
Testing Delay Faults in Asynchronous Handshake Circuits

Feng Shi
Electrical Engineering Dept.

Yale University
New Haven, Connecticut
feng.shi@yale.edu

Yiorgos Makris
Electrical Engineering Dept.

Yale Univerisity
New Haven, Connecticut

yiorgos.makris@yale.edu

ABSTRACT
As a class of asynchronous circuits, handshake circuits are de-
signed to tolerate variation of gate delays. However, certain tim-
ing constraints, such as the bundled data assumption, are exploited
in the single-rail implementation of these circuits in order to sim-
plify them. Therefore, any delay fault in the circuit may cause one
of two problems, namely performance degradation or logic errors.
To address the challenges incurred by the autonomous behavior of
handshake circuits during at-speed test, we propose test methods
for both types of delay faults based on a DFT strategy which greatly
simplifies the complexity of test generation. The efficiency of the
proposed methodology is demonstrated through experimental re-
sults on several handshake circuits.

Categories and Subject Descriptors
B.7.3 [Integrated Circuits]: Reliability and Testing

General Terms
Algorithms, Reliability, Verification

Keywords
Asynchronous Circuits, Handshake Circuits, Delay Faults, Test Gen-
eration

1. INTRODUCTION
The advantages of asynchronous circuits over their synchronous

counterparts are demonstrated not only by academic research but
also by commercial products, such as the newly-released asyn-
chronous ARM996HSTMprocessor [1]. Asynchronous circuits have
the potential for higher performance, lower power consumption and
design reusability. At the same time, they avoid a key emerging
challenge of traditional synchronous design, namely high-frequency
clock distribution. As chip complexity increases, clock skew ef-
fects are significantly amplified, making the problem intractable.
Consequently, interest in asynchronous circuits has resurfaced and
several commercial products have already been designed.

Despite the recent streak of progress, the development of CAD
solutions for the design and test of asynchronous circuits is far from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD ’06, November 5–9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

being sufficient. Among these issues, we focus on the problem
of testing asynchronous circuits. Due to the autonomous behav-
ior of asynchronous circuits, manufacturing defects may demon-
strate themselves in a different way than in synchronous circuits
and, thus, require a different test methodology. Considerable re-
search [2, 4, 8, 10, 11, 13] has been done on test generation and
design for testability (DFT) methods for stuck-at faults in various
classes of asynchronous circuits. However, not much research [3,
5, 7, 12] has been conducted on testing delay faults.

Given the inherent robustness of many classes of asynchronous
circuits to timing variations, a delay fault may only degrade their
performance. However, most practical asynchronous circuits op-
erate correctly by assuming that the implementation obeys certain
timing constraints, hence they are no longer totally robust. There-
fore, in these circuits, a delay fault may also cause the circuit to
malfunction, i.e. generate logic errors. In addition, the autonomous
behavior of asynchronous circuits implies that the existing test gen-
eration and test application methods for delay faults in synchronous
circuits cannot be applied directly to asynchronous circuits. In-
stead, customized methods are necessary. In this paper, we study
the two aforementioned types of delay faults in asynchronous cir-
cuits, we propose test methodologies for each of them, and we il-
lustrate the effectiveness of our methods using one of the most es-
tablished design styles of asynchronous circuits, namely handshake
circuits.

The rest of this paper is organized as follows. First, in Section 2,
we briefly introduce the design and implementation of handshake
circuits, as well as the full-scan technique used for testing stuck-at
faults in these circuits. Then, in Section 3, we classify the two types
of delay faults in handshake circuits and outline the challenges in
testing faults in each of the two classes. In Section 4, we propose
test methods for both types of delay faults and in Section 5 we pro-
vide experimental results that demonstrate the efficiency of these
methods.

2. HANDSHAKE CIRCUITS
As one of the most established design styles of asynchronous cir-

cuits, handshake circuits have a fully automated design flow from
the high-level behavioral description to the physical layout, as well
as test solutions for stuck-at faults.

