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ABSTRACT
An approach to robust system level mixed signal design is
presented based on analog platforms. The bottom-up char-
acterization phase of platform components provides accurate
performance models that export architectural constraints to
the system level. From the one side, performance models
can be affected by residual errors and usually do not con-
sider process variations and modeling uncertainties. Con-
versely, behavioral models cannot match accurate circuit
level simulations, so that during the mapping (exploration)
process circuit configurations difficult to be realized may be
obtained. We propose a methodology that extends tech-
niques from optimization and design centering to system
level analog design exploiting general, implicit architectural
constraints to control the robustness of the solution. The
approach allows quantitative extension of robust techniques
to hierarchical designs. Its effectiveness is illustrated with
the design of a pipeline A/D converter and a UMTS receiver
front-end.

Categories and Subject Descriptors: B.7.2 [Integrated
Circuits]: Design Aids

General Terms: Algorithms

Keywords: robust hierarchical design, system-level design,
analog platforms.

1. INTRODUCTION
Robust design and optimization have traditionally been

closely related subjects. In fact, it is almost impossible to
consider an aggressive optimization scheme without consid-
ering the robustness of the achieved solutions. Early ap-
proaches to computer aided design centering in an analog
context date back to the early 80s [1, 2, 3]. All the ap-
proaches have a common dependency on the model used
to estimate performance degradation on design parameters
and, if yield is actually considered, on joint probability func-
tions used to compute yield expectations. However, robust
optimization for analog design has not been developed at
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the same level as nominal optimization. The largest ob-
stacle on the way is represented by the complexity of the
resulting optimization problem, that is usually captured as
a semi-infinite programming problem. In [4], a circuit opti-
mizer based on simulation is enriched with robust design fea-
tures, showing significant improvements albeit constrained
with scaling issues for complex circuits. The lesson learned
from early attempts of including process variations and mis-
match in automated circuit design is the tremendous com-
plexity of the resulting problem. A direct extension of these
techniques to system level analog and mixed-signal design
is therefore deemed very unlikely to happen. Alternative
approaches based on approximate models must be devel-
oped at the system level, where the models generated with
classic approaches based on Surface Response Methodology
(SRM) [5] become too expensive to build because of the
number of primal parameters and the complexity of the nec-
essary simulations.

System level design should embrace robust approaches for
two separate reasons. From the system level, mixed signal
design has to cope with model inaccuracies that are intrinsic
to the behavioral models exploited in design explorations.
The more complex the system, the larger the hierarchical
structure of the design and the higher the risk when per-
forming nominal design optimizations. In fact, composition
of high level models may provide results whose accuracy is
not easily bounded, so either a costly iterative scheme be-
tween top-down system level design and bottom-up verifica-
tion or relaxed (robust) constraint propagation is adopted.
From the implementation level, any performance model is
subject to two kinds of inaccuracies: intrinsic modeling er-
rors and process variability. While some control is available
on the former source (even if potentially very expensive or
restrictive), the latter cannot be solved with deterministic
approaches.

In this paper, we extend the Analog Platform Based De-
sign (APBD) paradigm [6] with robust design techniques.
As in other approaches, e.g. [7] and [8], robustness is achieved
through maximization of margins with respect of system
specifications. However, we argue that the performance
models which annotate platform components allow accurate
robust approaches since there are no constraints (e.g. con-
vexity or explicit form) on the original models. Furthermore,
a general optimization approach based on simulated anneal-
ing allows exploiting arbitrary cost functions when formu-
lating the optimization problem, thus increasing designers’
flexibility in performing system level design. The examples
that end this paper show the effectiveness of the approach.
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2. BACKGROUND

2.1 Previous Approaches
Several robust approaches to analog design have been pro-

posed during the past few years. Initially, relaxation of sys-
tem constraints during top-down optimizations where ex-
ploited as an attempt to overcome poor architecture models.
We can date back the first rigorous attempt in this direction
with the top-down constraint-driven methodology presented
in [9] and demonstrated in [10, 11]. Since in pure top-down
approaches no detailed information is available on imple-
mentation as architectures have not been selected in the first
design steps, the methodology formulates the optimization
problem (constraint propagation problem) as the maximiza-
tion of a set of flexibility functions. Flexibility functions are
introduced to capture the complexity of implementing a spe-
cific set of performances. Therefore, in place of optimizing
for power or area, the optimization problems maximize the
“flexibility” of achieving the optimum set of performances
(i.e. minimize the “effort” of implementation). Albeit rig-
orously formulated, the methodology was rather limited in
performing aggressive optimizations because of the halo in-
herently inserted by the heuristic flexibility functions.

