
Thermal Sensor Allocation and Placement for

Reconfigurable Systems
Rajarshi Mukherjee¶, Somsubhra Mondal and Seda Ogrenci Memik

¶Synopsys, Inc. Mountain View, CA 94043
Department of Electrical Engineering and Computer Science

Northwestern University, Evanston, IL 60208

ABSTRACT
Temperature monitoring using thermal sensors is an essential tool
for evaluating the thermal behavior and sustaining the reliable
operation in high-performance and high-power systems. With
current technology scaling and integration trends timely and
accurate detection of localized heating will be evermore important.
In this work, we address the creation of a resource efficient sensor
infrastructure for computing systems that are of regular nature,
such as logic array-based computing platforms. We propose
algorithms to embed thermal sensors into a regular structure to
minimize the number of sensors and determine sensor locations
required to maintain a given accuracy in temperature sensing for a
given design. Our algorithms are tailored for minimal usage of
thermal sensors to suit a variety of architectural conditions. For
programmable logic arrays the highly application-specific usage of
the hardware resources leads to unpredictable thermal profiles. As
a result, post-manufacture instantiation of thermal sensors is
desired, which in turn demands the use of native hardware
resources, which can be scarce. We demonstrate that using our
techniques the number of sensors required to monitor a set of
hotspots is reduced by 75% on an average, across different sizes of
logic arrays for different hotspot distributions compared to a
uniform distribution of sensors throughout the fabrics.

Categories and Subject Descriptors: J.6 [Computer Applications]:
Computer-aided Engineering (CAD):

General Terms: Algorithms, Measurement, Experimentation.

Keywords: Temperature, Sensor, Allocation, Placement.

1. INTRODUCTION
Continuous technology scaling has enabled high logic densities on
integrated circuits. FPGA devices [1], [2] are among the first to use
the 90nm process. Xilinx and IBM have a roadmap to produce
chips at 65 nm. Increase in logic density leads to higher power
density, which results in high die temperature. For commercial
grade FPGAs the maximum die temperature without performance
degradation is reported as 80 C and the absolute maximum
temperature is 125 C [3]. An average design mapped onto Virtex-E
with 90% device utilization could lead to a die temperature that is
50 C above ambient temperature. Considering the temperature of

the case to be 40 C, the die temperature would be 90 C in still air
and with a fan it would drop to 75 C [3]. Preventive measures for
convective cooling (such as large heat sinks) or air-cooling (such as
fans) may not be feasible to deploy in certain embedded
applications due to size constraints. Therefore, the operating
conditions can be expected to remain well above 75 C.
High temperature has adverse effects on switching speed of
transistors, resistance of interconnects and reliability. Therefore,
thermal monitoring is vital in understanding the thermal behavior
in a system and providing directives for run-time preventive
measures such as clock throttling. Successful realization of the
latter has been demonstrated for microprocessors [4]. Limited
versions of dynamic thermal management can be done for FPGAs
using their embedded diode to monitor the temperature. In the
Virtex family external pins connect to the temperature-sensing
diode creating a remote sensor. The interrupt from the sensor can
be used to turn off the clock or turn on a fan [5].
Thermal monitoring for FPGAs is relevant for two reasons: (a)
FPGAs dissipate high power and their operating temperature can
exceed the critical die temperature in the absence of elaborate
cooling mechanisms. The high power dissipation trend and
consequent thermal stress is going to become more severe for
technology nodes at 65nm and below. (b) FPGAs are often used for
rapid prototyping and emulation. Gathering thermal data from the
logic array is important to characterize the mapped application. In
this paper, we address the problem of allocating and placing
thermal sensors for FPGAs, where the following architecture-
specific constraints exist:
- Reasonably accurate profiling information about the expected
thermal gradients on the system can only be obtained after the
system has been manufactured and the particular application,
which will utilize the device, is known. Therefore, it is not
practical to embed sensors into the system at manufacture time.
- If the thermal sensors will be inserted at the post-manufacture
stage they can only be generated using the native resources of the
system, i.e. configurable logic blocks.
- Collection and interpretation of data supplied by the thermal
sensors will be interleaved with computation.
The exact utilization of programmable components and resulting
physical factors such as power and temperature are not known a
priori, since the same FPGA device can be programmed to perform
various tasks. The Configurable Logic Blocks (CLBs) can be
occupied or unoccupied depending on the particular application.
The power distribution and power density observed on the same
FPGA device can be different for two different applications. As a
result, locations of hotspots are application dependent. Moreover
modern FPGAs contain embedded DSP blocks and microprocessor
cores. These embedded cores can either remain unused or exhibit
localized heating if they are utilized by the application. There can
be multiple hotspots in the FPGA due to the uneven activity at
different parts of the homogenous logic array and stripes of
embedded cores. It is difficult to determine locations for thermal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

¶This work was done while the author was at Northwestern University.

