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Abstract— This paper presents a robust quadratic placement
approach, which offers both high-quality placements and ex-
cellent computational efficiency. The additional force which
distributes the modules on the chip in force-directed quadratic
placement is separated into two forces: hold force and move
force. Both of these forces are determined without any heuristics.
Based on this novel systematic force implementation, we show
that our iterative placement algorithm converges to an overlap-
free placement. In addition, engineering change order (ECO)
is efficiently supported by our placer. To handle the important
trade-off between CPU time and placement quality, a determin-
istic quality control is presented.

In addition, a new linear net model is proposed, which
accurately models the half-perimeter wirelength (HPWL) in the
quadratic cost function of quadratic placement. HPWL in general
is a linear metric for netlength and represents an efficient and
common estimation for routed wirelength. Compared with the
classical clique net model, our linear net model reduces memory
usage by 75%, CPU time by 23% and netlength by 8%, which is
measured by the HPWL of all nets.

Using the ISPD-2005 benchmark suite for comparison, our
placer combined with the new linear net model has just 5.9%
higher netlength but is 16× faster than APlace, which offers the
best netlength in this benchmark. Compared to Capo, our placer
has 9.2% lower netlength and is 5.4× faster.

In the recent ISPD-2006 placement contest, in which quality
is mainly determined by netlength and CPU time, our placer
together with the new net model produced excellent results.

1. Introduction
As Moore’s law is still valid [2], i.e. circuit sizes are dou-

bled every eighteen months, new fast and efficient placement
algorithms with accurate new models will be needed for the
layout synthesis of next-generation VLSI circuits with tens of
millions of standard cells.

State-of-the-art placers can be classified in three categories:
(1) Simulated-Annealing Approaches
Simulated-annealing provably find the global optimum but
placers based on this optimization approach usually suffer
from long run times. The best known representative of this
placer category is Timberwolf [30].
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(2) Partitioning Approaches
Another placement approach is to recursively partition the
circuit and the placement area based on a certain cost func-
tion, e.g. number of wires crossing a boundary of adjacent
partitions. Recent placers using this technique are Capo [28],
Dragon [31], FengShui [5], and NTUPlace [9].
(3) Analytical Approaches
The core of all analytical placers is an objective function which
is minimized by methods of mathematical analysis. Depending
on the kind of objective function, analytical placers can be
subdivided into two categories:
(i) Nonlinear-Optimization-Based Placers: The objective func-
tion is nonlinear, e.g. a log-sum-exponential function [25],
which is minimized by nonlinear optimization techniques like
conjugate-gradient optimization [22]. Examples of nonlinear-
optimization-based placers are APlace [18] and mPL [7].
(ii) Quadratic Placers:The objective function is quadratic and
can therefore be minimized efficiently by solving a system of
linear equations. Quadratic placers are for instance Gordian
[19], Kraftwerk [12], FAR [15], FastPlace [32], mFAR [16],
BonnPlace [6], and hATP [24].

To cope with modern circuits having millions of modules,
many placers combine different optimization techniques with
a hierarchical approach, e.g. mFAR [16], Dragon [31], APlace
[18], mPL [7], and hATP [24].

Quadratic placers are popular, because they allow good
quality results at low CPU times. But they face two prob-
lems: First, a technique is needed to reduce the module
overlap, which usually exists in quadratic placement. De-
pending on this technique, quadratic placers can be divided
into two categories: (1) Constraint-based quadratic placers
like [19],[6],[24], which achieve an overlap-free placement
by center of mass constraints. (2) Force-directed quadratic
placers like [12],[15],[32],[16], which distribute the modules
on the chip by an additional force. The second problem of
quadratic placers is that the quadratic objective function is just
an approximation for the real objective, e.g. routed wirelength.
Both problems are addressed in this paper: a systematic non-
heuristic formulation of the additional force is presented and
an exact method to express routed wirelength in the quadratic
objective function is shown.

Different approaches appeared to implement the additional
force needed in force-directed quadratic placement. Kraftwerk
[12] utilizes module density to determine a constant addi-
tional force which drives the modules from high to low
density regions. FAR [15] calculates the additional force like
Kraftwerk but models it by fixed points. mFAR [16] uses
two different fixed points to express the additional force. The

179



first “perturbing fixed points” reduce module overlap and are
calculated heuristically by local bin utilization. The second
“controlling fixed points” achieve force equilibrium and are
determined also by heuristics. FastPlace [32] uses a similar
technique for the additional force as mFAR [16].

