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ABSTRACT
We present a novel incremental placement methodology called
FlowPlace for significantly reducing critical path delays of
placed standard-cell circuits. FlowPlace includes: a) a
timing-driven (TD) analytical global placer TAN that uses ac-
curate delay functions and minimizes a combination of linear
and quadratic objective functions; b) a network flow based
detailed placer TIF that has new and effective techniques
for performing TD incremental placement and satisfying row-
length (white space) constraints. We have obtained results on
three sets of benchmarks: i) TD versions of the ibm bench-
mark suite that we have constructed; ii) benchmarks used in
TD-Dragon; iii) the Faraday benchmarks. Results show that
starting with Dragon-placed circuits, we are able to obtain
up to 34% and an average of 18% improvement in critical
path delays, at an average of 17.5% of the run-time of the
Dragon placer. Starting with a state-of-the-art TD placer
TD-Dragon, for the TD-Dragon benchmarks we obtain up to
about 10% and an average of 4.3% delay improvement with
12% of TD-Dragon’s run times; this is significant as we are
extracting performance improvements from a performance-
optimized layout. Wire length deterioration on the average
over all benchmark suites is less than 8%.

1. INTRODUCTION
Due to the increasing ratio of interconnect to gate delays in

very deep submicron (VDSM) designs, and the large impact
that placement plays on the final wire length (WL) as well
as performance, WL and timing consideration during place-
ment is critical. Timing driven (TD) placement algorithms
can be divided into 3 categories. 1) partition-based, like [9,
12], 2) simulated annealing (SA) based, like [11, 15], and 3)
analytical [8]. Circuit timing optimization is basically a path-
based problem, though it is impractical to track delays of all
paths, since their numbers are generally exponential in cir-
cuit size [8]. Hence, timing constraints on paths are usually
converted to either net/edge weights or constraints such as
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net delay bounds, yielding more tractable net-based methods.
In a recent work [8], a novel edge weight function was pro-
posed that, together with its new objective function, solves
the convergence problem in net-based methods–delay reduc-
tions along critical paths are sometimes obtained at the ex-
pense of delay increases in non-critical paths, to the extent
that the circuit delay reduces little, if at all. In [15], a SA
approach is used along with delay bounds on nets. The slack
assignment approach in the paper ensures that estimated long
nets are assigned a larger delay bound so that they are not
be overly constrained. The objective function is to minimize
the sum of delay violations across all nets.
Another approach to TD placement is via targeted incre-

mental placement. On an initial base placement, an incre-
mental TD placer can focus on reducing delays of the most
critical paths. This will greatly reduce the number of paths
that need to be considered. Also, more timing information
can be derived if there is an initial placement; thus delay and
slack estimates, and thereby cost functions, are more accu-
rate. Furthermore, by its very nature, TD incremental place-
ment, if done properly, implicitly solves the aforementioned
convergence problem, since it minimizes placement changes
to the non-critical paths, thereby limiting any delay increases
in them. TD incremental placement also finds applications
in ECO scenarios where changes in stages above the phys-
ical design (PD) level generally percolate down to required
changes in the placement and routing stages. In such appli-
cations, TD incremental placement would make the required
placement changes, while minimizing placement changes in
the unaffected portion of the circuit, and minimizing any de-
terioration in critical path delays. TD incremental placement
can also be invoked in ECOs for the express purpose of reduc-
ing delays of paths that violate target clock speed constraints
via appropriate placement changes in cells on these paths. It
is in the context of the first and third applications that we
will describe our TD incremental placer, though it can also
be used in the general ECO context.
A TD incremental placer was proposed in [14] that di-

rectly controls the delay of critical or near-critical paths. It
explicitly sets delay constraints for all the critical paths based
on the half-perimeter bounding box (HPBB) net lengths on
these paths. It then finds a solution to these constraints while
minimizing total HPBB WL change in the circuit using linear
programming. This method only takes BB length into con-
sideration, which is only one component of sink delays in a
net, resulting in less than highly-accurate timing estimates.
Also, non-critical nets are ignored, and thus the convergence
problem mentioned earlier can surface.
We propose a timing-driven incremental placer FlowPlace
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that addresses many of the above issues. It has two major
components. First, an incremental TD analytical placer TAN
is used to find an initial placement, possibly with overlaps.
Then a TD detailed placer TIF is used to get a legal place-
ment that minimizes critical path delay increase over that
of TAN’s placement. Our TD analytical placer extends the
basic techniques of Gordian [10] and Gordian-L [13] to opti-
mize a TD objective function with quadratic as well as linear
terms, and also has carefully designed objective and weight
functions. The detailed placement algorithm uses a network
flow based method. Network flow has been used previously
for solving the legalization problem in standard-cell circuits
[4, 5]. In both works, the network flow modeling is similar to
ours on some high-level issues: cells are represented by nodes
and possible movement of cells are represented by arcs from
them to destination positions. The properties of network flow
were used in these works to remove cell overlaps, and mini-
mize the sum of flow costs while doing so. However, their
objectives were to minimize total WL which can be more eas-
ily modeled by sum of flow costs. Our objective is to minimize
the delay of critical paths rather than the sum of delays. To
this end, we use more complex cost functions and flow graph
structures to make sure that the sum of flow costs is a good
indicator of mainly critical-path delay changes.
The rest of the paper is organized as follows. Section 2 dis-

cusses some basic issues about incremental TD placement and
the high-level flow of our methodology. In Sec. 3 we present
various aspects of our TD analytical placer including its ob-
jective function and accurate interconnect delay estimates. In
Sec. 4, the network-flow based TD incremental detailed placer
is discussed at length. Section 5 presents experimental results
and we conclude in Sec. 6.