437

sensing at the time of device fabrication. Also in presence of
multiple hotspots, a fixed single thermal sensor is a poor
representation of the die temperature. Moreover, since the thermal
characteristics of the FPGA will greatly depend on the application,
thermal monitoring has to be done using native resources only.
Hence, placing thermal sensors during manufacturing of the
reconfigurable device will not be efficient.
Programmability presents a unique opportunity for embedding
thermal sensors into an application immediately before mapping it
onto the target device. Once the application to be mapped is
determined, the candidate hotspot locations can be identified and
sensors can be instantiated using unoccupied reconfigurable logic
on the FPGA device [6]. Ring oscillators are used for thermal
monitoring and can be implemented on all FPGA architectures [7].
One alternative is to embed thermal diodes on the device. As we
have argued, it will not be possible to determine the best locations
to insert thermal diodes during manufacturing since the same
device can be used for widely different applications. Moreover,
ring oscillators are better than thermal diodes because of their fully
digital output and more linear characteristics [6, 7]. However, static
placement of ring oscillator-based sensors requires significant
amount of resources and incurs communication overhead to read
back values from sensors. One technique to circumvent the
resource overhead is to perform dynamic reconfiguration to insert
sensors, take readings, and then vacate the resources occupied by
the sensors for the use of the application [7]. However, for a large
number of sensors distributed across the device this will incur
significant overhead, especially if thermal monitoring is used for
taking preventive measures during the run-time of the application.
Therefore, it is important to reduce the number of sensors and
control their locations (while maintaining a given level of
accuracy) in order to reduce the run-time reconfiguration and read
back delay in such a scenario. Using less real estate to implement
sensors may allow static placement. This also simplifies the
microcontroller and peripheral design used to control such
statically placed sensors. Hence, there is a need for a systematic
approach to determine the minimal number and best locations of
thermal sensors in such resource constrained devices.
Given a design exhibiting a certain thermal profile, we propose an
algorithm to minimize the number of sensors and determine their
placement to monitor the hotspots within a given accuracy. Note
that within the same application, number and location of hotspots
may shift depending on the input behavior. In that case, multiple
instances of the same application and their respective thermal maps
would be superimposed to obtain the map of hotspots. We present
an efficient Recursive Bisection algorithm to create clusters of
hotspots. An initial rectangle bounding all hotspots is then
recursively bisected into smaller rectangles until their perimeter
bound hotspots can be covered by a sensor.
Our specific contributions in this paper are as follows:
- Propose a novel methodology for thermal monitoring for fine

grain reconfigurable fabrics,
- Formulate the problem of minimization of sensors required to

monitor a given distribution of hotspots within a pre-defined
error margin,

- Develop Recursive Bisection algorithm to effectively
minimize the number of sensors and determine their
placement.

The remainder of the paper is organized as follows: Section 2 gives
an overview of the related work. In Section 3.2 we elaborate the
paradigm for sensor placement in reconfigurable logic. We discuss

our sensor placement algorithm in Section 3.2.4. Section 4 presents
our results. We conclude with a summary in Section 5.

2. RELATED WORK
Veluswamy et al. [8] validated the thermal simulator HotSpot for
FPGAs against readings taken with statically configured ring
oscillators. Recently sensor placement for FPGAs have been
proposed in [9, 10].
Our sensor placement technique requires some form of partitioning
of the hotspots, which we achieve through our Recursive Bisection
method. There are various techniques to generate clusters from a
set of elements, such as the K-means clustering algorithm
commonly used in data mining [11]. Clustering in the general sense
mostly deals with abstract distance functions, which do not directly
correspond to actual spatial distribution on the 2-D plane (or 3-D
space). In the context of wireless sensor networks, coverage refers
to the quality of surveillance [12]. In contrast our algorithm aims to
determine both the number and the positions to deploy sensors to
achieve a successful coverage. The Art Gallery Problem [13] is yet
another type of coverage problem often encountered in sensor
networks settings. Placing sensors for thermal monitoring is
constrained by the range of the sensor in contrast to the “line of
sight” of the observer in Art Gallery Problem.
Partitioning by recursive bisection is widely applied in placement
algorithms in physical design [14]. During recursive bisection for
placement the objective is to minimize the net cut cost and
elements can be moved across bisections in each iteration. In our
problem, the elements of clusters i.e. hotspots have fixed locations.
Using our Recursive Bisection technique we group the elements
such that the enclosing rectangle around the hotspots satisfies a
given dimensional constraint. The center of the cluster is the
location of the sensor. The goodness of the solution is measured in
terms of the number of sensors, which is equivalent to reducing the
number of clusters obeying the dimensional constraint.