In general, all quadratic placement approaches formulate
nets by a clique net model or the equivalent star net model
and use net weights for adaptation of the quadratic cost
function to a realistic objective, e.g. linear netlength to express
routed wirelength. With the number of pins denoted by P , a
common weight for the clique net model is 1/P in order to
adapt its cost function to the star net model [21], [32]. For
additional linearization Vygen et al. [33] use a net weight of
1/(P −1) and Kleinhans et al. [19] set the net weight to 2/P .
These approximation techniques express linear netlength in a
quadratic cost function in a heuristical manner [29].

In this paper we describe a fast, robust, flat, iterative force-
directed quadratic placer together with a new linear net model.
In detail our quadratic placer is characterized by the following
enhancements to other quadratic placement approaches:
• We separate the additional force of force-directed quadratic

placement into two fundamental components: move force
and hold force:
– We use the module density and the potential formulation

of [12] to calculate a non-heuristic move force which is
implemented by target points.

– To improve the convergence of the iterative process of
quadratic placement, we use a constant and non-heuristic
hold force.

• Based on this new systematical force modeling, module po-
sitions can be computed efficiently. Moreover we prove that
our quadratic placer converges to an overlap-free placement.

• As a result of the force separation, our placement algorithm
can be easily restarted at any iteration without any initializa-
tion. This efficiently supports the engineering change order
(ECO), where the circuit is slightly modified and is needed
to be placed again.

• To control the important trade-off between CPU time and
quality of placement, we implement a deterministic quality
control with just one single parameter.

• In order not to narrow the design space, we do not utilize a
hierarchical approach, but place all modules simultaneously
in each iteration, i.e. our placer is flat.

The following properties distinguish our new linear net model
from previous net models. Please note that our net model can
be universally utilized by any quadratic placer.
• Exact and deterministic representation of the half-perimeter

wirelength (HPWL) in a quadratic objective function. The
HPWL is defined per net by the half-perimeter of the
bounding box enclosing its pins. The HPWL represents a
linear metric for netlength and moreover a common and
efficient estimation for routed wirelength.

• Efficient removal of module overlap.
• Lower memory usage and runtime.
The rest of the paper is organized as follows: In section
2 we give a brief introduction to quadratic placement and
we describe our placement approach in detail. After a short

description of the traditional clique net model, our new linear
net model is presented in section 3. Experimental results are
provided in section 4, followed by the conclusion in section
5.

2. Quadratic Placement Methodology
A placement process in general aims at optimal places for

modules with the objective of minimizing netlength under the
constraint of no overlap between modules. To find minimal
netlength, the connectivity between modules, as described in
the netlist, is formulated in a netgraph with modules as vertices
and nets as hyperedges connecting subsets of modules.

In quadratic placement only two-point connections can be
used to express netlength, so a net model is necessary to
transform the hyperedges into two-points connections. The
transformation of the hyperedges into two-point connections
results in a binary graph (M, E) with a set of edges E con-
necting pairs of modules in set M . In quadratic placement the
weighted squared Euclidean length Γe between two vertexes
i and j, respectively two modules i and j is assigned to each
edge e = (i, j) ∈ E:

Γe =
we,x

2
(xi − xj)2 +

we,y

2
(yi − yj)2 = Γe,x + Γe,y (1)

Each edge length Γe adds to the cost function Γ of quadratic
placement:

Γ =
∑
e∈E

Γe = Γx + Γy (2)

Since Γe can be separated in x- and y-dimension, the cost
function Γ can be separated in the same way. The following
description for the x-dimension applies likewise for the y-
dimension.

Splitting all modules in N movable and M fixed modules,
the x-positions of movable modules can be collected in vector
x = (x1, x2, x3, ..., xN )T and the quadratic cost function Γx

can be written in matrix-vector notation [13]:

Γx =
1
2
xTCxx + xTdx + const (3)

Here matrix Cx is of dimension N × N and has matrix
entry cij in row i and column j. Vector dx is of dimension
N and has entry dx,i in row i. To express the length Γe,x =
0.5 we,x(xi − xj)2 between two movable modules i and j in
matrix-vector notation (3), the matrix entries cii and cjj are
increased by we,x and the diagonal matrix entries cij and cji

are decreased by we,x. If one module — let’s say j — is
fixed then matrix entry cii is increased by we,x and vector
entry dx,i is decreased by we,x · xj . The length between two
fixed modules just contributes to the constant part of (3).