2. TD INCREMENTAL PLACEMENT AND
METHODOLOGY FLOW

The TD incremental placement problem can be formally
stated as follows.

Input: A placed circuit PC with some

w/ improved
performance

New Placement

Initial Placed
Circuit

TD analytical
placement (TAN)

(on moveC)

determine critical
node set moveC

Perform STA &

TD n/w−flow
based detailed

placement (TIF)
(on moveC)

Figure 1: The

flowchart of our

TD incremental

placer FlowPlace.

vacant positions both cell movements
and deterioration of placement metrics
like total wirelength (WL) and chip area,
and (2) either: (a) the critical path de-
lay in PC0 is not increased beyond the
one in PC (this applies in applications
where the target clock speed has been
met, and the ECO process is used to rec-
tify other circuit problems), or (b) the
critical path in PC0 is significantly im-
proved compared to the one in the pre-
vious layout–we will focus on this ob-
jective in this paper, though our incre-
mental placer can also be used to tackle
applications of type 2(a) as well.
Fig. 1 shows the flow of our TD in-

cremental placer used in applications of
type (b) given above. We start from a
placed circuit, and identify all critical
and near-critical paths using static tim-
ing analysis (STA). Let this set of paths
be P. After P is identified, we remove

either: (i) only the cells in P from the layout, or (ii) all cells
in all nets in P from the layout. The removed cells form
the cell set moveC (nets connected to cells in moveC are de-

noted bymoveN) that will be replaced by our TD incremental
placer with the goal of reducing the critical path delay. This
is achieved by a combination of a TD analytical placer TAN
in which moveC constitutes the set of movable cells and the
minimization function is a sum of net-delay functions weighed
inversely by their path slacks, that have both linear and a
quadratic interconnect-length terms. Our main contribution
in this part is two-fold. The first is developing an accurate
and detailed pre-routing net-delay function, and determining
net weights so that the net-delays of critical paths have the
highest minimization priority. The second is performing both
quadratic and linear optimization simultaneously.
The output of our TD analytical placer will generally be

an illegal placement for cells in moveC–the cell positions de-
termined will generally not be in cell rows and may overlap
each other or cells in PC. However, these cell positions pro-
vides starting points for our detailed TD placer that uses a
novel network flow method for placing new cells in legal po-
sitions and moving existing cells minimally to accommodate
this in such a way that the critical path delay is optimized and
the row-length (i.e., row white space) constraint is satisfied.
This TD min-cost max-flow white-space satisfying algorithm,
called TIF, is the major contribution of this paper. The ba-
sic problem of TD incremental placement (and placement in
general) is at its core a constraint-satisfying discrete opti-
mization problem (DOP). By using a network flow approach
to solve it, we are using a continuous optimization approach,
and thus certain “illegalities” are introduced in the solution
for the core problem. We thus also describe in Sec. 4 the
in-processing methods we use for: a) legalizing the contin-
uous solution of the network flow process, and b) satisfying
white-space constraints that are not completely modeled by
standard capacity constraints in the network flow graph.

2.1 STA and Path Slacks
We perform STA to determine delays to the output pins

or flip-flops (FFs) of the circuit; each of these “terminal” pins
have a max-delay path to them, and the maximum delay over
all these paths is the critical path delay. We define a near-
critical path as a max-delay path to a terminal pin whose delay
is within a (1 − �) fraction of the critical path delay; we use
� = 0.1 in our experiments. A path P ’s slack S(P ) is defined
as the difference between the required arrival time (RAT) at
the terminal pin of P and the arrival time (AT) of P . We
assume a single target clock speed and thus uniform RATs at
all terminal pins (our methods easily apply to non-uniform
RATs as well). For the purpose of meaningful slack-driven
cost functions to minimize critical interconnect lengths, we
need positive slacks, and we thus bootstrap our methods by
defining the RAT of the terminal pin of the critical path as
(1 + α) times the critical path delay; we use α = 0.1 in our
experiments. This ensures positive slack for all paths, and of
course smaller slacks for more critical paths.

3. TD ANALYTICAL GLOBAL PLACE-
MENT

Our analytical placer TAN is a TD extension of a combi-
nation of Gordian [10] and Gordian-L [13]–we optimize an
objective function that contains both linear and quadratic
terms.

3.1 Basic Gordian and Gordian-L
Gordian [10] is a quadratic programming technique for cell

placement for quadratic WL minimization. The quadratic net
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length estimate can be based on either a clique or a star-graph
model. For the latter (see Fig. 2(a)), which we use in our TD
objective function, the quadratic net length of net nj with k
pins is given by:

L2(nj) =
X
ui∈nj

(xi − xc)
2 + (yi − yc)

2

where (xi, yi) are the coordinates of pin ui, (xc, yc) is the
coordinate of the centroid of the pins of nj, with xc (yc) =
(1/k)×Pui∈nj xi (yi).

For a circuit netlist
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Figure 2: (a) The star-graph model

for net length estimate. (b) Inter-

connect delay computation in a pre-

routing placement. Ctotal is the total

(net and load) capacitance seen by the

driver.

G, Gordian performs
an optimization of
the quadratic objec-
tive functionP

nj∈nets(G) L
2(nj).

The linear constraints
include those on the
coordinates to be
initially within chip
boundaries, and then
within boundaries of
subregions–after each
Gordian phase in a
region, the cells are
partitioned, based on
their solution coor-
dinates, into two
subregions by a cut-
line perpendicular to
the optimization di-
mension (x or y).
This prevents cell

overlaps among the two groups and ultimately between ev-
ery subgroup of cells where this hierarchical process ends.
Gordian-L [13] applies an additional inner-iteration for the

optimization in each subregion, which essentially comprises of
dividing in the (m+1)’th inner iteration, each L2(nj) part of
the objective function by a net-centric linear-length quantity
given by ηmj =

P
ui∈nj |xmi − xmc | (for the optimization along

the horizontal dimension), where xmi is the value of the x-
coordinate of ui after the m’th iteration, and η0i = 1. This
has the effect of linearizing the objective function at the end
of the inner iteration.