More recently AMGIE [12] proposed to carry out hierar-
chical design via a set of optimization problems where, at
each abstraction level, component performances are bounded
to predefined ranges. A robust approach is achieved insert-
ing margins ∆P on all performances, so as to compensate
for modeling inaccuracies. However, ∆P has to be deter-
mined a-priori so that its final value is not the result of an
optimization problem. In particular, the cost of meeting the
margin on performances is not traded off with the potential
improvements in system performances, i.e. the sensitivity of
the goal function on ∆P is not evaluated at all, leaving a
wide discretionality in determining performance margins.

Recent advances in convex optimization [13] have revi-
talized analytical approaches to analog design and, conse-
quently, robust design. ROAD [14] introduces a robust op-
timization approach based on posynomial performance mod-
els. To improve accuracy, a simulator-in-the-loop approach
is selected and local posynomial models generated around
design points. It is then possible to deal with non-convex
design spaces exploiting the possibility of exactly solving
large scale convex programs. OPERA [7] introduces a ro-
bust geometric optimization problem to maximize yield over
statistical variations. Design process variations are captured
with confidence ellipsoids and approximated to yield a con-
vex problem. The robust design formulation computes opti-
mal design parameters to meet a predetermined yield target.
Convex optimization approaches, however, tend to limit de-
signers in selecting cost function and formulating their prob-
lems. The efficiency achieved in actually solving the problem
may be then counterbalanced by the effort required to model
the system and validate the analytical expressions used to
set the problem. Moreover, classic approaches to system
design with convex optimization are based on generating a
flat optimization problem, where all circuit topologies have
been selected, thus setting a challenging problem as system
complexity grows and mixed-signal designs are approached.

Recently, a hierarchical approach to robust system level
analog design has been presented [8]. Performance centering
is sought through concurrent maximization of system level
flexibility based on behavioral models and implementation

level performance margins based on performance models.
A possible limitation of the approach is the requirement of
posynomial models to capture both system level and imple-
mentation level constraints. While this assumption is cer-
tainly acceptable for some classes of analog systems, it may
be in practice a hard one to satisfy as it becomes increas-
ingly difficult to guarantee (or even assess) model convexity
as design hierarchy becomes deeper and high-level behav-
ioral models are exploited in mixed-signal design space ex-
plorations.

In this paper, we extend the hierarchical approach re-
moving the posynomial constraints on design formulation.
Extending the approach to analog platforms, we obtain a
two-fold advantage. First, very accurate performance mod-
els (not constrained to be posynomial) can be exploited to
estimate implementation margins. It is then possible to ac-
curately weigh implementation margins since model inaccu-
racies are kept to minimum levels. Second, arbitrary system
behavioral models and constraints can be used to formu-
late the optimization problem since analog platform-based
design relies on global stochastic optimization approaches
to find optimal implementations. Designer can then specify
their systems without recurring to posynomial approxima-
tions and capturing arbitrary non-convex constraints.

2.2 Analog Performance Models
Performance models play a critical role in analog system

level design and particularly in platform-based design. Per-
formance models are used to constrain the optimization pro-
cess to achievable performances within the considered archi-
tecture space. Therefore, general approaches to system-level
robust design have to consider the nature of performance
models explicitly during system optimizations. In the re-
cent few years, a number of papers have appeared on the
generation of performance models [15, 16] and even direct
modeling of the feasibility region [17, 18]. The latter set
of works aims at providing a classifier that separates feasi-
ble n-tuples of performances from unfeasible ones, without
recurring to a regression based approach. From the system
level perspective, feasibility models allow casting exploration
problems in a more intuitive performance space rather than
mapping down to implementation parameters. The number
of variables in the optimization problems is consequently
reduced (at least in non-degenerate cases) and architecture
selection becomes readily available as different implementa-
tion topologies may share common performance spaces.