3. THERMAL SENSOR PLACEMENT
In this section we discuss our minimal sensor placement paradigm.

3.1 Thermal Sensors on Reconfigurable Fabric
A widely used technique to implement thermal sensors on FPGAs
(post-fabrication) is based on ring oscillators. Transistor switching
speed is related to temperature. This property is used to measure
temperature by sensing the output frequency of the ring oscillator.
The sensor consists of an odd number of inverters connected in a
chain and can be implemented in FPGAs using LUTs [8]. The
buffered output of the oscillator is used to clock the capture
counter, which specifies the oscillation frequency. The thermal
sensors can be statically placed or dynamically inserted, operated
and eliminated from the circuit using full or run-time
reconfiguration using the configuration port capabilities in Xilinx
technology [7].

3.2 Minimal Sensor Placement
Our algorithm minimizes the number of sensors and determines
their placement to monitor a set of hotspots, where a range of
sensitivity for the sensor technology is defined to achieve certain
accuracy.

3.2.1 Assumptions and Definitions
We assume that the ring oscillator based thermal transducers will
be used as sensors as described in Section 3.1. We refer to placing
a regular array of such sensors within a fixed grid across the entire
CLB array as the Grid-based placement. This is equivalent to the

438

Figure 2. Sensor at the center of
coverage area of dimension
CD CD.

r1=SR

C
D

r2<SRh1

h2

h3

h4 h5

r5=SRS

C
D /2 r1=SR

C
D

r2<SRh1

h2

h3

h4 h5

r5=SRS

r1=SR

C
D

r2<SRh1

h2

h3

h4 h5

r5=SRS

C
D /2

logic array being partitioned into grids equal to the number of
sensors and each sensor being placed at the center of the grid. The
Grid-based placement is shown in Figure 1(a). For example Beudo
et al. [15] used a 4 8 array of sensors to uniformly cover the
XCV800HQ240-4C Virtex FPGA. The CLB array size for this
device is 56 84. This corresponds to each sensor being placed in
the center of a 14 11 CLB array. We refer to this as a single sensor
covering a 14 11 CLB array. The temperature read by a sensor
placed at the center of the coverage area is representative of the
temperature of the entire coverage area. However, different points
within the coverage area can be at different temperatures. The error
in approximating the temperature of the coverage area by the
temperature at its center is tolerable if it is below a given error
margin T. The largest distance from the sensor at which the error
in approximating the temperature by that of sensor is less than T
determines the range SR of the sensor. We define coverage area
dimension CD as a function of range SR such that a rectangular area
with {height, width} CD centered on a sensor covers all hotspots
within that area. Thus coverage area dimension CD = 2.SR.
Although this type of grid based sensor placement works
reasonably well, the number of sensors required increases
proportional to the CLB array size. To mitigate the problem of
increasing sensor array size, we propose an effective approach,
which will be described in the following.

3.2.2 Overview
The designer can perform thermal simulation on a set of
applications and representative input data sets to obtain the map of
potential hotspots. To effectively monitor this map with minimal
resource overhead judicious selection of the number and position
of sensors is necessary. Our algorithm solves this sensor placement
problem by creating bounding rectangles around hotspots by
Recursive Bisection. The sensors are placed at the center of such
bounding rectangles. The sensor placement for a given set of
hotspots is illustrated in Figure 1(b).

Table 1 shows the number of sensors required to monitor different
logic arrays using Grid-based placement.
Table 1. Number of sensors required for different array sizes
using Grid-based placement vs. minimized number of sensors for
Recursive Bisection (RB) covering up to 50 hotspots on these arrays.

CLB Array 64 42 96 64 128 86 160 110 192 128

Sensors (Grid-Based) 18 40 72 114 160

Sensors - RB for 50 Hotspots 8 19 20 24 30

Using 2 slices per CLB a sensor takes 16 CLBs to implement and
the sensor array occupies over 10% of the CLBs. Dynamically
reconfiguring a large sensor array can be expensive in terms of
reconfiguration time and read back from the sensor counter. We
also show the number of sensors required to monitor up to 50
randomly distributed hotspots in the same logic arrays in Table 1.
Using our Recursive Bisection algorithm the number of sensors

required for 128 86 and 192 128 CLB arrays is 20 and 30
respectively as compared to placing a fixed 72 and 160 sensors
using the Grid-based approach.

3.2.3 Problem Formulation
Given,
- a p×q array of configurable logic blocks
- a set of hotspots H = {h1 (xh1, yh1), h2 (x h2, y h2), …, hk (x hk,
yhk)}, where (xhi, yhi) are coordinates associated with each hotspot
- a sensor with associated maximum coverage area dimension CD

Our goal is to determine the minimum cardinality set of sensors S =
{s1, s2, …, sn} and the position (xsi, ysi) of each sensor si S such
that:
- each hotspot hi is covered by some sensor sj, denoted by the one-
to-many relation sj Hsj{hu, …, hv}, s.t. the minimum enclosing
rectangle for each Hsj is at most of dimension CD on each side.