3.2 Net Delays and Objective Function
We assume that we start with an unrouted placement 1,

and thus use the routing model shown in Fig. 2(b). For a net
nj with driver ud, and k − 1 ≥ 1 sinks, let Rd be the driving
resistance, Cg the load capacitance of a sink pin

2, r (c) the
unit wire resistance (capacitance), and ld,i the interconnect
length connecting driver ud to sink ui; see Fig. 2(b ). Refer-
ring to this figure and considering a sink ui in nj, the delay
D(ui, nj) to it (using the Elmore delay model) from the driver
ud, consists of three parts:

1
Our methods apply to routed placements as well. However, since rout-
ing consumes a dominant part of the PD phase, it would be beneficial to
perform a quick-and-approximate pre-routing estimate of critical path
delays using as-accurate-as-possible net route models and performing
TD re-placement before proceeding to the actual routing stage. This
will hopefully be beneficial for pre-routing corrections thus saving sig-
nificantly in design times.
2
For simplicity of exposition, we assume uniform loads for all sink pins,
though clearly our net-delay modeling and methods also apply to non-
uniform loads.

D1(nj) = Rd(c · L(nj) + (k − 1)Cg) (1)

D2(ui, nj) =
rc

2
· l2d,i + r · ld,iCg (2)

D3(ui, nj) = r ·(ld,i/2)((1−γ+γ/2)(c·L(nj)+(k−2)Cg) (3)

and D(ui, nj) = D1(nj) +D2(ui, nj) +D3(ui, nj) (4)

where γ ≤ 1, and note that the D1(nj) delay component is
the same for all sinks of nj . The idea behind the 3rd delay
component D3(ui, nj) is that without an exact route, we es-
timate that if ui lies in the initial γ fraction of the HPBB
of nj starting from the driver position, then, on the average,
half of the interconnect length ld,i lies on the main trunk of
the estimated route, and it “sees” the entire wire and sink
capacitance of the rest of the (1 − γ) fraction of the net.
Furthermore, incremental pieces of this part of the (ud, ui)
interconnect on the main trunk can also see incremental por-
tions of the γ fraction of the net and load capacitance, which
ultimately results in this interconnect seeing a γ/2 fraction of
the total (load + net) capacitance Ctotal.
We define the critical delay Dc(nj) of nj as:

Dc(nj) = D1(nj) +
X

ui∈critical(nj)
D2(ui) +D3(ui).

The intent here is to include in Dc only the delays of the set
critical(nj) of sinks of nj lying on near-critical paths. Note
that Dc is really a delay-criticality measure of nj rather than
an actual delay of some component of this net. We define the
allocated slack Sa(nj) of net nj as S(Pmax(nj))/(# of nets in
path Pmax(nj)), where Pmax(nj) is the maximum-delay path
through nj, and recall that S(P ) is the slack of path P .
How much minimization should be performed to reduce a

net nj ’s interconnect lengths for optimizing the circuit’s crit-
ical path delay depends not only on the net’s Dc value but
also on S(Pmax(nj))–a net with high Dc value but one lying
on a path with relatively high slack should have lower delay
optimization priority, and similarly for the reverse case. Fur-
thermore, two nets ni, nj on different max-delay paths with
similar slacks and similar Dc values, should not necessarily
be optimized similarly. The important parameter besides Dc

for determining optimization priority is the allocated slack Sa
of a net. The rationale for this is as follows. Let the max-
delay path through ni (nj) have 10 (5) nets in them. If the
delay optimization priority were the same for all the nets on
Pmax(ni) and Pmax(nj) due to their similarDc and path slack
values, then the delays on their critical interconnects (assum-
ing only one critical interconnect from the driver to a single
critical sink on each of the 15 nets) will be made almost equal.
This results in Pmax(ni) having twice the delay of Pmax(nj),
and thereby a higher probability of violating the target clock
speed. On the other hand, if the delay cost of each net is made
∝ Dc/Sa, then in our example, since the Sa for the nets in
Pmax(ni) are half that of those in Pmax(nj), the former will
have twice the delay optimization priority (i.e., delay cost)
than the latter leading to balanced delays for both critical
paths Pmax(ni) and Pmax(nj).
Based on the above arguments we define the delay cost

CD(nj) of nj as

CD(nj) = Dc(nj)/Sa(nj)
β

where β is an exponent of the Sa metric that allows magnifi-
cation (with β > 1) or shrinking (with β ≤ 1) of differences
in optimization priorities of nets on paths with with varying
allocated slacks; we use β = 1 in our experiments.

377



C21

inD

C12C11

C
11

1
C

(o
( 

   
  ,

   
   

),
 c

  )
21

C
12

(o(      ,      ), c  )
C

21
3

Dout

C21(w(     ), 0)

(w(     ), 0)C21

A1

C11 C13

C22 C24

W  3

W  2W  21

W  21(w(     ), 0)

A2

C21 C23

(max(w), c  )h

(w(A  ), 0)1

2(w(A  ), 0)

W(Σ   3iw(       ), 0 )

White space cells

C C C C

C C C W

New Cell

C12 14 15 16   1

C25

Row Boundary

Source

Sink

Row 1

Row 3

Row 2

(Σ

C C31 32 33 34 35 36

Details in (c)

Details in (b)

cost

Ww(       ), 0 )

w(       ), 0 )W(Σ   2i

  1i

 (a).

capacity

C31

inD

A1

A2
A  1(w(    ), c )5

C21 C22

From
,

C22 C23,
From

A
1

C
31

(o
( 

   
,  

   
 )