Analog platform performance models rely on Support Vec-
tor Machines (SVMs) as a way of approximating the classi-
fier P discriminating the feasible performance space. Given
a set {xn} of simulated performance vectors (as detailed
in [17]), SVM training selects a subset of vectors xi (sup-
port vectors) and corresponding weight coefficients α so that
the classifier function is obtained as

f(x) = sgn(
∑

i

αie
−γ‖x−xi‖

2

− ρ) (1)

where ρ is a biasing term (also determined during training)
and γ is an SVM parameter. Performance vectors x are
obtained through simulation, so that maximum generality
is available in terms of allowable circuits and performance
figures. Moreover, SVMs can be generated so as to min-
imize the impact of false positives, i.e. unfeasible perfor-
mances classified as feasible. In fact, several case studies
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Optimization Space
Constraints

Architecture

System

Constraints

Platform level l + 1

Platform level l

Figure 1: Platform mapping optimization process from
level l + 1 to level l.

have shown that the approximation around support vectors
is usually restricted in small regions, so that optimal pre-
dicted performances are very close to some actually simu-
lated performance vectors. This is an amenable feature to
enable effective hierarchical design with minimum risk of
incurring in iterations and redesign.

3. ROBUST PLATFORM BASED DESIGN

3.1 Formulation
Analog platform-based design [6] is a meet-in-the-middle

design paradigm that allows effective system level design
based on libraries of components (platforms). The essence
of the approach is pictorially represented in Fig. 1 and con-
sists of a bottom-up platform generation phase, where ar-
chitectural constraints are characterized and exported to
higher levels, and a top-down optimization phase, where
system constraints are intersected with architectural con-
straints and the system cost is minimized. At the end of
the optimization, system specifications are mapped on the
available platform library and the process is repeated. The
optimization process mapping platform l + 1 onto platform
l is mathematically captured as

minκ cost(ζ)

s.t.







ζ = F(κ)
S(ζ) ≤ 0
P(κ) ≤ 0

(2)

where ζ is a set of system performance indices, κ is a set
of platform configuration parameters, F is the behavioral
model used to map κ into ζ, S(ζ) represents the set of con-
straints imposed on ζ by system specifications and P(κ) cap-
tures the set of constraints on the configuration parameters
κ imposed by the architecture space. The set of constraints
in (2) can be visualized defining two sets in the optimization
space. The system constraints S(ζ) ≤ 0 define the set YS of
feasible performances from the system perspective. The ar-
chitectural constraints P(κ) ≤ 0 define, through the behav-
ioral model F , the set YA of achievable performances with
the current architecture (platform). Fig. 2 shows a pictorial
representation of the two sets and how mapping is the min-
imization of the cost function on YS ∩ YA. Nominal design
optimization computes the vector κ that produces the min-
imum cost in (2). At optimum, the Karush-Kuhn-Tucker
conditions require for active constraints that S(ζ) = 0 and
P(κ) = 0, which means that the optimized system is, in
general, at the “edge” of implementability on several con-

YS

Platform l

Platform l + 1

YA

δ

Optimization Space

ǫ

Figure 2: Enlarged view of the optimization space in Fig.
1.

straints from both a system and an architecture perspective.
However, any modeling error in F may translate in actual
performances ζact (computed with accurate models) to vi-
olate S. Similarly, any modeling error in P may translate
in platform l performances being unfeasible. When similar
events occur, system design needs either to be iterated or
degraded performances have to be accepted. Degradation
may be rather severe and force costly redesigns when ag-
gressive specifications are addressed. Even accurate models
may fail if performance degradation is due to process pa-
rameter dispersion or temperature variation. In general, it
is deemed unfeasible to export this information with perfor-
mance models as for each circuit configuration κ a function
has to be provided φ(ζ; κ) which computes the probability
density function of performance ζ given the circuit sizing κ.
As the approximation of φ usually relies on expensive Monte
Carlo simulations around κ, the generation of φ(ζ, κ) over
the entire configuration space K is hardly doable.

