection lines 
in both directions. The bisection direction, which leads to the 
largest majority of the hotspots to fall on the same side of the 
bisection is selected. During this comparison of which direction to 
pick for bisection, Look-ahead edge selection needs to use an 
anchor point to perform the cuts in either direction. The particular 

anchor point (which we refer to as the Bisection Point) will be 
determined based on the strategy chosen for the Bisection Point 
selection procedure. We will describe this in detail in the next 
section.

Minimal Sensor Placement Algorithm 
Input: Dimension (Rows, Cols) of the CLB Array           
            Set of hotspots H and positions of hotspots hi(xi, yi), hi H

            Coverage area dimension CD

Parameters: EdgeSelectType, BisectType 

1. Create initial bounding rectangle RInit for all the hotspots 
2. Create a list of bounding rectangles LRec

3. Push back RInit onto LRec

4. List iterator Literator = LRec.begin() 
5. While (Literator !=  LRec.end())  

a. Get Ri pointed by Literator

b. If (Checksides(Ri) = true) { Increment Literator; Continue;} 
c. Bisect(Ri, BisectType, EdgeSelectType) 
d. Assign hotspots of Ri to Ri1 and Ri2 to LH

i1 and LH
i2 respectively 

e. Create tight rectangles Ri1' (Ri2') containing LH
i1 (LH

i2)
f. Push back Ri1' and Ri2' into LRec

g. Delete Ri from LRec and Increment Literator

End while 
6. Size of the set of sensors S n = Size of LRec

7.     Position of si = center of ri, where si  S, ri  LRec, i  {1…n}

Output: Number and Position of a set of sensors which covers H

Figure 4. Sensor placement by Recursive Bisection. Depending on the 
EdgeSelectType parameter either Longest-edge or Look-ahead is 
selected. Depending on the BisectType either Balanced, Unbalanced or 
Neighbor-detect method is selected. 

3.2.6 Bisection Point Selection 
We present three procedures for selecting the bisection point.
Balanced: The center point of the edge is selected. 
Unbalanced: The edge of length l is bisected in ratio CD:(l CD).
This results in one of the rectangles (say Rl) having an edge equal 
to CD. It ensures that Rl will not be bisected along the current edge 
anymore and all rectangles are bisected a minimum number of 
times. This is shown in Figure 5(c).
However, unbalanced bisection makes early decisions as to the size 
of the rectangle affecting the final solution quality. An example is 
shown in Figure 6. The cluster of hotspots that can be covered by a 
single sensor is initially bisected during unbalanced bisection. This 
results in 3 sensors for balanced vs. 4 sensors for unbalanced 
bisection. To improve quality, unbalanced bisection is only used at 
later stages of the algorithm. Unbalanced bisection along an edge is 
allowed only when the other edge is CD.
Neighbor Detection: The quality of bisection for three different 
points is evaluated before the actual bisection. An edge can be 
represented by a pair of {start, end} points. Three different possible 
bisection points are considered {BLeft = (start  CD), BCenter = (start 

 end) /2, BRight = (end  CD)} out of which one is finally selected. 
For each bisection point, there will be two resulting rectangles {Rl1,

Rl2} and their respective hotspot lists {LH
l1, LH

l2}. Two hotspots in 
a list are neighbors if the Euclidean distance between them is less 
than or equal to CD and can possibly lie in the coverage area of a 
single sensor. For each hotspot list LH

l1 and LH
l2 we find the 

neighbor count and select the bisection point for which their sum of 
neighbor count is maximum. Hotspots that are neighbors have a 
higher probability of being covered by the same sensor. We refer to 
this strategy as bisection point selection by neighbor detection. 
For n hotspots, longest edge and look-ahead edge selection take 
constant and (n) time respectively. Balanced and Unbalanced 

(a) Initial Bounding Rectangle 
around all hotspots LRec = {R1}

(b) Bisecting R1

LRec = {}
(c) Tight fit bounding Rectangle

LRec = {R2, R3}

(d) Bisecting R2

LRec = {R3, R4, R5}

R1 R2 R3
R2

R3

R4

R5

R3

R4

R5

R6

R7

R4

R5

R8

R9

Sensor

R10

R11

(e) Bisecting R3

LRec = {R4, R5, R6, R7}
(f) Bisecting R6 and R7

LRec = {R4, R5, R8, R9 , R10, R11}

(a) Initial Bounding Rectangle 
around all hotspots LRec = {R1}

(b) Bisecting R1

LRec = {}
(c) Tight fit bounding Rectangle

LRec = {R2, R3}

(d) Bisecting R2

LRec = {R3, R4, R5}

R1 R2 R3
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Sensor
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(e) Bisecting R3
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(f) Bisecting R6 and R7

LRec = {R4, R5, R8, R9 , R10, R11}
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bisections take constant time and the Neighbor-detect bisection 
method takes (n2) time. The running time for the steps 5d and 5e 
(Figure 4) is (n). The steps in the while loop 5a - 5g take (n + 
(Edge select, Bisect)) time. In the worst case the while loop can run 
n times. For example the running time for Longest-edge Neighbor- 
detect sensor placement has a running time of (n3) vs. (n2) for 
Look-ahead Unbalanced. 