, c
 ) 6

inD

C32(w(     ),  0)

A
1

C
32

7
(o

( 
   

,  
   

 )
, c

 )

A C(o(    ,      ), c )2 32 8

(c)

C32

C31(w(     ),  0)

A  2   (w(    ) , c )   6

(b)

From
Row 3

Row 3
To

Figure 3: (a) The high-level network flow graph for placing cells A1, A2 in legal positions; w(u) is the width of a cell u. (b)

Details of flow graph structure for vertical flows between cell pairs (C1,1, C2,1) and (C1,2, C2,1); o(u, v) is the amount of horizontal

overlap between cells u and v. This flow graph structure only allows a flow of amount <= w(u) into a row cell u, and also the

vertical flow out of a cell v to go to all cells in the adjacent row that it horizontally overlaps. (c) Similar details of the flow graph

structure for flows from the new cells into vertically adjacent row cells.

Note that the Dc(nj) metric has a component Dc,quad(nj)
that is quadratic and a component Dc,lin(nj) that is linear in
length metrics. Thus we can write

CD(nj) = (Dc,quad(nj) +Dc,lin(nj))/Sa(nj)
β.

The desired TD objective function then is:X
nj∈moveN

(Dc,quad(nj) +Dc,lin(nj))/Sa(nj)
β (5)

where recall thatmoveN is the set of nets connected to cells in
moveC, the set of cells selected for replacement for reducing
delays in critical and near-critical paths.
Since we use a quadratic placer, we need to have a

quadratic version of Dc,lin(nj), which we do simply by replac-
ing the linear length metrics (e.g., L(nj), ld,i) in it by their
quadratic counterparts (e.g., L2(nj), l

2
d,i = (xd − xi)

2 + (yd −
yi)

2). Let us call this modified component Dc,lin quad(nj).
Then, the objective function for TAN is:X

nj∈moveN

(Dc,quad(nj) +Dc,lin quad(nj))/Sa(nj)
β (6)

In TAN we optimize the quadratic portion just like in
Gordian, and obtain the desired optimization of the linear
Dc,lin quad(nj) as in Gordian-L by dividing Dc,lin quad(nj)
by its current linear value in an inner loop as explained in
Sec. 3.1. Note that since we are performing both quadratic
and linear optimization, in the inner loop the quadratic-
optimization terms remain part of the optimization function
without modification (unlike the linear optimization terms).
Furthermore, since the analytical placement phase will be fol-
lowed by a legalizing detailed placer, we do not perform the
hierarchical partition-based optimization process of Gordian
and Gordian-L.

4. TD NETWORK FLOW BASED DE-
TAILED PLACEMENT

The output of TAN will generally be an illegal placement,
but it presents a good starting point for our TD network-
flow based detailed placer TIF to place the new cells in legal
positions to minimize critical path delays. To accommodate
new cell placement, existing cells will be moved minimally.
All cell movements are done using TD costs which are: a)
proportional to the delay sensitivities Ds(u)s–Ds(u) is the
delay change per unit displacement of u of the most criti-
cal interconnect through it, and b) inversely proportional to
the allocated slacks Sa(u)s–Sa(u) = Sa(nj) where nj is the
net on the max-delay path through u; further details are in

Sec. 4.3. Besides placing the new cells in legal positions in
a timing-driven manner, TIF also satisfies white space (WS)
constraints using novel techniques. The rest of this section
describes various aspects of TIF.

4.1 Network Flow Model
Fig. 3(a) shows a generic network flow graph with arc costs

and capacities, and a minimum cost flow of some amount x
from the source node S to the sink node T that passes through
the network. Network flow has found application in VLSI
CAD problems ranging from partitioning to placement [4, 5,
16].
Our network flow-based incremental placement algorithm

TIF is novel in the way it models arc costs, in that it is timing
driven, and in that it accurately solves white space constraints
for standard cell placement by overlaying constraints on the
flow determination process. The basic network flow model
for our detailed incremental placer is shown in Fig. 3(a). For-
mally, the network graph we use is F (V,A) defined as follows.
The node set V is the set moveC ∪ rowC ∪ IWS ∪ rowWS ∪
{S, T}, where moveC is the set of new cells that need to
be “pushed” to legal row positions so as to minimize critical
path delay, rowC is the set of existing cells in each row of the
placement, IWS is the set of intermediate row “WS cells”, and
rowWS is the set of row WS nodes, one per row, representing
the total WS available in each row. The arc set A is given
by pushA ∪ vertA ∪ horA ∪ IWSA ∪ rowWSA, where pushA
is the set of flow pushing arcs from S to each cell in moveC,
vertA and horA are the sets of vertical and horizontal arcs,
respectively, that represent cell movements in corresponding
directions when flows pass through them, IWSA is the set
of arcs going from intermediate WS cells to the correspond-
ing row WS nodes, and rowWSA contains the arcs that go
from each row WS node to the sink T . The purpose of these
different classes of nodes and arcs in F (V,A) are explained
below.
There is a push arc from the source S to each new cell v

of capacity the width w(v) of v, and for each such v, there
are two vertical arcs from it directed toward cells in rows im-
mediately above and below it (there are more details to these
“conceptual” arcs shown in Fig. 3(c)); the capacity of each
vertical arc is also w(v). A total flow of f =