To address this problem, an alternate formulation of the
optimization problem is required. The sets of constraints
S and P have to be satisfied with some margin so as to
compensate for modeling inaccuracies. We can write the
new set of constraints as S(ζ) ≤ ǫ and P(ζ) ≤ δ. Margins
have an intuitive interpretation, defining a sphere (as de-
fined by the norm adopted) Sζ(ζ

∗, ǫ) for system constraints
and Sκ(κ∗, δ) for performance constraints around the opti-
mal pair {ζ∗, κ∗}. The objective of the optimization prob-
lem is then changed so as to maximize margins δ and ǫ,
which corresponds to the maximization of the volumes of
the spheres around the optimum configuration and perfor-
mance points. The original cost function is inserted as an
added constraint with a dedicated ǫc. Given a minimum
cost target c̃, at optimum ǫc is maximized constrained on
the other margin variables, so that a tradeoff is evaluated
between cost value and robustness during the optimization.
Therefore, the problem (2) becomes

minκ

(
∏

i δi

)−1
(
∏

j ǫj

)−1

s.t.















ζ = F(κ)
cost(ζ) ≤ c̃ + ǫc

S(ζ) ≤ ǫ
P(κ) ≤ δ

(3)
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System level constraints are usually available in explicit form,
therefore S(ζ) ≤ ǫ can be immediately written as



















s1(ζ) − ǫ1 ≤ 0
...
sp(ζ) − ǫp ≤ 0
ǫ1 > 0, . . . , ǫp > 0

(4)

and included in the optimization problem. Additional con-
straints may be inserted to set specific relations on ǫ, e.g. ǫ1 =
2ǫ2. The problem is more involved with performance mod-
els, as analog platforms provide P in implicit form with a
non-linear function f(κ) → {−1, 1}. In this case, we inter-
pret the margin δ in the following way. For a performance
model P, its frontier ∂P defines the boundary of the feasi-
ble region. Given a configuration point κ satisfying perfor-
mance constraints P(κ) = 11, its margin δ can be obtained
finding the closest configuration κ̂ ∈ ∂P to κ and comput-
ing the norm of κ̂ − κ. If all components κi of κ have the
same weight, then δ = ||κ̂ − κ|| · 1. In this case, minimiz-

ing
(
∏

i δi

)−1
is equivalent to maximizing the volume of the

sphere around κ that is inclosed in the feasible space (within
its boundary ∂P). The general case of different weights on
different performance components can be immediately ob-
tained adopting a different norm when computing ||κ̂ − κ||.
Since the different performances in the performance vectors
used to generate P can differ in orders of magnitude they are
all pre-conditioned to be normalized in the interval [−1, 1].
In the following paragraph, we show how to compute δ based
on the SVM representation of P.

3.2 Performance Margin Evaluation
The problem of finding κ̂ given κ and P is analogous to

the problem of finding the largest hyper-ellipsoid enclosed
by ∂P. Initially we start solving the case of hyper-sphere
enclosure, extending to the general case at the end of this
paragraph. By definition, κ̂ is the point on the boundary
∂P which shows minimum distance from κ. To simplify
notation, we set x = κ̂ and a = κ. Therefore, we can obtain
κ̂ solving the following optimization problem

minx ‖x − a‖
s.t. x ∈ ∂P

(5)

∂P is implicitly defined from (1) as
∑

i

αie
−γ‖x−xi‖

2

− ρ = 0 (6)

The optimization problem obtained substituting (6) into
(5) is evidently nonlinear. At optimum, the Karush-Kuhn-
Tucker conditions require that















∑m
i=1

αie
−γ‖x−xi‖

2

− ρ = 0

xj − aj = λ · γ ·
(
∑m

i=1
αie

−γ‖x−xi‖
2

xi,j − ρxj

)

j = 1, . . . , n;
λ ≥ 0;

(7)

where λ is the Lagrange multiplier. The nonlinear sys-
tem (7) can be solved with Newton-Raphson (NR) provid-
ing quadratic convergence if x0 is “close” to x̂. ‖x̂ − x‖
is therefore the radius of the largest hyper-sphere enclosed