Figure 5. Two bisection alternatives. 

Figure 6. Illustrating problems with unbalanced bisection (a) Initial 
rectangle (b) Balanced bisection (c) Resulting 3 sensors (d) Unbalanced 
bisection (d) Resulting 4 sensors.

4. EXPERIMENTAL RESULTS 
In the following sections we first discuss our experimental setup 
and then our results.

4.1 Experimental Setup 
First, thermal simulation is performed on the set of applications to 
be mapped onto the logic array. Effective thermal simulators have 
been recently proposed [16, 17]. A set of hotspots to be monitored 
is identified.
Our approach is common in a profile driven paradigm. Similarly, 
power estimation (e.g. Power Model for VPR) based on 
representative input patterns is performed. An input should be 
sustained for several 100us to create a hotspot. With FPGA 
frequencies in the order of 100’s of MHz, if there are input patterns 
with such duration not captured, this means the designer missed a 
typical input behavior. We assume this should not happen. If a 
hotspot falls outside all coverage areas, the nearest sensor will still 
pick up the temperature trend of the logic, however error margin 
will degrade. 
The coverage area of the thermal sensor is then estimated. In 
previous work where regular Grid-based placement was proposed 
[15], a sensor is placed in the center of a 14 11 CLB array. In 
order to be able to make a comparison, we have derived the 
required coverage area dimension of a sensor from this placement. 
We set the largest CLB array size that the sensor can cover as a 
12 12 square. As a result we define the coverage area dimension of 
the sensor, CD as 12. The sensor is placed at the center of such a 
12 12 CLB array. Using our Recursive Bisection algorithm the 
number and locations of the thermal sensors are determined. The 
sensors can then be placed using run-time reconfiguration or 
embedded statically if the CLB utilization of the design has enough 
slack. The next section presents our experimental results. 

4.2 Results 
We generated two types of inputs to evaluate the effectiveness of 
our algorithm. Part of the input maps of hotspots were created by 
randomly assigning 5 to 100 hotspots on a given logic array. We 
also generated thermal profiles for MCNC benchmarks [18]. The 
netlist of CLBs was placed and routed using VPR [19]. Power 

Model [20] was used to calculate the power of each CLB and net, 
based on the switching activities at the nodes. The data from Power 
Model was used to perform thermal simulation using the thermal 
simulator HotSpot [16]. The hotspot distributions observed in those 
simulations were then used as input to our algorithm. 
For the random hotspot maps we used the following methodology. 
For each array size, we created hotspot maps containing 5 to 100 
hotspots in increments of 5. Note that for smaller array sizes the 
upper bound on the number of hotspots was less (e.g. 50 for the 
smallest array). Each of these configurations was repeated 10 times 
using different seeds, e.g. 5 hotspots were randomly distributed on 
an array in 10 different ways and similarly for all other 
configurations. The rationale behind this setup is to evaluate the 
sensitivity of our algorithm to a wide variation of inputs and design 
characteristics. These experiments help us evaluate a large 
spectrum of cases from large arrays with very few hotspots (such 
as 192X128 and 5 hotspots) to small arrays with a high number of 
hotspots (such as 64X42 and 50 hotspots) and many possibilities 
inbetween. The range for the random choice of number of hotspots 
vs. the array size is shown in Table 2. We have experimented with 
logic array sizes of 64 42, 96 64, 128 86, 160 110, and 192 128
CLBs approximating the dimensions of various chips from the 
Xilinx Virtex-4 family.  
While the input set described above was useful for assessing the 
robustness of our algorithm, we also experimented with thermal 
data derived from actual power and placement characteristics of 
real benchmarks. We have added hotspot maps from actual thermal 
simulations of the MCNC benchmark suite as described earlier.
Table 2. Logic array sizes vs. number of hotspots assigned. 