3.2.4 Sensor Placement by Recursive Bisection
Our goal is to minimize the number of sensors and determine their
placement to cover a set of hotspots. Each sensor has a coverage
area dimension CD. Sensor si can monitor hotspots that lie within
the coverage area of height and width at most equal to CD. Our
algorithm tries to create a set of rectangles each having their height
and width at most CD containing a set of hotspots. The sensor is
placed at the center of such a rectangle. We will show the actual
region formed can be smaller than this dimension depending on the
location of the hotspots that the sensor covers. That is why we refer
to the shape of the region as a rectangle as opposed to a square of
maximum dimensions of CD CD. Let us assume that a bounding
rectangle R is created around five hotspots h1, h2, … h5. The sensor
S is at the center of R. Let the distance of the hotspot h1 from the
sensor be r1. Similarly the distances of other hotspots are denoted
by r2, … r5. Since the sides of the bounding rectangle are at most
CD, the maximum distance of any hotspot within R can be SR from
S, if CD = 2.SR. This is shown Figure 2.
The hotspots h1 and h5 are at the
two corners and farthest from
sensor S. r1= r5= SR in this case.
The other hotspots are closer to
S i.e. r2, 3, 4 SR. Thus placing
the sensor at the center of the
bounding rectangle of height
and width of at most CD

guarantees that all hotspots
within this rectangle are within
the range of the sensor.
The algorithm works by recursively creating a bounding rectangle
Ri around hotspots and bisecting the rectangle along an edge until
both height and width of Ri is less than or equal to CD. The number
of sensors n corresponds to the number of rectangles Rp, …, Rq.
Each Ri has a list of hotspots LH

i that its perimeter covers. Two
pairs of (x, y) coordinates can be used to represent Ri, which we
denote by {(xleft

i, ybottom
i), (xright

i, ytop
i)}. The steps of the algorithm

are illustrated in Figure 3(a) - (f).
First, our algorithm creates the smallest bounding rectangle R1

around all hotspots. R1 is then pushed back into a list, which we
denote by LRec. If the height and/or width of RInit is greater than CD,
it is deleted from the list and is bisected along the edge determined
by the Edge Selection procedure and the point of bisection is
determined by the Bisection Point Selection. We will discuss the
details of the selection mechanisms in the following sub-sections.

Sensor
Sensor

Hotspot

(a) (b)

Hotspot

Sensor
Sensor

Hotspot

(a) (b)

Hotspot

Figure 1. (a) Grid-based placement of sensors. (b) Minimal sensor
placement for a set of hotspots. The rectangular coverage area of
each sensor is covering four hotspots.

439

After vertical bisection we would get two new rectangles R2{(xleft
1,

ybottom
1), (xbisect, ytop

1)} and R3{(xbisect, ybottom
1), (xright

1, ytop
1)}.

Similarly after horizontal bisection the resulting rectangles are
R2{(xleft

1, ybottom
1), (xright

1, ybisect)} and R3{(xleft
1, ybisect), (xright

1,
ytop

1)}. The list of hotspots contained in R2 and R3 are updated.
This is shown in Figure 3(b). Then, the new rectangles R2 and R3

are adjusted such that they form tight bounding rectangles around
the contained hotspots (shown in Figure 3(c)). Now in the second
stage of the algorithm, LRec has two bounding boxes. The next
rectangle of the list is then examined if its sides are CD. If not, the
rectangle is bisected, erased from the list and the bisected
rectangles are pushed back into the list. If the height and width of
the rectangle is within the coverage area dimension CD the current
rectangle is unchanged and the next rectangle is checked. The
algorithm continues until it reaches the end of the list at which
point we have a set of rectangles which all satisfy the height and
the width constraint (CD). These steps are shown in Figure 3(d) -
(f). As shown in Figure 3(f) the final list of rectangles are R4, R5,
R8, R9, R10, and R11. Let us represent the final list as LRec. There are
six rectangles and hence, six sensors are necessary to cover all the
hotspots. The centers of rectangles Ri' represent the positions of the
sensors si'. The pseudo code of the algorithm is shown in Figure 4.
During bisection two decisions can be made (i) select the edge to
bisect along and (ii) decide the point through which the selected
edge is bisected. We have developed techniques to make intelligent
choices for both. The different edge and bisection point selection
strategies are described in the next sections.

Figure 3. Stages of the Recursive Bisection algorithm.