1the performance constraint P(κ) = 1 is consistent with the
formulation in (2) as it is equivalent to the argument of sgn
in (1) being ≤ 0 after a sign change.

in ∂P. However, the nonlinear nature of (7) generates two
problems. First, a multitude of solutions may exist, so we
could achieve convergence on a point on ∂P which is not
the closest to x; second, NR may not converge at all if a
sufficiently good initial guess is not provided. To cope with
the above problems we first adapt to our problem a more so-
phisticated implementation of the NR method, the damped

Newton’s method [13], which tries to improve on basic NR
poor global convergence. Then we add some ad hoc heuris-
tics to generate a good initial guess.

Solving for λ one of the equations in (7) and substituting
the result into the other equations, we obtain a n-dimensional
system in the unknown vector x, which can denoted as
F (x) = 0. We then combine NR method with the minimiza-
tion of the function f = 1

2
‖F ‖2, in the sense that we accept

the solution provided by each NR step only if the step con-
siderably reduces f . If this does not happen we backtrack
along the NR direction d starting from the old point xold

until we have an acceptable new point xnew = xold + νd

(0 < ν ≤ 1). Since the NR step is a descent direction for f ,
we are guaranteed to find an acceptable point by backtrack-
ing. The backtracking routine is based on [19] and consists
in defining g(ν) ≡ f(xold +νd), as the restriction of f along
d, and finding ν so as to minimize g. To save on the number
of function evaluations a cubic approximation of g is actu-
ally computed based on available information on g and its
derivative. Since the improved NR method can still occa-
sionally fail converging on a local minimum of f , we can try
a new starting point according to the following heuristics:

• we compute the distance along reference axes in R
n

using bisection based mono-dimensional methods. It
is then possible to bound the distance of x̂. We ob-
served that in practical cases whenever this bound is
smaller than some δmax (whose actual value depends
on normalization of x), convergence is always achieved
and the correct x̂ is returned by Newton-Raphson;

• we set x0 = a to start iterations as we expect P to de-
fine a relatively “thin” feasible space. Whenever the
previous heuristics is not satisfied, we run N NR itera-
tions perturbing the initial point x0 in the direction of
the axis where the minimum distance has been found
in the previous point (iteration are aborted after a pre-
determined number) until the minimum distance solu-
tion is reached. We observed that N = 5 is generally
sufficient to achieve convergence;

• in case of non-convergence, we return the bound com-
puted in the first point. In practice, there is no con-
sequence in doing this because it always happened for
points deep in ∂P in our tests.

The above procedure can be extended to hyper-ellipsoids
enclosure by scaling x with a unitary matrix E to obtain
x

′ = Ex and extending the previous approach on x
′. Mar-

gins found in this way need to be scaled back to the initial
space through E−1. This allows selecting different margins
on different performances.

The overall algorithm complexity has been computed to
be O(n2m+nmcexp) where n is the number of performance
figures in P, m is the number of performance vectors and
cexp is the cost for evaluating the exponential function as
in (1).
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4. EXAMPLES
In this section we apply the previous results to the case

studies already reported in [6] and [20]. The original designs
are reformulated according to (3). The selection of good
cost functions is a crucial issue in system level optimization,
with implications that may become subtle when maximizing
robustness. In our experiments, we used the following cost
prototype

1
(

∏k
i=1

(

αi + tanh(βiδi)
)µi

) 1

k
·
(

∏r
j=1

ǫ
θj

j

) 1

r

(8)

A few considerations may help explaining the form of (8).
First, the volumes of the δ ellipsoid and the ǫ hypercube
increase with number of dimensions for constant margin,
therefore an overall normalization is achieved with the pow-
ers 1

k
and 1

r
of δ and ǫ products. As far as architecture

margins are concerned, we can partition δ = {δ1δ2 . . .},
where δi refers to the single platform component. Elements
δi,j of δi are strongly related describing an ellipsoid em-
bedded in Pi. Therefore a single element is sufficient to
describe the margin of the ith component. If we consider
that the composition of blocks is as robust as the weakest
block, we can obtain a different cost function considering
mini

(

αi + tanh(βiδi,1)
)

. The tanh function is used to sat-
urate the sensitivity on δ as margins too wide may cause
degenerate robustness/performance tradeoffs. Finally, if we
analyze the Pareto optimal curves as a function of ǫ and δ,
we can easily obtain that the relative importance of two ǫ
parameters is controlled by

θa
∆ǫa

ǫa
+ θb

∆ǫb

ǫb
= 0 (9)

so that θa

θb
sets the relative impact of variations of ǫa and ǫb.