2.1 Design and Implementation of HS Circuits
A handshake circuit is a network of handshake components, con-

nected by point-to-point handshake channels, where all communi-
cation takes place via handshaking. It is the intermediate represen-
tation in the fully automatic compilation of a Haste program to a
VLSI circuit. In the design flow of handshake circuits, first, a high-
level design entry is written in a CSP-like programming language

193

Data path

Control block

Handshake
control

Latch
control

Logic Register

Request

Acknowledge

Start

Conditions Parameters
Local

clock(s)

Inputs

Outputs

Reset
State

Figure 1: Gate-Level Implementation of a Handshake Circuit

called Haste. Then, it is compiled and translated in a transparent
way into handshake circuits. After that, the gate-level implementa-
tion of the handshake circuit is generated by replacing all individual
components with their gate-level implementations.

The gate-level single-rail implementation of a handshake circuit
can be partitioned into a control block and a data path as illustrated
in Figure 1. The control block operates on handshake signals, while
the data path works on Boolean signals. The interface between
the control block and the data path consist of the following three
types of signals: conditions, parameters, and local clock signals.
The control block uses the condition signals in combination with
its internal state to determine the next action. Parameters are used
by the control block to control the Boolean logic in the data path,
for instance, by setting multiplexers in the correct state. The local
clock signals are generated by the control block to enable a data-
path register to capture a new data value.

2.2 Testing Stuck-At Faults Using Full-Scan
Besides the functional test method in [16] and the partial-scan

method in [9, 10], a full-scan test method was proposed in [14, 15],
exploiting commercial test tools for synchronous circuits to achieve
high fault coverage while simplifying the test generation procedure
for handshake circuits. Before scan insertion, combinational loops
in the circuit are removed by inserting transparent scan flip-flops.
Then, all state-holding cells are replaced by their scannable equiva-
lents, which are connected together to form a scan chain. After that,
the global control signals and logic are added into the circuit and
connected to the scan elements, and the scan-testable netlist is gen-
erated. Meanwhile, the netlist is remodeled by replacing original
scan cells with their remodeled equivalents to generate two sep-
arate netlists for the control block and the data path respectively,
which are readable by commercial test tools for performing test
generation. Then, a test-protocol expansion procedure translates
the initial protocols generated by the ATPG tools into the top-level
protocols.

The above full-scan method was refined in [13] by introducing
multiplexer-based scannable C-elements, as illustrated in Figure 2.
The proposed method significantly reduces the overhead in perfor-
mance and area of the scan testable circuit. Moreover, the latch
in Figure 2 is often shared with an existing scan latch/flip-flop in
the datapath, which further reduces the test cost. However, any two

0

1

d q

C

si

b

a

se

Z

so
L1

Figure 2: A Mux-based Scan C-Element

multiplexer-based scan elements connected in series cannot capture
the circuit response at the same time, hence they cannot be enabled
at the same time and are, thus, connected to different scan enable
signals. Therefore, testing the control block is performed for sev-
eral partitions respectively, and a test control block is embedded in
the circuit to control the test procedure.

3. CHALLENGES OF DELAY TESTING
There are two types of delay faults in asynchronous circuits de-

pending on the two different consequences of the fault. The first
type of delay faults only slows down the performance of the circuit
without causing any logic error. This is common when the compo-
nent affected by the fault is delay-insensitive. If we only consider
delay faults modeled at gate output which increase the delay, delay
faults in the control part of a handshake circuit fall into this cate-
gory. Despite not causing a logic error, we may still want to test for
this type of delay faults, since the circuit should not be expected
to be unreasonably slow. The second type of delay faults causes
an asynchronous circuit to malfunction and produce logic errors,
when the delay faults result in violation of inherent timing con-
straints that need to be satisfied for the circuit to operate correctly.
Such timing constraints exist in almost all practical asynchronous
circuits, since the class of delay-insensitive circuits built with basic
gates is quite limited [6]. For instance, the data path in a handshake
circuit usually needs to follow bundled data, setup, and hold time
constraints. Obviously, the second type of delay faults is necessary
to test for, and targeted delay faults in the data path of a handshake
circuit fall into this category.

Similar to synchronous circuits, at-speed delay-test methods are
necessary to capture the fault effect in asynchronous circuits. If the
delay fault is in the control part of the handshake circuit and it only
degrades the performance but does not cause any logic error, the
fault effect can be captured by applying the test clock according
to a pre-specified acceptable performance, just like in synchronous
circuits. However, if the delay fault is in the data path and violates
some timing constraint, such as the bundled data constraint, hence
causes the circuit to fail during normal operation, the fault effect
is more difficult to capture, since the speed of an asynchronous
handshake circuit is inherent to the circuit and it is usually difficult
to know the exact delay of a certain logic path. Hence, it is almost
impossible to clock the circuit during test in such a way that the
delay mismatch can be identified. A possible solution to the above
problem is to switch the circuit from test mode to normal operation
mode immediately after the test patterns are applied and the fault is
activated, so that the fault effect may be captured in time.