As the total netlength is expressed by the cost function
Γ, the module positions for minimal netlength in quadratic
placement are found by minimizing Γ. For x-dimension this
is done by differentiating Γ with respect to x and solving the
resulting system of linear equations with respect to x. Denot-

ing the vector differential operator
(

∂
∂x1

, ∂
∂x2

, ..., ∂
∂xN

)T

by
the nabla operator ∇x, the minimization of netlength requires
the solution of:

∇xΓ = ∇xΓx = Cxx + dx = 0 (4)
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Solving this system of linear equations for x can be done
efficiently, e.g. by applying the conjugate-gradient technique,
since matrix Cx is highly sparse.

Quadratic placement as formulated above can be compared
with an elastic spring system: length Γe of edge e is equal
to the spring energy E = 0.5 w

(
∆x2 + ∆y2

)
with spring

constant w and squared Euclidean spring elongation ∆x2 +
∆y2. As derivative of energy is force and Γ expresses the total
netlength and therefore the total spring energy, the derivative
of Γ with respect to x is the total net force in x-direction:

∇xΓ = Fnet
x = Cxx + dx = 0 (5)

This net force is set to zero to find the minimum energy
of the elastic spring system, which is equal to the minimum
netlength.

With (4) and (5) the force created by all springs, respectively
all connections, adjacent to module i is expressed in F net

x,i being
the entry in row i of force vector Fnet

x .

2.1. Additional Forces

With just net forces acting on the modules, the modules
attract each other resulting in a lot of module overlap. To
reduce this overlap, additional forces are needed. Traditionally,
the complete process of reducing module overlap is formulated
as an iterative process where in each iteration the overlap is
reduced.

In this paper, we represent the module positions from last
iteration in vector x′, the module positions calculated in the
current iteration in vector x, and the change in module position
between two iteration in vector ∆x:

∆x = x− x′ (6)

Furthermore we separate the additional force needed in
quadratic placement into two fundamental components. First,
a hold force which holds the modules in the current iteration
and thus decouples the current iteration from the previous one.
Second, a move force which moves the modules in the current
iteration to reduce the module overlap.

2.1.1. Move Force
To calculate the move force we employ the non-heuristic

approach of [12] by formulating the placement problem as a
global electrostatic problem: modules with positive charge and
chip area with negative charge form a charge density D. This
charge density creates a potential Φ, which can be solved by
the Poisson equation:

�Φ = −D (7)

The Poisson equation can be solved efficiently by a geometric
multigrid solver [27], [20].

If chip’s charge density DChip is constant then module den-
sity d is exactly charge density D plus DChip [12]. Therefore,
no difference between module density d and charge density D
is made further on.

In the electrostatic formulation (7), the potential Φ is high in
regions with high module density and low in regions with low

module density. Since the negative gradient
(
−∂Φ

∂x ,−∂Φ
∂y

)T

of

potential Φ points in the direction of highest density decrease,
this gradient can be used to move the modules from high
density to low density regions in order to equalize the module
density and therefore reduce the overlap between modules.

Hence each module i gets a target point x̊i and is connected
to its target point with a spring with the spring constant ẘi.
The target point is calculated by:

x̊i = x′
i −

∂

∂x
Φ

∣∣∣
(x′

i,y
′
i)

(8)

Each spring connection to a target point creates a move
force F move

x,i = ẘi(xi − x̊i) which is collected in the move
force vector Fmove

x :

Fmove
x = C̊x (x − x̊) (9)

The matrix C̊x is a diagonal matrix with the spring con-
stants as entries: C̊x = diag(ẘi). Collecting the gradients of
Φ in x-dimension for all modules in vector Φx

Φx =
(

∂

∂x
Φ

∣∣∣
(x′

1,y′
1)

,
∂

∂x
Φ

∣∣∣
(x′

2,y′
2)

, ...,
∂

∂x
Φ

∣∣∣
(x′

N ,y′
N)

)T

(10)

the target point vector x̊ can be calculated by x̊ = x′ − Φx.