P
v∈moveC w(v)

emanates from S, and a max-flow solution though the network
results in each new cell being pushed to one of its row-position
choices (modeled by the vertical arcs from it).
From each row cell, there are two vertical and two horizon-

tal arcs, one in each direction. The vertical arcs from u go to
cells in adjacent rows and model possible movement of u in
the respective vertical directions; the capacity of these arcs is
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w(u), since only u can move along these arcs. The horizontal
arcs from u model possible horizontal movement of u within
its row, and are potentially of capacity equal to the width of
the row from u to the corresponding end of the row, since u
could be moved up to either end of the row. However, since
arc cost estimates become more inaccurate for large displace-
ments of the cells, a capacity equal to the maximum of the
widths of the cell in adjacent rows or new cells that have ver-
tical arcs into u is imposed on its outgoing horizontal arcs.
This allows enough horizontal flow through u to cause its
movement that remove overlaps with cells vertically moved
to its position (via vertical flows into u). There can be in-
termediate white space within rows and these are modeled as
nodes (∈ IWS) with incoming horizontal and vertical arcs,
but each with only one outgoing arc (∈ IWSA) to the row
WS node Wi of the row; the arc’s cost is zero and capacity
equal to amount of that intermediate white space. Finally,
the total white space w(Wi) of row i (Ri) = (max row size
constraint) - (

P
[cell widths in it]) is also modeled as a node

Wi at the right end of the row with an incoming horizontal
arc from the rightmost cell and an outgoing arc (∈ rowWSA)
to T of zero cost and capacity = w(Wi).

4.2 The Simplex Network Flow Algorithm
The Simplex method is widely used to solve min-cost max-

flow problems. Its basic idea is to iteratively improve an initial
solution. It starts with a feasible but generally non-optimal
flow of the given amount f . After that, it tries to find negative
cycles, defined as cycles that have negative costs when trav-
eling in a certain direction. For each such cycle, the Simplex
method augments or pushes a flow of the maximum possible
value in the cycle in the negative-cost direction. It continues
doing so until there are no negative cycles, or flows in nega-
tive cycles cannot be further augmented because the capacity
of some arc in each cycle is either full in the direction of the
flow or there is no flow on some arc in the reverse direction.
Our implementation is based on the Simplex algorithm in [3].

4.3 Arc Cost Functions
As mentioned earlier, the TD cost of arc (u, v) should be:

i) proportional to the delay change or sensitivity of the most
critical interconnect of its start node u to unit length dis-
placements of u in the direction of the arc, and ii) inversely
proportional to the allocated slack of its start node u. De-
lay sensitivity, which is essentially the derivative of the delay
function w.r.t. start cell displacement, is a good measure of
performance cost when cells are moved by not-very-large dis-
placements from well-established positions, as in the case of
incremental detailed placement.
Eqns. 1-4 give the delay formulation for a sink ui on net nj .

The sensitivity of this delay to a displacement of either sink
ui or driver ud by ∆ld,i can be obtained by taking derivatives
w.r.t. ld,i, and following the components in Eqns. 1-4, these
are:

∆D1(ui, nj) = Rdc ·∆L(nj) ≈ Rdc ·∆ld,i (7)

∆D2(ui, nj) = rc · ld,i ·∆ld,i + r ·∆ld,iCg (8)

∆D3(ui, nj) = ∆D3a(ui, nj) +∆D3b(ui, nj),where

∆D3a(ui, nj) = r·(∆ld,i/2)((1−γ/2)(c·L(nj)+(k−2)Cg) (9)

∆D3b(ui, nj) = r · (ld,i/2)((1− γ/2)(c ·∆ld,i) (10)

∆D(ui, nj) = ∆D1(ui, nj) +∆D2(ui, nj) +∆D3(ui, nj).
(11)

Note that the ∆ld,i can be positive or negative based on
the movement of the cell in question (ud or ui) in the direction
of the arc e whose cost is being determined. The magnitude
of ∆ld,i for a horizontal arc is its capacity (which reflects the
maximum displacement of the cell), and for a vertical arc,
it is the spacing between the two adjacent rows that the arc
spans (this reflects the exact cell displacement if there is any
positive flow along this arc).
The displacement of a cell u in the direction of a flow arc

e emanating from it impacts critical nets connected to u in
two ways: a) as a sink on the most critical net connected to
it, and b) as a driver of the most critical net connected to it.
a) As a sink, there are two cases:
i) u is the most critical sink of its most critical net nj , in
which case its effect on the delay change on nj is

∆Da(u) = ∆D(u, nj) as explained inEqns. 7− 11.
ii) u is not the most critical sink of its most critical net nj ,
in which case its effect on the delay change on nj is

∆Da(u) = ∆D1(u, nj) +∆D3b(ui, nj),

which reflects the displacement’s effect on L(nj) and thereby
on ∆D(ui, nj) for the most critical sink ui on nj.
b) As a driver of its most critical net nk, the effect of u

0s
displacement on the delay on its most critical interconnect is:

∆Db(u) = ∆D(u, nk) given by Eqn. 11

Based on the above, the cost of an arc e (i.e., its unit-flow
cost) emanating from u is:

cost(e) = (∆Da(u) +∆Db(u)/cap(e)) · 1

Sa(u)κ

Note that Sa(u) = Sa(nj) = Sa(nk) as nj and nk lie on the
max-delay path through u, and κ is a variable exponent to
magnify or shrink cost differences among arcs emanating from
cells connected to critical and non-critical nets; κ = 2 gives
us the best overall results.

4.4 Tackling Illegalities in the Incremental
Placement DOP

As mentioned earlier, the core incremental detailed place-
ment problem is a DOP, and thus certain illegalities are in-
troduced in it by using a continuous optimization method
like network flow. We discuss two main illegality issues and
their in-processing techniques that we have developed, i.e.,
techniques that work simultaneously with the network-flow
algorithm.