However, there are several difficulties in performing at-speed
test for asynchronous handshake circuits by switching between test
mode and normal operation mode. First, the test patterns should
be generated carefully to make sure that they will not cause any

194

hazards or races when the circuit is switched to normal operation
mode. Second, the switching mechanism between test mode and
operation mode should be carefully designed so that it neither im-
pacts the timing of normal operation, nor causes any hazards or
races. To achieve this, careful physical design may be necessary
to make sure that test control signals follow certain timing con-
straints, and a robust switching method is desirable to simplify or
even eliminate these timing constraints.

In addition, the test patterns for at-speed delay test need to make
sure that the deterministic fault effect is captured by scan latches
or flip-flops, or observed on the primary outputs when the circuit
settles in a stable state. As we know, unlike a synchronous circuit,
an asynchronous circuit has no clock signal to control the feedback
paths, hence once it is switched to normal asynchronous operation
mode, it may perform a sequence of operations and it is impossible,
in general, to single-step the circuit. The test patterns must guaran-
tee not only that the deterministic fault effect is captured correctly,
but also that the fault effect is not overwritten and does not disap-
pear during the subsequent operations. This complicates the fault
simulation and automatic test pattern generation processes signif-
icantly. Moreover, the violation of a timing constraint may cause
logic errors on multiple bits of the data path, hence the fault ef-
fect may not be unique and the final response of the faulty circuit
is difficult to derive if the circuit progresses through a sequence of
operations.

4. PROPOSED METHODS
Since there are two cases of delay faults in handshake circuits, as

described in the previous section, we propose two methods to test
for each of them, respectively. First we present the method to test
for delay faults that only degrade the performance. Then, we focus
on testing for delay faults that cause the circuit to malfunction. The
proposed methods are built upon the multiplexer-based full scan
test method in [13] with minimal additional hardware.

4.1 Test for Performance Degradation
As discussed in Section 3, the targeted delay faults in the control

block of a handshake circuit do not cause any logic error; therefore,
they are tested for degrading the performance of the circuit.

The proposed test method for delay faults in the control block
makes use of the multiplexer-based full-scan method [13] for stuck-
at faults in handshake circuits. After scan insertion, asynchronous
handshake circuits can be tested similarly to synchronous circuits.
Since scan cells connected in series cannot capture the circuit re-
sponse at the same time, the control block is partitioned into sev-
eral parts for test generation, and faults in different parts are tested
accordingly. For each part, the input netlist for ATPG is a syn-
chronous circuit generated through scan insertion, remodelling of
asynchronous cells, and additional modifications. Hence, test pat-
terns for not only stuck-at faults but also delay faults, such as tran-
sition faults or path delay faults, can be generated using commer-
cial EDA tools. The proposed test method only supports the scan
shifting mode, since the functional justification mode cannot be di-
rectly applied to the control block. In the scan shifting mode, the
state transition from the first test vector to the second vector is ini-
tiated in the last scan load cycle, and the target fault is sensitized.
Then, the circuit response is captured at a reference clock cycle
time which is derived according to a pre-specified acceptable per-
formance of the circuit, and then scanned out and compared to the
correct response. This procedure is similar to that of delay test in
synchronous circuits, except that a reference clock is used rather
than an at-speed clock.

0

1

d q

C

si

b

a

sec1

z1

so

L1

0

1

1

0

clk1

ses

sed

z2

d

Figure 3: A Revised Mux Based Scan C-Element

4.2 Test for Timing Constraints
Delay faults in the data path of handshake circuits may increase

the computation time, which not only may reduce the performance
of the data path, but, more importantly, may also violate the bun-
dled data constraint and cause the circuit to malfunction. Therefore,
these delay faults are more critical to test for.

However, these delay faults cannot be handled in the same way
as in synchronous circuits. First, test patterns cannot be applied by
simply shifting through the scan chain, since the scan latch/flip-flop
may be shared with the control block. A two-step test application
procedure is usually necessary to set the state of the control block
and then sensitize and detect the fault in the data path. Second,
the circuit response is difficult to be captured by applying an at-
speed clock. As a result, the proposed method captures the circuit
response by switching the circuit to asynchronous operation mode
rather than using the test clock.