When δ and ǫ are considered, we obtain (for small βδ)

θa

r

∆ǫa

ǫa
+

µb

k

βbδb

αb + βbδb

∆δb

δb
= 0 (10)

which makes it clear how the parameter α can be used
to control sensitivity on δ without recurring to exponent
ranges that may generate numerical issues during optimiza-
tion. Equations (9) and (10) can be used as guidelines to
set parameters in (8), as exemplified in the following case
studies.

As a final remark, we notice that architecture performance
margins are taken on lower-dimensional models than the cor-
responding platform ones. In fact, some parameters are sim-
ply “ancillary” parameters required for correct composition
of platform models, and as such not related with the ro-
bustness of the solution. One other parameter, which we
did not include when computing margins at the component
(architectural) level, is power. Power may be considered as
an annotation on circuit performances. In fact, in our case
studies if a given circuit exhibits a larger (or smaller) power
consumption with respect to the estimated one it does not
affect circuit performances (which is obviously not true if
gain is not met, for example). We remark that this is an
arbitrary design choice and is not related to the presented
methodology. On the other hand, in our examples we in-
troduce margins on power at the system level to trade the
global power consumption with the robustness of the so-
lution. Also, area has not been exploited as a robustness
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Figure 3: Pipelined converter simplified block diagram—
Feasible performance models have been generated for the
blocks in grey: the SHA and the gain error digital calibration
block (GDEC).

criterion, but this can be seamlessly introduced in the ro-
bust optimization scheme to export at the system level area
penalties involved in topology selection.

4.1 Pipeline ADC
In [6] we performed design space exploration of a 14-

bit, 80 MS/s pipeline analog-to-digital converter (ADC) in
0.13µm, 2.5V analog supply CMOS technology. The sim-
plified block diagram of the system is represented in Fig-
ure 3. The ADC is made up of 4 multi-bit stages and in-
cludes digital calibration circuits to enhance performance.
In particular, the Digital-to-Analog sub-Converter (DAC)
errors are canceled with the DAC Noise Cancelation (DNC)
technique [21] and the first stage Sample-and-Hold Ampli-
fier (SHA) errors are corrected through a Gain and Distor-
tion Error Correction (GDEC) algorithm as in [22]. The
inter-stage residue amplifiers are fully differential switched
capacitor systems (Figure 4) implemented with a telescopic
Operational Transconductance Amplifier (OTA). The OTA
optimization need to be performed under the hypothesis of
operation of digital calibration circuits, as detailed in [23].
In order to perform efficient high-level exploration across
the analog/digital boundary while reducing the complex-
ity of the problem we provided characterizations and fea-
sible performance models for the main blocks, i.e. the dig-
ital calibration logic and the first stage residue amplifier.
The remaining part of the converter was considered ideal.
Since the first stage provides the first 4 bits, a nominal gain
G of 8 is required to the SHA. However, the presence of
the digital correction circuit relaxes this constraint enabling
power savings. In the nominal optimization, the cost func-
tion aims at minimizing power consumption PADC of the
overall ADC subject to performance models and minimum
system requirements on DNL, INL and the signal-to-noise
ratio (SNR) due to thermal noise. The architectural space
includes four correction algorithms to invert the polynomial
non-linearity corresponding to different accuracy and power
consumption levels, based on [24]. Performances are eval-
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Figure 4: Single-ended equivalent (simplified) circuit of the
switched capacitor SHA.

uated through the behavioral model F of the mixed signal
platform library, in which each component is embedded.

The extension to the robust approach of the optimization
problem has been achieved through the following formula-
tion, based on the cost template in (8):

minκ

(
∏

4

j=1
ǫ
θj

j

)− 1

4

(

α + δ
)−µ

s.t.



