4.4.1 Discrete flow requirement in vertical arcs
Figure 4(b) shows a vertical arc (u, v) from cell u to v of

capacity w(u) = 5 and unit-flow cost c1. This arc is used
to model the possible movement of u to the row immediately
above it (and thus to the position of v). The physical inter-
pretation of any flow along (u, v) has to be that u is moved
to v’s location, since any position in between its current posi-
tion and that of v’s is illegal. Thus the exact requirement of
the flow amount through (u, v) should be either 0 (no move-
ment of u) or w(u) = 5. Furthermore, any flow of x < w(u)
through (u, v) will also incur an inaccurate lower cost of x×c1
rather than the “full cost” of w(u) × c1, incurred in actually
moving u to v0s position. The resulting inaccuracies in cell
movements implied by such flows are shown in Figs. 4(b-c).
We rectify these inaccuracies, by initially having a capacity

of 1 and cost = w(u)×c1 (the full cost) for (u, v) as illustrated
in Fig. 4(d). When a flow of 1 passes through (u, v) correctly
incurring the full cost of (u, v), we update (u, v)’s capacity to
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Figure 4: (a) Initial placement; (b) “Regular” cost and capacity of vertical arc (u, v) and two flows through cell u. (c) The

physical translation of this flow leading to inaccurate incremental placement of affected cells. (d)-(h) New cost, capacity structure

of arc (u, v) with dynamic update, resulting in a flow more closely mimicking the corresponding physical movement of cells, and

the final accurate incremental placement of affected cells in (h). The dashed arrows in (c) and (h) represent displacements of

cells at the end of the arrows.

w(u) − 1 and cost to 0, thus correctly allowing an additional
flow of w(u)− 1 to pass through it at no cost. Note also that
any flow entering u can exit from either the two horizontal
arcs or the two vertical arcs including (u, v). Note that even
with a flow of 1 through (u, v), in the physical interpretation
we will move u to v’s position, and thus v will be shifted to
it’s left or right by a distance of w(u) to remove its overlap
with u. Also, the resulting costs of these movements in the
incremental placement of the cells affected by the flow of 1
through (u, v) will be incurred, irrespective of whether or not
there is any more flow on (u, v). Hence, for the rest of the
flow coming into u, if any, we encourage w(u)− 1 of it to go
through (u, v) at 0 cost by maintaining positive costs for the
two horizontal arcs from u as shown in Fig. 4(e-f), as well
as for the other vertical arc out of u. Only after a flow of
w(u) − 1 passes through (u, v), do we make the cost of the
horizontal arcs 0 (since u is no longer in this row) and their
capacity ∞; see Fig. 4(g). Fig. 4(h) shows the correct cell
movements implied by the resulting flow of Fig. 4(g).
As a final point, we note that whenever an arc e’s cost

and capacity are updated, appropriate updates are made to
various entities so that the correct list of negative cycles are
available for cost reduction in the current max-flow.

4.4.2 Split flows
Since a flow on a horizontal or vertical arc out of a cell u

represents movement of u in the direction of the arc, as far
as the incremental placement DOP is concerned, a flow into
u can exit from at most one outgoing arc of u.

Such a requirement,

C22C21
C23

A1

(w(A  ), 0)1

CC C31 32 33

New cellw(A1)=5
(5,c2)

(5,c1)S

f2=3

f1=2

Figure 5: Split flow through

new cell A1.

and in general completely
legal cell placement can
be accurately modeled by
an integer quadratic pro-
gramming (IQP) formula-
tion. However, the IQP
problem is well-known to
be NP-hard [6], and such
a formulation of the incre-
mental placement prob-
lem would be intractable.

The continuous optimization solution we obtain to this prob-
lem via the network flow model is in P and much faster. Of
course, it has no restriction on how many outgoing arcs from
a node can have a flow, resulting in what we term split flows
when more than one output arc from a node has positive
flows; see Fig. 5.
We have used two alternative heuristics to remedy split

flows, and thereby obtain legal cell placements, after an initial
min-cost max-flow through the network:
• Min-cost heuristic: For each cell u with an outgoing
split flow, follow each outgoing flow to the sink or up to
a certain distance from u, and determine the minimum-
cost of such paths among those from all the outgoing
flows. Set capacities of all other outgoing arcs to zero
(other than the arc that is contained in the min-cost
path). Perform another min-cost max-flow through the
new network.

• Max-flow heuristic: For each cell u with an outgoing
split flow, determine which arc has the maximum flow.
Set capacities of all other outgoing arcs to zero. Perform
another min-cost max-flow through the new network.

Our experiments revealed that the max-flow heuristic per-
formed much better in terms of the min-cost metric, than the
min-cost heuristic for a distance of 1. We thus use the latter
heuristic in all our network-flow formulations.

4.5 Satisfying White Space Constraints
It would seem that row white space constraints are auto-

matically satisfied due to the structure of flows through in-
termediate WS cells and the row WS node which have outgo-
ing arc capacities equal to the amount of WS they represent.
However, problems may arise due to the non-binary nature
of flows through vertical arcs as discussed in Sec. 4.4. Refer-
ring to Figs. 4(e-f), assume that u is in row i Ri, v in row
i − 1 Ri−1, and that the total WS in Ri−1, w(Wi−1), is 3.
A total flow of f = 2 (note that a total flow of 5 depicted
in Figs. 4(e-f) may not be available) coming from the left of
Ri into u and then to v and then right into the WS node of
Ri−1, and finally to the sink T will be allowed. However, if
that is the only flow on arc (u, v), then the problem comes in
the translation of this flow into cell movements3–when u is
actually moved up to Ri−1, since w(u) = 5, there will actually
be a WS violation in Ri−1 of w(u)− w(Wi−1) = 2.
Thus corrective measures are needed subsequent to one

min-cost max-flow iteration followed by its physical transla-
tion in order to remove violations from rows wherever they
exist. On a different, but as we will see related, note, even
though there may be enough WS in, say, Ri, to accommodate
all new cells that have vertical arcs into Ri, due to the finite
capacity of horizontal arcs (e.g., the horizontal arcs from u
in Fig. 4(b) have a capacity of 7), not all these cells can be
moved into Ri in a single min-cost max-flow iteration. Thus a
series of min-cost max-flow iterations are performed to push
new cells into nearby rows, as well as to correct WS vio-
3
Note that the overlap of u and v shown in Fig. 4(c) is not the issue
here, as given enough WS in Ri−1, v and subsequent cells to its right
can be moved to the right to remove all overlaps without violating the
WS constraint in Ri−1.
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lations (from previous iterations) in rows where they exist,
while minimizing TD costs.