Additional hardware support is necessary for the two-step test
application procedure. For each multiplexer-based scan cell in the
control block, a multiplexer (shown in dashed lines) is inserted, as
illustrated in Figure 3, where the scan latch is shared by the control
block and the data path block. As a result, there are two scan paths
controlled by the additional control signal ses. The original scan
path is selected when ses is set to low, while the multiplexer in
the control block is bypassed when it is set to high. Although the
inserted multiplexers introduce minor hardware overhead, they do
not cause any performance overhead since they are only on the scan
path.

The proposed timing of test application is the following. In the
first step, when control signal ses is set to 0 while all other se sig-
nals are set to 1, a test vector is shifted into the scan chain to set
the state of the control block. Then, all se signals for all partitions
of the control block are set to 0 to isolate the control block from
the scan chain. After that, in the second step, ses is set to 1, and
the test vectors generated for the data path are shifted in through
the alternative scan path. At the end of this step, the last scan shift
operation initiates the launch phase and sensitizes the target delay
fault. When the last shift operation is completed, the circuit is set to
asynchronous operation mode during which the circuit response is
captured. This is achieved when the latches or flip-flops behind the
fault are enabled, or when the state of the control circuit changes
according to the condition signals from the data path. After it sta-
bilizes, the circuit is set back to test mode. If the fault effect is not
already captured by the scan latches/flip-flops or propagated to the
primary outputs (i.e. reflected in the state of the control block), an
additional test clock is applied to capture the fault effect by the cor-

195

...
di

d
o

de

Figure 4: A Controlled Delay Chain

Control

G Sdo

a

b c
Hold

c'

Figure 5: DFT of an Iteration

responding latches/flip-flops. Then, the circuit is set to scan shift
mode and the circuit response is scanned out and compared to the
correct response to check whether the fault exists.

When the state of the control block is set and isolated from the
scan chain during the first step of the test application procedure, a
mechanism is necessary to preserve this state from any autonomous
changes, which will happen if the state is not stable. Since the
timing constraints under test are, in fact, delay matchings between
the data paths and the delay chains, the state that the control block
is set to during the test is the one necessary right before the delay
chain is exercised. Thus it can be held by simply making the delay
chain controllable. As illustrated in Figure 4, an AND gate (shown
in dashed lines) is inserted at the beginning of each delay chain,
and signal de is used to control the delay chain. When de is low, the
delay chain is disabled and no rising event can propagate through
it, while when de is set to high, the delay chain works as normal.
During the first step of test application, de is set to 0 to preserve the
state of the control block. Then, when the circuit is switched back
to normal asynchronous operation mode, it is set to 1 to enable
the control block to operate normally. Since the inserted control
gate can be incorporated into the delay chain, there is nearly no
hardware and no performance overhead due to its introduction.

The generated test patterns for the above test method need to
be able not only to sensitize the fault, but also to capture the de-
terministic fault effect. The part of the test pattern applied to the
data path to exercise the fault can be generated using ATPG tools
for synchronous circuits, since the proposed method exercises the
fault in a way similar to testing a synchronous circuit. The part of
the test pattern applied to the control block in the first step needs
to make sure that fault effect is correctly captured when the cir-
cuit is switched back to normal operation mode. To reduce the test
generation complication due to the autonomous behavior when the
circuit is switched to asynchronous operation mode, which was dis-
cussed in the previous section, we propose a DFT strategy which
constrains the autonomous behavior of the circuit during test. Hold
elements [10, 15] are inserted between the handshake components
when necessary, as illustrated in Figure 5 for example, to make
sure that during test i) the latches/flip-flops following the fault are
clocked only once to capture and maintain the immediate circuit
response, or ii) the wrong state bits in the control circuit are pre-
served until the circuit stabilizes. Since each hold component is
implemented as a single AND gate, the hardware overhead is neg-
ligible.