3.2.5 Edge Selection for Bisection
At each stage of the algorithm a rectangle is bisected if its height
and/or width are CD. If both the height and the width are CD, the
edge to bisect first can be selected in two ways.
Longest Edge: The longest edge of the rectangle is selected.
Look-Ahead: During bisection it is better to have the majority of
the hotspots concentrated in one of the bisected rectangles rather
than sparsely distributing hotspots in both bisections. Such a sparse
distribution may lead to a higher number of sensors each covering
fewer hotspots. The Look-ahead edge selection considers
bisections in both vertical and horizontal directions. It identifies the
number of hotspots that are left on either side of the bisection lines
in both directions. The bisection direction, which leads to the
largest majority of the hotspots to fall on the same side of the
bisection is selected. During this comparison of which direction to
pick for bisection, Look-ahead edge selection needs to use an
anchor point to perform the cuts in either direction. The particular

anchor point (which we refer to as the Bisection Point) will be
determined based on the strategy chosen for the Bisection Point
selection procedure. We will describe this in detail in the next
section.

Minimal Sensor Placement Algorithm
Input: Dimension (Rows, Cols) of the CLB Array
 Set of hotspots H and positions of hotspots hi(xi, yi), hi H

 Coverage area dimension CD

Parameters: EdgeSelectType, BisectType

1. Create initial bounding rectangle RInit for all the hotspots
2. Create a list of bounding rectangles LRec

3. Push back RInit onto LRec

4. List iterator Literator = LRec.begin()
5. While (Literator != LRec.end())

a. Get Ri pointed by Literator

b. If (Checksides(Ri) = true) { Increment Literator; Continue;}
c. Bisect(Ri, BisectType, EdgeSelectType)
d. Assign hotspots of Ri to Ri1 and Ri2 to LH

i1 and LH
i2 respectively

e. Create tight rectangles Ri1' (Ri2') containing LH
i1 (LH

i2)
f. Push back Ri1' and Ri2' into LRec

g. Delete Ri from LRec and Increment Literator

End while
6. Size of the set of sensors S n = Size of LRec

7. Position of si = center of ri, where si S, ri LRec, i {1…n}

Output: Number and Position of a set of sensors which covers H

Figure 4. Sensor placement by Recursive Bisection. Depending on the
EdgeSelectType parameter either Longest-edge or Look-ahead is
selected. Depending on the BisectType either Balanced, Unbalanced or
Neighbor-detect method is selected.

3.2.6 Bisection Point Selection
We present three procedures for selecting the bisection point.
Balanced: The center point of the edge is selected.
Unbalanced: The edge of length l is bisected in ratio CD:(l CD).
This results in one of the rectangles (say Rl) having an edge equal
to CD. It ensures that Rl will not be bisected along the current edge
anymore and all rectangles are bisected a minimum number of
times. This is shown in Figure 5(c).
However, unbalanced bisection makes early decisions as to the size
of the rectangle affecting the final solution quality. An example is
shown in Figure 6. The cluster of hotspots that can be covered by a
single sensor is initially bisected during unbalanced bisection. This
results in 3 sensors for balanced vs. 4 sensors for unbalanced
bisection. To improve quality, unbalanced bisection is only used at
later stages of the algorithm. Unbalanced bisection along an edge is
allowed only when the other edge is CD.
Neighbor Detection: The quality of bisection for three different
points is evaluated before the actual bisection. An edge can be
represented by a pair of {start, end} points. Three different possible
bisection points are considered {BLeft = (start CD), BCenter = (start

 end) /2, BRight = (end CD)} out of which one is finally selected.
For each bisection point, there will be two resulting rectangles {Rl1,

Rl2} and their respective hotspot lists {LH
l1, LH

l2}. Two hotspots in
a list are neighbors if the Euclidean distance between them is less
than or equal to CD and can possibly lie in the coverage area of a
single sensor. For each hotspot list LH

l1 and LH
l2 we find the

neighbor count and select the bisection point for which their sum of
neighbor count is maximum. Hotspots that are neighbors have a
higher probability of being covered by the same sensor. We refer to
this strategy as bisection point selection by neighbor detection.
For n hotspots, longest edge and look-ahead edge selection take
constant and (n) time respectively. Balanced and Unbalanced

(a) Initial Bounding Rectangle
around all hotspots LRec = {R1}

(b) Bisecting R1

LRec = {}
(c) Tight fit bounding Rectangle

LRec = {R2, R3}

(d) Bisecting R2

LRec = {R3, R4, R5}

R1 R2 R3
R2

R3

R4

R5

R3

R4

R5

R6

R7

R4

R5

R8

R9

Sensor

R10

R11

(e) Bisecting R3

LRec = {R4, R5, R6, R7}
(f) Bisecting R6 and R7

LRec = {R4, R5, R8, R9 , R10, R11}

(a) Initial Bounding Rectangle
around all hotspots LRec = {R1}

(b) Bisecting R1

LRec = {}
(c) Tight fit bounding Rectangle

LRec = {R2, R3}

(d) Bisecting R2

LRec = {R3, R4, R5}

R1 R2 R3
R2

R3

R4

R5

R3

R4

R5

R6

R7

R4

R5

R8

R9

Sensor

R10

R11

(e) Bisecting R3

LRec = {R4, R5, R6, R7}
(f) Bisecting R6 and R7

LRec = {R4, R5, R8, R9 , R10, R11}

440

bisections take constant time and the Neighbor-detect bisection
method takes (n2) time. The running time for the steps 5d and 5e
(Figure 4) is (n). The steps in the while loop 5a - 5g take (n +
(Edge select, Bisect)) time. In the worst case the while loop can run
n times. For example the running time for Longest-edge Neighbor-
detect sensor placement has a running time of (n3) vs. (n2) for
Look-ahead Unbalanced.