ζ = F(κ)
PADC ≤ 100 · (1 + ǫ1)

−1 mW
DNL ≤ 0.8 · (1 + ǫ2)

−1 LSB
INL ≤ 1 · (1 + ǫ3)

−1 LSB
SNR ≥ 76 · (1 + ǫ4) dB
PSHA(κSHA) = 1 δ = margin(PSHA, κSHA)
PGDEC(κGDEC) = 1

(11)
where ǫ1, ǫ2, ǫ3, ǫ4 are system margins on power, DNL, INL
and SNR, respectively. δ, the architecture margin, is nor-
malized in [0, 1] and is computed by exploiting an ellipsoid in
which weight for the OTA bandwidth (BW) and open loop
gain (Av) is 2 times the other performance indices. The pa-
rameter α controls cost function sensitivity on δ, hence the
architecture margin on the optimum.

Several optimizations with different cost parameter val-
ues were efficiently performed through simulated annealing,
with an average time of 13h per run. Three meaningful re-
sults are reported in Table 1 to demonstrate how the trade-
offs between system margins (especially ǫ1 on power) and
architecture margins (especially on gain and bandwidth) can
be thoroughly explored within our methodology. In 1© more
emphasis has been given to the architectural constraint mar-
gins, setting θ1 = 4, θ2 = θ3 = θ4 = 4/3, α = 0 and µ = 2
thus obtaining higher δ values (e.g. up to 27% on band-
width). On the other hand, in 2© and 3© focus is more on
system margin maximization. For example, in 2© by setting
θ1 = 20, θ2 = θ3 = θ4 = 4, µ = 1 and α = 0 we got a
17% margin on bandwidth. This lowers down to 0.8% in 3©
where we set θ1 = 8, θ2 = θ3 = θ4 = 2/3, µ = 1/6 and
α = 0.8 thus obtaining the overall minimum power solution.

We notice how in lower power designs the system level
margin on SNR tends to decrease as well. Moreover, the
unity gain frequency (and the bandwidth), which is the
key parameter influencing the settling behavior of the SHA,
tends to decrease thus impacting the accuracy of the system
(i.e. INL, DNL and G) and mandating more accurate and
power expensive calibration circuits. We finally compare re-
sults in Table 1 with the optimal design reported in [6]. Us-
ing a nominal optimization technique we obtained 52.5mW
ADC power consumption with approximately 9% margins.
This implies that obtaining reasonable architectural and sys-
tem margins together with optimal performance was still
possible in the past methodology by acting both on opti-

Performance 1© M1 2© M2 3© M3

DNL (LSB) 0.07 0.73 0.04 0.76 0.07 0.73
INL (LSB) 0.43 0.57 0.04 0.96 0.45 0.55
SNR (dB) 85.1 9.1 85.1 9.1 82.6 6.6

PADC (mW) 57.1 42.9 59.6 40.4 42.6 57.4

POTA (mW) 52.8 – 55.3 – 37.8 –
Av 194 134 267 88.7 228 2.72

BW (KHz) 4269 1119 3768 739 2755 22.7
G 7.46 – 7.65 – 7.24 –

PGDEC (mW) 4.2 – 4.2 – 4.8 –

Table 1: Performance of optimal ADC, OTA and GDEC
circuit for 3 different cost functions. M denotes the system
and architecture margins.

mization constraints and feasible performance model gener-
ation constraints to get safety margins. However, we had not
chances of quantitatively explore and efficiently control the
involved performance/margin trade-offs as we have demon-
strated here within the robust paradigm.