2.1.2. Hold Force
If the hold force Fhold

x is defined by the negative net force

Fhold
x = − (Cxx

′ + dx) (11)

and the sum of hold force and net force is set to zero, then
the modules are held on their current positions, i.e. x = x′.
Proof:

Fnet
x + Fhold

x = Cxx +dx −Cxx
′ −dx = 0 ⇔ x = x′ (12)

�
Since all three components Cx, x′ and dx of the hold force
do not depend on x, the hold force itself is constant.

2.1.3. Total Force
The net force, move force and hold force add up to the total

force Fx. The total force is then set to zero to get a placement
with minimal netlength and some overlap reduction:

Fx = Fnet
x + Fmove

x + Fhold
x = 0 (13)

Altogether our systematic non-heuristic force-directed
quadratic placement approach differs significantly from other
force-directed quadratic placement approaches [12], [15], [32],
and [16], all of which either do not separate the additional
force or use various heuristics to obtain the additional force.
Contrary to that,
• we separate the additional force in hold force and move

force,
• we calculate the move force (9) non-heuristically by an

electrostatic potential (7) and model it by target points (8),
• we represent the hold force by a non-heuristic constant force

(11).
This results in the simple formulation of the total force (13)
of our placer by:

Fx =
(
Cx + C̊x

)
∆x + C̊xΦx = 0 (14)

181



The new module positions x = x′ + ∆x in x-dimension are
efficiently computed by solving (14) for ∆x. To obtain the
module positions in y-dimension, all described steps must be
executed for y-direction.

2.2. Proof of Convergence

Please note that in general, the placement problem is NP-
hard and all placement approaches model the problem by
algorithms which can be executed with polynomial time com-
plexity [11]. In our placement approach we apply Poisson’s
equation (7) and the consequential force formulation (4), (9),
(11), and (14). Our placer is unique because it does not resort
to heuristics. Therefore it is robust and we can prove that our
iterative global placement approach converges to an overlap-
free placement.

Sketch of proof:
1) With no move force, the modules are held with hold force

at their current position, which is proven in section 2.1.2.

2) The potential Φ represents the module density D (7)
and the negative gradient of the potential Φ is used to
calculate the target points (8). So the move force, which is
determined by the target points, moves the modules away
from high density regions to low density regions (9).

3) Therefore the maximum module density is decreased and
the minimum module density is increased in each iteration.
This can be proven by using (7), (8), (9), (11), (14) and
some theorems of electrodynamic theory. Due to the page
limit, the complete description is omitted here and will
be published in a future paper. Lowering the maximum
module density and rising the minimum module density in
each iteration equalizes the module density D more, which
means that module overlap is reduced.

4) If the density D is totally equalized, which means that all
overlap between modules is removed, then the modules
do not move anymore (i.e. ∆x = 0) and therefore the
global placement algorithm has converged to an overlap-
free placement. This is true because for an equalized
density D the potential Φ is constant. Thus the gradient
of Φ is zero and hence Φx is zero. So (14) is transformed

to
(
Cx + C̊x

)
∆x = 0 and accordingly ∆x = 0.

�

Two remarks must be added to the proof of convergence:
• An assumption has to be made: two modules i and j may

not have the same position: (xi, yi) �= (xj , yj). If they have
exactly the same position then they will get the same move
force and will probably be moved to the same position in
the next iteration and hence the overlap between these two
modules will not be removed. Practically this assumption
has no impact on convergence since the module positions
are calculated numerically and therefore will not be exactly
the same.
Even if two modules i and j have exactly the same position,
the modules connected to these two modules i and j will
probably move them to different positions in the next
iteration.

Initial Placement:
Place all modules in the center of the chip
for i < Iinit do

For x-direction: (similarly for y-direction)
Create Cx, dx

Solve (4) for x
i = i + 1

Global Placement:
repeat

Calculate potential Φ by (7)
For x-direction: (similarly for y-direction)

Create Cx, C̊x = diag(ẘi), Φx

Solve (14) for ∆x
Update module position x by ∆x

Quality control
until Module overlap ≤ 20%

Final Placement:
FindNextBestPlace

Fig. 1. Complete placement algorithm

• No theoretical statement to the iteration count of global
placement can be made as this highly depends on the kind
of circuit to be placed. But experiments showed that a
practical bound of iteration count is around 5 if a high
spring constant (e.g. 1000) of the target points is chosen.