Fig. 6(a) showsboundary
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Figure 6: (a) Part of the detailed flow
graph for violation correction in row i.

(b) The global flow graph for a combi-

nation of row violation correction and

insertion of new cells into legal row po-

sitions.

an arc going from
the source S to the
rightmost cell of a
row Ri with vio-
lation violi in or-
der to push out a
cell of size at least
violi from the row.
Thus a detailed flow
graph will have a
structure that is a
combination of that
shown in Fig. 3(a)
and discussed in Sec.
4.1 for non-violating
rows, and violation
correction arcs from
S to violating rows
shown in Fig. 6(a).
Flow iterations in
the detailed flow graph
can be very time-
intensive due to the
large numbers of nodes
and arcs in it. How-
ever, if we can find a

good direction for global flows to go between rows and from
rows to the sink T (via their WS arcs), then, instead of solving
the flow problem at the level of detail of the myriad number
of individual arcs, we can refine such a fast global flow by
following it with a more precise flow in a subgraph of the
detailed flow graph induced by the global flow.
The global flow graph (see Fig. 6(b)) is the directed graph

Fg(Vg, Ag) where Vg = moveC ∪ {v(Ri)|v(Ri) is a node rep-
resenting row Ri} ∪ {S, T}, where recall that moveC is the
set of new or movable cells, and Ag contains: vertical arcs
between the row nodes v(Ri)’s of adjacent rows and from the
new cells to the v(Ri)’s of their adjacent rows, push arcs from
the source S to the new cells (as in the detailed flow graph),
violation-correction arcs from S to WS-violating row nodes,
and finally arcs from row nodes with WS to the sink T . The
capacities and costs of relevant arcs are shown in Fig. 6(b).
The capacity of a vertical arc between two row nodes v(Ri)
and v(Ri−1) is w(R), the maximum row size, and its cost
Ci,i−1 is the weighted average of the detailed vertical arc costs
between the two rows. The capacity of an arc from v(Ri) to
T is the WS w(Wi) in the row, and its cost Ci is the proba-
bilistic average of all left-to-right detailed horizontal arc costs
in Ri

4.
The iterations of alternating global and detailed flows are

shown in Fig. 7. Using the combination of global-detailed flow
graphs gave us a run-time reduction by about 65% compared
to using only a detailed flow graph, at the cost of about 1-2%
delay deterioration.

5. EXPERIMENTAL RESULTS
All TD benchmarks we have created and all placement out-

puts of FlowPlace and Dragon along with a pre-routing STA
tool are available at [7]. We used three benchmark suites in
our experiments: 1) The TD-Dragon suite of [15], 2) Faraday

4
The probability of a horizontal arc (x, y) in the detailed flow graph
being crossed by a flow that goes right through Ri and directly into
T is given by (distance of right boundary of x from left boundary of
row)/(row length), which assumes that a flow into the row can come in
at any point with uniform probability.

while not (all new cells pushed and all rows
free of WS violations) do begin
1. Construct global flow graph;
2. Determine a min-cost max-flow in it;
3. Construct a subgraph of the detailed flow
graph induced by the global flow;
4. Determine a min-cost max-flow in it;
5. Perform translation of the detailed flow
into corresponding cell movements;
end while.

Figure 7: Alternating global and detailed flow algorithm.

benchmarks from [2] and 3) TD versions of the IBM bench-
mark suite that we have constructed from [1]. The first set of
benchmarks has complete cell and timing information. The
second set has no cell delay information. For the IBM bench-
marks, only cell size and net lists are given, so we have to
identify FFs. We do this by identifying cycles, and then
choose one cell in each cycle to be a FF. To minimize the
# of FFs, we choose cells that can break the most # of cy-
cles as FFs. Furthermore, if any path has an excessive length
(more than 220), we determine more FFs on such paths to re-
duce their lengths to lie in the range 180-220. The resultant
percentage of FFs is about 13%. Because of the lack of cell
delay information in the latter two benchmarks, cell delays
are set to zero. Also, because the Faraday and IBM bench-
marks include macro cells which we do not handle now, all
macro cells are changed to standard cells with a W/H ratio of
4:1. All benchmarks are initially placed by Dragon (the TD
Dragon benchmarks are also placed by TD-dragon which can
only place this suite)5. We then identify paths with delays
of at least 90% of the max-path delay as critical paths. The
γ value (Eqn. 3) is set to 1. Except for TD-Dragon bench-
marks which are run with whitespace (WS) range from 3-10%
since these circuits are relatively small, all other benchmarks
are given a 3% WS6. Table 1 shows various characteristics of
the placed benchmarks. For TD-Dragon benchmarks initially
placed by Dragon, we collected data both with and without
cell delays. Electrical parameters we use are for 0.18 µm:
r = 7.6 × 10−2 ohms/µm, c = 118 × 10−18f/µm, Rd = 1440
ohms, and Cg = 10