Figure 5. Two bisection alternatives.

Figure 6. Illustrating problems with unbalanced bisection (a) Initial
rectangle (b) Balanced bisection (c) Resulting 3 sensors (d) Unbalanced
bisection (d) Resulting 4 sensors.

4. EXPERIMENTAL RESULTS
In the following sections we first discuss our experimental setup
and then our results.

4.1 Experimental Setup
First, thermal simulation is performed on the set of applications to
be mapped onto the logic array. Effective thermal simulators have
been recently proposed [16, 17]. A set of hotspots to be monitored
is identified.
Our approach is common in a profile driven paradigm. Similarly,
power estimation (e.g. Power Model for VPR) based on
representative input patterns is performed. An input should be
sustained for several 100us to create a hotspot. With FPGA
frequencies in the order of 100’s of MHz, if there are input patterns
with such duration not captured, this means the designer missed a
typical input behavior. We assume this should not happen. If a
hotspot falls outside all coverage areas, the nearest sensor will still
pick up the temperature trend of the logic, however error margin
will degrade.
The coverage area of the thermal sensor is then estimated. In
previous work where regular Grid-based placement was proposed
[15], a sensor is placed in the center of a 14 11 CLB array. In
order to be able to make a comparison, we have derived the
required coverage area dimension of a sensor from this placement.
We set the largest CLB array size that the sensor can cover as a
12 12 square. As a result we define the coverage area dimension of
the sensor, CD as 12. The sensor is placed at the center of such a
12 12 CLB array. Using our Recursive Bisection algorithm the
number and locations of the thermal sensors are determined. The
sensors can then be placed using run-time reconfiguration or
embedded statically if the CLB utilization of the design has enough
slack. The next section presents our experimental results.

4.2 Results
We generated two types of inputs to evaluate the effectiveness of
our algorithm. Part of the input maps of hotspots were created by
randomly assigning 5 to 100 hotspots on a given logic array. We
also generated thermal profiles for MCNC benchmarks [18]. The
netlist of CLBs was placed and routed using VPR [19]. Power

Model [20] was used to calculate the power of each CLB and net,
based on the switching activities at the nodes. The data from Power
Model was used to perform thermal simulation using the thermal
simulator HotSpot [16]. The hotspot distributions observed in those
simulations were then used as input to our algorithm.
For the random hotspot maps we used the following methodology.
For each array size, we created hotspot maps containing 5 to 100
hotspots in increments of 5. Note that for smaller array sizes the
upper bound on the number of hotspots was less (e.g. 50 for the
smallest array). Each of these configurations was repeated 10 times
using different seeds, e.g. 5 hotspots were randomly distributed on
an array in 10 different ways and similarly for all other
configurations. The rationale behind this setup is to evaluate the
sensitivity of our algorithm to a wide variation of inputs and design
characteristics. These experiments help us evaluate a large
spectrum of cases from large arrays with very few hotspots (such
as 192X128 and 5 hotspots) to small arrays with a high number of
hotspots (such as 64X42 and 50 hotspots) and many possibilities
inbetween. The range for the random choice of number of hotspots
vs. the array size is shown in Table 2. We have experimented with
logic array sizes of 64 42, 96 64, 128 86, 160 110, and 192 128
CLBs approximating the dimensions of various chips from the
Xilinx Virtex-4 family.
While the input set described above was useful for assessing the
robustness of our algorithm, we also experimented with thermal
data derived from actual power and placement characteristics of
real benchmarks. We have added hotspot maps from actual thermal
simulations of the MCNC benchmark suite as described earlier.
Table 2. Logic array sizes vs. number of hotspots assigned.