CLB Array 64 42 96 64 128 86 160 110 192 128

Hotspots 5-50 5-75 5-75 5-100 5-100 

We compare the number of sensors obtained by using different 
Edge Selection (longest edge, and look-ahead) and Bisection Point 
Selection Techniques (balanced, unbalanced, and neighbor detect) 
for different number of hotspot assignments for each logic array. 
Table 3 shows the results for the randomly generated hotspot 
distributions. Due to space constraints, out of 6 possible variations 
to our algorithm, we present the number of sensors for look-ahead 
balanced (lk-bal), look-ahead unbalanced (lk-unbal) and longest 
edge neighbor detect (lg-nb-det). These combinations form the 
most interesting set of results. For example for 192 128 logic array 
with 50 and 100 hotspots randomly distributed, the number of 
required sensors using {lk-bal, lk-unbal, lk-ng-det} are {34, 34, 30} 
and {54, 52, 44} respectively. It can be seen that lk-unbal is better 
than lk-bal. This is because unbalanced creates less number of 
rectangles (so less number of sensors) than balanced bisection. lg-
nb-det method gives the least number of sensors when compared to 
lk-bal and lk-unbal. Creating bounding rectangles such that they 
preserve the highest neighbor count indeed creates a better 
solution. Based on these results, we observed that longest edge 
neighbor detect strategy performs best. 
Next we present our results incorporating the hotspot distributions 
obtained from thermal simulation of MCNC benchmarks placed 
and routed on representative CLB arrays. We obtained the number 
of sensors required to monitor these benchmarks on each of these 
arrays. Figure 7 illustrates the overall average number of sensors 
required for monitoring these benchmarks as well as the hotspot 
distributions presented in Table 3. Figure 7 presents results for lk-
bal, lk-unbal, and lk-nb-det. The average number of sensors 
required across array sizes {64X42, 96X64, 128X86, 160X110, 

(e) 4 sensors(c) 3 sensors

Sensor
Hotspot Hotspot

Sensor

(a) Initial Rectangle (b) Bisect(Balanced) (d) Bisect(Unbalanced) (e) 4 sensors(c) 3 sensors

Sensor
Hotspot Hotspot

Sensor

(a) Initial Rectangle (b) Bisect(Balanced) (d) Bisect(Unbalanced)

(a) Initial Rectangle (b) Bisect(Balanced) (c) Bisect(Unbalanced)

l/2 l/2 CD l - CDl

(a) Initial Rectangle (b) Bisect(Balanced) (c) Bisect(Unbalanced)

l/2 l/2 CD l - CDl
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and 192X128} using lg-nb-det are {7.54, 15.75, 17.48, 26.01, and 
28.78} respectively. Longest edge neighbor detect (lg-nb-det)
performs the best, which is consistent with our previous 
observations. We conclude that longest edge neighbor detect 
proved its robustness during our extensive evaluation using 
synthetic inputs. It also demonstrated its effectiveness when 
applied to realistic benchmarks. Therefore setting the parameters 
EdgeSelectType = Neighbor Detection, and BisectType = Longest 
Edge, in our algorithm (shown in Figure 4), gives the best overall 
performance. There is a tradeoff between complexity and quality of 
the results. Both lk-bal and lk-unbal have a running time of O(n2),
whereas that of lg-nb-det is O(n3). On the other hand, the quality of 
the result in the case of lg-nb-det is superior compared to the other 
two requiring 16.6% less sensors compared to lk-bal on average, 
and 14.6% fewer sensors compared to lk-unbal on average. 
Table 3. Number of sensors obtained using Recursive Bisection 
for different number of hotspots assigned different logic array sizes. 

Figure 7. Average number of sensors for a range of hotspot 
distributions in different logic arrays.

Further, the average number of sensors across all logic arrays and 
hotspot distributions using our best technique is found to be 19.11. 
In comparison, for Grid-based placement the average number of 
sensors required across all logic arrays is 80.8 (see Table 1). This 
translates to a 75% saving on an average in the number of required 
sensors using our methodology. 

5. CONCLUSIONS 
In this paper we have proposed a novel methodology to minimize 
the number of sensors and determine their location for thermal 
monitoring of hotspots. We have formulated the sensor allocation 

and placement problem and presented an efficient Recursive 
Bisection algorithm to achieve this goal. Given a distribution of 
hotspots, our algorithm is indeed effective in minimizing the 
number of sensors and determining their location. We have 
evaluated our algorithm for different edge and bisection point 
selection techniques and conclude that longest edge neighbor detect 
(lg-nb-det) provides best results when compared to other 
techniques. Using our methodology we demonstrate that the 
number of sensors required to monitor a set of hotspots is reduced 
by 75% on an average, across different logic arrays for different 
hotspot distributions when compared to a regular distribution of 
sensor array previously proposed in the literature. 
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80 45 42 36 48 46 37
85 48 46 39 52 49 39
90 51 50 39 53 51 44
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