−15f ; for TD-Dragon benchmarks, Rd and
Cg are derived from their timing library files and are similar to
the above values. The unit length for the IBM benchmarks
was taken as 0.1125 µm, and that for the Faraday ones as
0.0005 µm7. Results were obtained on Linux and Windows
XP Pentium IV machines with up to 1GB of main memory,
and almost the same program execution speeds.
We first establish the appropriateness of our pre-route net

delay estimates of Sec. 3.2. Comparing our estimated delays
in Table 1 for TD-Dragon benchmarks with their routed de-
lays given in [15], the four corresponding delay pairs in ns are
(5.1, 3.8), (6.2, 4.29), (4.0, 3.39) and (8.2, 6.7), with our val-
ues given first. We can see that our delays are generally only
22% larger, and that there is good fidelity between the two
delays. Table 2 shows that with the initial placement done
by the state-of-the-art WL-driven placer Dragon, FlowPlace
achieves up to 34% and an average of 18.3% delay improve-
ment with less than 8% WL deterioration. Table 3 shows
that even starting with circuits placed by a TD placer, we
can improve results appreciably–with 10% WS, we get up
to about 10% and an average of 6.17% delay improvement.

5
All placement results reported here including that of FlowPlace are
without row spacing, as is also the case for results in [14, 15]. Flow-
Place’s delay improvements with row spacing are a little better (by
2-4.5%) than without row spacing; see [7].
6
A WS of α % means that the max allowable row size for FlowPlace
= (1 + α/100) (max row size of placed input).
7
These values are chosen so that the cell heights in µm are roughly the
same as in the TD-Dragon benchmarks.
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Ckt # cells # nets crit. avg. Init. pl delay HP
len. len. runtime (ns) BB

(secs) (105µm)

ibm01 12506 13636 134 128 402 2.5 1.8
ibm02 19342 19325 147 140 864 3.6 4.2
ibm03 22853 27118 113 102 1283 2.3 5.5
ibm04 27220 31679 121 119 1501 3.8 6.7
ibm05 28146 27490 21 45 1594 1.44 10.1
ibm06 32332 34654 113 110 1800 4.7 5.6
ibm07 45639 47786 107 107 2216 2.2 9.3
ibm08 51023 50227 14 49 5973 2.1 9.7
ibm09 53110 60606 125 130 4032 4.3 11.0
ibm10 68685 74179 178 174 4578 4.1 18.1
ibm11 70152 81402 127 128 4415 2.6 16.2
ibm12 70439 76313 181 182 4850 10.3 23.5
ibm13 83709 99106 134 128 5189 3.7 19.6
ibm14 147088 152138 211 201 7432 5.5 38.1
ibm15 161187 186218 202 194 7629 9.1 50.0
ibm16 182980 189259 192 184 7714 12.2 53.1
ibm17 184852 188503 220 203 8259 17.2 79.1
ibm18 210341 201640 71 79 9454 8.0 50.2

TDmatrix 3083 3200 73 65 254 5.1 1.0
TDvp2 8714 8789 75 69 966 6.2 3.4
TDmac32 8902 9115 29 27 1634 4.0 4.0
TDmac64 25616 26017 39 37 6854 8.2 20.4
matrix 3083 3200 60/71 62/64 70 0.5/5.2 0.9
vp2 8714 8789 16/69 20/65 161 2.5/6.7 3.2
mac32 8902 9115 20/25 19/25 184 3.0/4.4 3.9
mac64 25616 26017 36/37 33/36 1364 7.2/9.1 17.8
DMA 11734 11815 16 37 384 1.2 2.1
DSP1 26301 27590 24 58 1527 2.7 4.3
DSP2 26281 27574 25 57 1602 2.7 4.3
RISC1 32622 33186 12 57 1952 3.3 5.9
RISC2 32622 33186 12 59 1906 4.1 6.1

Table 1: Placed benchmark circuit characteristics. “crit.
len.” is the # of cells in the most critical path, and “avg. len.”
is the average numbers of cells among all critical paths. The
benchmark names with TD as the prefix were placed by TD-
Dragon and the rest by Dragon. The “delay” column gives the
critical path delay of the placed benchmarks. For TD-Dragon
benchmarks placed by Dragon, two values are given for some
attributes: the left one is the data ignoring cell delay, while the
right one considers cell delay. Over all benchmarks, the avg.
runtime for Dragon is 3270 secs, while the average runtime for
TD-Dragon for the TD-Dragon circuits is 2427 secs.

We also used the linear-delay model of [14, 15] to compare
more directly to their techniques. Results for this model are
under the “TDD model” column–we obtain, with 5% WS,
up to 7.9% and an avg. of 3.4% improv. over TD-Dragon,
while [14], with 10% WS, obtained an avg. of 2.8% improv.
over TD-Dragon. FlowPlace is also quite fast: it completes
incremental placement in about 17.5% of the placement time
of Dragon and in about 12% of the time of TD-Dragon. WL
deterioration on the avg. over all benchmark suites is < 8%.

6. CONCLUSIONS
We have presented various novel and effective techniques

for TD incremental placement. These include: a) pre-routed
net-delay estimates with good fidelity; b) delay-sensitivity
and allocated-slack based flow arc costs; c) simultaneous
quadratic and linear optimization in our TD analytical placer;
d) novel global and detailed flow graph structures for per-
forming TD cell placement and white-space constraint satis-
faction; and e) in-processing techniques for correction of ille-
galities arising from solving a discrete optimization problem
(TD incremental placement) by a fast continuous optimiza-
tion method. The end-result is a robust, effective and effi-
cient TD incremental placer FlowPlace that achieves signifi-
cant delay improvements in quick time on circuits placed by
state-of-the-art WL (Dragon) and TD (TD-Dragon) placers.
FlowPlace also scales well with circuit size; e.g., we obtained
about 34% delay improvement for a 210K cell circuit ibm18
in about 24 minutes with a WL deterioration of only 2.6%.
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