CLB Array 64 42 96 64 128 86 160 110 192 128

Hotspots 5-50 5-75 5-75 5-100 5-100

We compare the number of sensors obtained by using different
Edge Selection (longest edge, and look-ahead) and Bisection Point
Selection Techniques (balanced, unbalanced, and neighbor detect)
for different number of hotspot assignments for each logic array.
Table 3 shows the results for the randomly generated hotspot
distributions. Due to space constraints, out of 6 possible variations
to our algorithm, we present the number of sensors for look-ahead
balanced (lk-bal), look-ahead unbalanced (lk-unbal) and longest
edge neighbor detect (lg-nb-det). These combinations form the
most interesting set of results. For example for 192 128 logic array
with 50 and 100 hotspots randomly distributed, the number of
required sensors using {lk-bal, lk-unbal, lk-ng-det} are {34, 34, 30}
and {54, 52, 44} respectively. It can be seen that lk-unbal is better
than lk-bal. This is because unbalanced creates less number of
rectangles (so less number of sensors) than balanced bisection. lg-
nb-det method gives the least number of sensors when compared to
lk-bal and lk-unbal. Creating bounding rectangles such that they
preserve the highest neighbor count indeed creates a better
solution. Based on these results, we observed that longest edge
neighbor detect strategy performs best.
Next we present our results incorporating the hotspot distributions
obtained from thermal simulation of MCNC benchmarks placed
and routed on representative CLB arrays. We obtained the number
of sensors required to monitor these benchmarks on each of these
arrays. Figure 7 illustrates the overall average number of sensors
required for monitoring these benchmarks as well as the hotspot
distributions presented in Table 3. Figure 7 presents results for lk-
bal, lk-unbal, and lk-nb-det. The average number of sensors
required across array sizes {64X42, 96X64, 128X86, 160X110,

(e) 4 sensors(c) 3 sensors

Sensor
Hotspot Hotspot

Sensor

(a) Initial Rectangle (b) Bisect(Balanced) (d) Bisect(Unbalanced) (e) 4 sensors(c) 3 sensors

Sensor
Hotspot Hotspot

Sensor

(a) Initial Rectangle (b) Bisect(Balanced) (d) Bisect(Unbalanced)

(a) Initial Rectangle (b) Bisect(Balanced) (c) Bisect(Unbalanced)

l/2 l/2 CD l - CDl

(a) Initial Rectangle (b) Bisect(Balanced) (c) Bisect(Unbalanced)

l/2 l/2 CD l - CDl

441

and 192X128} using lg-nb-det are {7.54, 15.75, 17.48, 26.01, and
28.78} respectively. Longest edge neighbor detect (lg-nb-det)
performs the best, which is consistent with our previous
observations. We conclude that longest edge neighbor detect
proved its robustness during our extensive evaluation using
synthetic inputs. It also demonstrated its effectiveness when
applied to realistic benchmarks. Therefore setting the parameters
EdgeSelectType = Neighbor Detection, and BisectType = Longest
Edge, in our algorithm (shown in Figure 4), gives the best overall
performance. There is a tradeoff between complexity and quality of
the results. Both lk-bal and lk-unbal have a running time of O(n2),
whereas that of lg-nb-det is O(n3). On the other hand, the quality of
the result in the case of lg-nb-det is superior compared to the other
two requiring 16.6% less sensors compared to lk-bal on average,
and 14.6% fewer sensors compared to lk-unbal on average.
Table 3. Number of sensors obtained using Recursive Bisection
for different number of hotspots assigned different logic array sizes.

Figure 7. Average number of sensors for a range of hotspot
distributions in different logic arrays.

Further, the average number of sensors across all logic arrays and
hotspot distributions using our best technique is found to be 19.11.
In comparison, for Grid-based placement the average number of
sensors required across all logic arrays is 80.8 (see Table 1). This
translates to a 75% saving on an average in the number of required
sensors using our methodology.

5. CONCLUSIONS
In this paper we have proposed a novel methodology to minimize
the number of sensors and determine their location for thermal
monitoring of hotspots. We have formulated the sensor allocation

and placement problem and presented an efficient Recursive
Bisection algorithm to achieve this goal. Given a distribution of
hotspots, our algorithm is indeed effective in minimizing the
number of sensors and determining their location. We have
evaluated our algorithm for different edge and bisection point
selection techniques and conclude that longest edge neighbor detect
(lg-nb-det) provides best results when compared to other
techniques. Using our methodology we demonstrate that the
number of sensors required to monitor a set of hotspots is reduced
by 75% on an average, across different logic arrays for different
hotspot distributions when compared to a regular distribution of
sensor array previously proposed in the literature.

6. ACKNOWLEDGEMENTS
This research is supported in part by the NSF Career Award CNS-
0546305 and the Northwestern University Alumnae Association
Research Initiation Award.