4.2 UMTS Front-end
In this subsection we proceed with robust optimization of

the UMTS receiver front-end presented in [20]. The receiver
consists of a Low Noise Amplifier (LNA) and a mixer for
a direct conversion UMTS receiver. All components were
characterized and embedded in a platform library. In the
nominal optimization, the cost function aims at minimizing
power consumption of the overall receiver subject to com-
pliance of standard UMTS tests and performance models.
The architecture space is formed by two LNA topologies
and one direct-conversion mixer, as reported in Fig. 5. The
system level constraints (directly derived from UMTS spec-
ifications) are compactly formulated with

{

D2 , 1

G2

R

(P2 + N + Prm) ≤ −99dBm

D3 , 1

G2

R

(P3 + N + Prm) ≤ −96dBm
(12)

where P2 and P3 are the output-referred second and third-
order distortion powers respectively, N the output-referred
noise power, Prm the output-referred power due to recipro-
cal mixing and GR the front-end gain. The standard spec-
ifies the conditions in which system performance has to be
assessed. All quantities are evaluated through the receiver
behavioral model F , described in [20]. Exploiting the ro-
bust formulation (3) and the cost function template (8), the
following robust optimization problem has been obtained

minκ

(

(

α + tanh(40 · min(δL, δM ))
)

·

·
(

ǫθ
1 · ǫ22 · ǫ3 · ǫ

−2

4

)

1/4
)−1

s.t.















































ζ = F(κ)
P ≤ 25mW · (1 + ǫ1)

−1

D2 ≤ −99 − ǫ2 dBm
D3 ≤ −96 − ǫ3 dBm
CL

CM
= 1 + ǫ4

PL(κL) ≥ 1 δL = margin(PL, κL)
PM (κM ) ≥ 1 δM = margin(PM , κM )
ǫi > 0

(13)

The parameter α has been used to control the amount of
margin on δ and thus the architecture margin at optimum.
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Figure 5: Mixer Schematic for the two LNA (with n and np input stages) and the mixer used in the UMTS receiver front-end.

The tanh term has been set as to saturate at margins larger
than 15% (δ is normalized in [0, 1]). ǫ1 determines power
consumption margin and its weight is controlled by the pa-
rameter θ. ǫ2 and ǫ3 set the margin on minimum interference
requirements. Since in a direct conversion receiver second
order terms are crucial, we increased its weight squaring ǫ2.
Finally, ǫ4 measures the mismatch on the interface capac-
itance between LNA and mixer, and has to be minimized,
as detailed in [20] in order to guarantee correct platform
composition.

An optimization trace projected onto the Power-NF plane
for the LNA is reported in Fig. 6. The robust approach
is able to perform architecture selection between the LNA
topologies, as shown in Table 4.2. Larger values for the
α parameter allow more aggressive optimizations, as shown
by lower power consumption levels. Moreover, it is evident
that the optimal point does not lie on the Pareto optimal
curve of the LNA performances, as was the case in the nom-
inal design in [20]. In this example, area occupation is not
directly traded with system robustness against variations.
Tab. 4.2 shows the performances at optimum together with
the main performance indices and corresponding margins.
In this case, since direct conversion architectures are ex-
tremely sensitive to second order distortion, we exploited
an ellipsoid to compute δM so that the second order dis-
tortion coefficient weight is 3 times the other performance
indices. Overall, compared to the optimal nominal design,
a significant increase in power is observed (+32% for the
case α = 0), but the final system allows for wide margins to
compensate modeling inaccuracies and layout effects. As a
final comment on the results, we could not perform a Monte
Carlo analysis on the actual circuits for either design since
the complexity of our systems rules out the possibility of per-
forming any reasonable number of simulations to get mean-
ingful results. In fact, this was an important motivation to
introduce robustness early in the design cycle starting from
the system level.

5. CONCLUSIONS
We extended analog platform-based design to offer a method-

ology that is robust with respect to both model and design
uncertainties. The proposed approach allows robust hierar-
chical design without any assumption on the mathematical
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2.1

3.6

5.2

6.8

8.4

10

Pd

N
F

Optimization Trace

α = 0 

α = 0.1

α = 0.3

nominal

Figure 6: Optimization results compared with the nomi-
nal optimization trace (projections on the LNA NF-Power
space). Circles correspond to npMOS instances, crosses to
nMOS instances. Robust results do not lie on the Pareto
optimal curve.

properties of the system models. Exploiting accurate perfor-
mance models allows addressing even aggressive design with
an automated robust approach, minimizing the performance
overhead paid for robustness. The approach was tested on
two case-studies: a mixed-signal pipeline ADC and an RF
UMTS front-end. In both cases, significant improvements in
terms of robustness were obtained, demonstrating the flexi-
bility of the approach.
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