Based on the proposed DFT strategy, the test generation for vio-
lation of timing constraints is greatly simplified. The procedure of
test generation takes places in two steps. First, for any target de-
lay fault in the data path, any test generation tool for synchronous
circuits may be used to generate the part of test patterns for the
data path block based on the remodeled input netlist. The location
where the fault effect propagates to is marked. Second, functional
test patterns are found based on high-level simulation, in order to
exercise the data path under test. If the fault effect location marked
in the previous step is not a flip-flop/latch in the data path, which
means that the fault is in the data path for guard evaluation, the test
patterns are required to exercise the corresponding guarded state-
ment. Otherwise, the test patterns are required to exercise the ex-
pression that corresponds to the data path under test, in which case
the marked flip-flops/latches need to be clocked at least once. Only
a test pattern that holds the same value on the parameter signals
when exercising the data path under test, as in the previously gen-
erated other part of the pattern, is eligible to be selected. The snap-
shot of the transient state of the control block is kept when the data
path is about to be exercised, and the signal value on the location
of any scan element in the control block in the snapshot is collected
to form the other part of the test pattern. Through this process, we
obtain the two parts of the test patterns that are applied during each
of the two steps of the test application procedure, respectively.

The test patterns generated through the above two steps are valid
based on the following observations. First, although the test pat-
terns determining the conditional signals are generated in the first
step without considering the behavior of the control block, they
will not cause undesired behavior of the control block. If the fault
under test is in the data path for guard evaluation, its effect propa-
gates through the control signals and leads the control block into an
erroneous state, which is then captured to observe the fault. Other-
wise, if the fault is in the data path for data computation, the control
block must be set to the appropriate state before a computation ex-
pression in the corresponding Haste program to excite and capture
the fault effect. Note that this state must be between guard evalua-
tions, such as in the execution of the statement S in the do statement
illustrated in Figure 5. At this time, the evaluation of any preceding
guard has been completed, its result has been captured by the con-
trol block, and the control signals are not valid any more. Hence,
any change on the control signal does not influence the behavior of
the control block. Second, the test patterns that are applied to the
control block to determine the values of the parameter signals will
not conflict with the test patterns for the data path block, since only
consistent pairs are selected during the test generation.

5. EXPERIMENTAL RESULTS
The proposed delay test methods are implemented based on the

design tool set for handshake circuits from Handshake Solutions1

[1]. First, the netlist generated after scan insertion by htscan and
its synchronous model for ATPG tools are preprocessed such that
they are consistent with the revised scan method. Additional test
hardware, such as controlled delay chains and hold components are
also inserted for testing for timing constraint violations. Then, the
timing constraints in the circuit are identified and a list of them is
generated using htpost. After that, the delay fault model (transition
faults or path delay faults) is chosen, and the fault-list is generated.
For each fault in this list, the type of fault (i.e. causing performance
degradation or causing timing constraint violation) is determined

1The authors would like to thank Handshake Solutions for provid-
ing their design tool-set as part of a collaboration under the DARPA
CLASS program.

196

Faults in control block Faults in datapath block
Circuit No. of No. of Area Hardware No. of faults Faults No. of faults Faults Total fault
Name Inputs Outputs Overhead (Untestable) Detected (Untestable) Detected Coverage

conv1to8 8 11 408 24 524(0) 464 152(0) 136 88.76%
conv3to8 10 11 506 33 878(0) 782 194(0) 172 88.99%

fifo8 15 11 1119 66 1100(0) 909 1296(0) 1101 83.89%
gcd 23 11 390 25 286(0) 183 930(2) 859 85.83%

des-round 127 123 3271 24 258(0) 188 10472(401) 8631 85.38%
des 127 124 51456 252 4683(0) 4521 169552(7804) 139930 86.79%

Table 1: Results of ATPG for Transition Delay Faults

according to its location. Then, for each fault that degrades the
performance, the test patterns are generated and applied through the
proposed method in Section 4.1. For each timing constraint in the
list, the functional test vectors that exercise the timing constraint
under test are found through high-level simulation-based search,
and the part of test patterns that is applied on the control block is
obtained from the snapshot of the netlist simulation of the circuit.
Then, for each fault that violates a listed timing constraint, the part
of the test patterns that is applied on the data path is generated
through ATPG tools. After that, the two parts of the test patterns
are applied to the circuit during the two steps of the test application
process, respectively, as discussed in Section 4.2. Lastly, for both
types of faults, the generated test patterns are validated through
simulation.