7. REFERENCES
1. Altera. Excalibur Device Overview.
2. Xilinx, PowerPC in Virtex-4 FX.
3. Lesea, A. and M. Alexander. Powering Xilinx FPGAs. 2002
4. Gunther, S., et al., Managing the impact of increasing microprocessor
power consumption. Intel Technology Journal, February 2001.
5. Xilinx. Answers Database: Virtex/Virtex-E/Virtex-II/Virtex Pro/Virtex-4 -
What are temperature-sensing diode pins (DXP and DXN, TDN and TDP)?
2005
6. Lopez-Buedo, S., J. Garrido, and E.I. Boemo, Thermal Testing on
Reconfigurable Computers. IEEE Design and Test of Computers, 2000.
17(1): p. 84-91.
7. Lopez-Buedo, S., J. Garrido, and E.I. Boemo, Dynamically Inserting,
Operating, and Eliminating Thermal Sensors of FPGA-based Systems.
IEEE Transactions on Components and Packaging Technologies, 2002.
25(4): p. 561- 566.
8. Velusamy, S., et al. Monitoring Temperature in FPGA based SoCs. in
International Conference on Computer Design. 2005.
9. Mukherjee, R., S. Mondal, and S.O. Memik. A Sensor Distribution
Algorithm for FPGAs with Minimal Dynamic Reconfiguration Overhead. in
To appear in International Conference on Engineering of Reconfigurable
Systems and Algorithms. 2006.
10. Mondal, S., R. Mukherjee, and S.O. Memik. Fine-Grain Thermal
Profiling and Sensor Insertion for FPGAs. in IEEE International
Symposium on Circuits and Systems 2006.
11. MacQueen, J. Some Methods for Classification and Analysis of
Multivariate Observations. in Fifth Berkeley Symposium on Mathematical
Statistics and Probability. 1967.
12. Meguerdichian, S., et al. Coverage Problems in Wireless Ad-hoc Sensor
Networks. in INFOCOM 2001.
13. Chvatal, V., A Combinatorial Theorem in Plane Geometry. Journal of
Combinatorial Theory 1975. 18: p. 39-41.
14. Sherwani, N.A., Algorithms for VLSI Physical Design Automation.
1995, Norwell, MA: Kluwer Academic Publisher.
15. Lopez-Buedo, S. and E. Boemo. Making Visible the Thermal Behaviour
of Embedded Microprocessors on FPGAs: a Progress Report. in
International Symposium on Field Programmable Gate Arrays. 2004.
16. Skadron, K., et al. Temperature-Aware Microarchitecture. in
International Symposium on Computer Architecture. 2003.
17. Yang, Y., et al. Adaptive Chip-Package Thermal Analysis for Synthesis
and Design. in Conference on Design, Automation, and Test in Europe.
2006.
18. Yang, S. Logic Synthesis and Optimization Benchmarks. 1991:
Microelectronics Center of North Carolina.
19. Betz, V., J. Rose, and A. Marquardt, Architecture and CAD for Deep-
Submicron FPGAs. 1999: Kluwer Academic Publishers.
20. Poon, K.K., Power Estimation for Field Programmable Gate Arrays, in
Dept. of Electrical and Computer Engg. 1999, University of British
Columbia.

0

5

10

15

20

25

30

35

64X42 96X64 128X86 160X110 192X128
CLB array sizes

A
v

g
.
n

u
m

b
e

r
o

f

s
e

n
s

o
rs

lk-bal lk-unbal lg-nb-det

Array Size

Not
Applicable

Array Size

Not
Applicable

CLB

H
ot

sp
ot

s

lk
-b

al

lk
-u

nb
al

lg
-n

b-
de

t

lk
-b

al

lk
-u

nb
al

lg
-n

b-
de

t

lk
-b

al

lk
-u

nb
al

lg
-n

b-
de

t

lk
-b

al

lk
-u

nb
al

lg
-n

b-
de

t
5 5 5 5 5 5 5 4 4 4 5 5 5

10 7 7 7 9 9 8 9 9 9 8 8 8
15 9 9 9 11 11 10 13 13 13 11 11 11
20 10 10 10 12 12 11 16 16 14 17 17 16
25 13 12 11 15 15 13 18 18 16 19 19 18
30 15 14 13 17 17 13 23 22 20 23 23 22
35 15 15 14 20 20 15 23 23 21 25 25 23
40 19 19 16 22 22 19 25 24 21 28 28 27
45 19 19 17 23 20 19 28 27 23 31 31 30
50 22 21 19 26 25 20 31 29 24 34 34 30
55 23 22 21 31 29 20 35 33 27 39 37 30
60 26 24 21 32 29 25 36 34 31 40 39 31
65 27 25 21 32 29 26 36 35 34 42 41 30
70 25 22 24 33 29 28 39 37 32 44 44 35
75 28 25 23 29 26 29 41 40 34 47 46 37
80 45 42 36 48 46 37
85 48 46 39 52 49 39
90 51 50 39 53 51 44
95 51 50 40 51 49 43

100 53 51 44 54 52 44
Avg 17.5 16.6 15.4 21.1 19.9 17.4 31.3 30.2 26.1 33.6 32.8 28.0

96X64 160X110 192X128128X86

442

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