We experimented with the proposed methods on a set of exam-
ple handshake circuits synthesized using the design tool flow from
Handshake Solutions. Transition delay faults in both the control
and data path blocks in each circuit are tested by the proposed
method, which employs TetraMax R© to perform part of the test
generation task. The results are reported in Table 1. The name
of each circuit is listed in the first column in Table 1, and the num-
ber of inputs, the number of outputs, and the circuit area (in 2-input
NAND-gate equivalent) for each circuit are listed in the second,
third, and fourth columns, respectively. Note that circuit des is a
fully pipelined DES encoder/decoder, while des-round only per-
forms one round of DES encoding/decoding operation. The area of
DFT hardware overhead of the proposed method for each circuit is
shown in the fifth column, indicating that the hardware overhead is
negligible, especially for large circuits. The total number of tran-
sition faults and the number of detected faults in the control block
of each circuit are listed in the sixth and seventh columns respec-
tively, with the number in the parentheses indicating the number of
untestable faults reported by TetraMax R©. The same numbers are
listed for the data path block of each circuit in the eighth and ninth
columns. Finally, the total fault coverage for each circuit is given
in the tenth column. For the circuits that we experimented with, a
fault coverage of over 85% is achieved by the proposed methods.

6. CONCLUSION
Two types of delay faults that either degrade the circuit per-

formance or cause logic errors are distinguished in asynchronous
handshake circuits. In order to address the delay test challenges
arising from the autonomous behavior of asynchronous circuits,
test methods and DFT techniques that simplify the complexity of
test generation have been developed for both of these types of de-
lay faults. The efficiency of the proposed test methods has been
demonstrated through experimental results on several handshake
circuit examples.

7. REFERENCES
[1] Handshake solutions. http://www.handshakesolutions.com.
[2] S. Banerjee, S. T. Chakradhar, and R. K. Roy. Synchronous

test generation model for asynchronous circuits. In Proc. of

the 9th International Conference on VLSI Design, pages
178–85, 1996.

[3] G. Gill, A. Agiwal, M. Singh, F. Shi, and Y. Makris. Low
overhead testing of delay faults in high-speed asynchronous
pipelines. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages
46–56, 2006.

[4] P. J. Hazewindus. Testing delay insensitive circuits. Ph.D.
Thesis, Department of Computer Science, California
Institute of Technology, 1992.

[5] M. Kishinevsky, A. Kondraytev, L. Lavagno, A. Saldanha,
and A. Taubin. Partial-scan delay fault testing of
asynchronous circuits. IEEE Transactions on Computers,
17:1184–1198, 1998.

[6] A. J. Martin. The limitations to delay-insensitivity in
asynchronous circuits. In W. J. Dally, editor, Advanced
Research in VLSI, pages 263–278. MIT Press, 1990.

[7] S. Nowick, N. Jha, and F.-C. Cheng. Synthesis of
asynchronous circuits for stuck-at and robust path delay fault
testability. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 16(12):1514–1521,
December 1997.

[8] O. Roig, J. Cortadella, M. A. Peiia, and E. Pastor. Automatic
generation of synchronous test patterns for asynchronous
circuits. In Proc. of the 34th Design Automation Conference,
pages 620–625, 1997.

[9] M. Roncken, E. Aarts, and W. Verhaegh. Optimal scan for
pipelined testing: An asynchronous foundation. In Proc.
International Test Conference, pages 215–224, 1996.

[10] M. Roncken and E. Bruls. Test quality of asynchronous
circuits: A defect-oriented evaluation. In Proc. International
Test Conference, pages 205–214, 1996.

[11] F. Shi and Y. Makris. SPIN-SIM: Logic and fault simulation
for speed-independent circuits. In Proc. of International Test
Conference, pages 597–606, 2004.

[12] F. Shi, Y. Makris, S. Nowick, and M. Singh. Test generation
for ultra-high-speed asynchronous pipelines. In Proc. of
International Test Conference, pages 39.1–39.10, Nov 2005.

[13] F. te Beest and A. Peeters. A multiplexer based test method
for self-timed circuits. In Proc. of IEEE International
Symposium on Asynchronous Circuits and Systems, pages
166–175, 2005.

[14] F. te Beest, A. Peeters, M. Verra, K. van Berkel, and
H. Kerkhoff. Automatic scan insertion and test generation for
asynchronous circuits. In Proc. of International Test
Conference, pages 804–813, 2002.

[15] F. J. te Beest. Full Scan Testing Of Handshake Circuits. PhD
thesis, Twente University, 2003.

[16] R. van de Wiel. High-level test evaluation of asynchronous
circuits. In Asynchronous Design Methodologies, pages
63–71, 1995.

197

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