2.3. Implementation Details

Figure 1 shows the complete algorithm of our placer. During
initial placement, a start solution is computed by minimizing
cost function Γ over a few iterations: Iinit ≈ 5. At this stage
module overlap is not taken into account.

After that the module overlap is reduced iteratively in
global placement. Although global placement converges to
an overlap-free placement as proven above, it is stopped at
a certain stopping criterion, e.g. module overlap ≤ 20%.

Global placement is terminated in standard-cell placement
because it can not arrange the modules on the chip rows which
is needed to obtain a legal placement. This task and removing
the remaining module overlap is done during final placement
by “FindNextBestPlace”: the next best place is sought for each
module according to a certain cost function. This search takes
around 10% of CPU time of the global placement and therefore
is fast. Using netlength in HPWL metric as cost function
increases total HPWL by around 2% compared to the last
iteration of global placement.

2.4. Engineering Change Order

The separation of the additional force in hold force and
move force results in decoupling one iteration from the pre-
vious one. Therefore our global placement algorithm can be
easily restarted at any iteration without special initializations.
Thus the engineering change order (ECO) is efficiently sup-
ported. This means that after a small change in a circuit,
e.g. after gate sizing, the circuit can be placed again without
running the whole placement process from scratch, but starting
immediately the placement algorithm from the last iteration.
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2.5. Quality Control

In order to control the important trade-off between the
quality of placement and the CPU time, a quality control
procedure is called at the end of each iteration in global
placement (see figure 1).

This trade-off presents a challenge in everyday placement
usage. On the one hand the deadline for placement can be near
and therefore the chip has to be placed in short CPU time. On
the other hand the quality of placement can be very important
with no limit of CPU time.

As described in section 1, every connection has a weight
we. These connection weights are changed in each iteration
of global placement in order to model a realistic objective,
e.g. timing requirements [26], or routed wirelength, in the
quadratic cost function. Hence the more iterations are spent
in the global placement, the better is the modeling of the real
objective, i.e. the higher is the quality. On the other hand, the
more iterations the global placement needs, the higher is the
CPU time, since every single iteration takes a fix CPU time.

If the average module movement µ is controlled to be µT

in every iteration, then the iteration count Iglobal of global
placement is indirectly proportional to µT : each module has
to move a certain length L in global placement in order to get
an overlap-free placement and thus following holds true:

L = µT · Iglobal ⇔ Iglobal ∝ 1
µT

(15)

To control the module movement µ to be µT , the target points’
spring constants ẘi are used, since a target point with a small
spring constant attracts its module less than with a high spring
constant.

So altogether, a certain target movement µT is set for quality
control and the average module movement µ is compared to
µT in each iteration: if µ < µT then every wT,i is reduced
and if µ > µT then every wT,i is increased.

Please note that the introduced quality control does not
affect the proof of convergence in section 2.2 since there is
no statement about the target points’ spring constant.
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Fig. 2. Trade-off between quality of placement, measured in HPWL
netlength, and CPU time with quality control’s parameter µT . The results
are based on six circuits of the ISPD-2005 benchmark. The values in the
brackets express the average of iteration count Iglobal.

Figure 2 shows that the presented quality control can
efficiently govern the important trade-off between quality of

placement and CPU time by using its only parameter µT .
Here the quality of placement is measured in the HPWL
of all nets, where the HPWL expresses a linear netlength
and moreover an efficient estimation for routed wirelength.
Compared to µT = 20, the CPU time can be decreased to
50% at µT = 30. At this point, the quality of placement is
less than 2% worse than at the starting point. On the other
side at µT = 10, the quality can be improved by around 0.5%
at a CPU time increase of 70%. With a quality range of less
than 2% and a CPU time range more than 100%, figure 2 also
demonstrates that our placement algorithm is very robust in
quality of placement but flexible in CPU time.

3. Linear Net Model
Section 2 describes that the netlist is modeled as a graph

with modules as vertices and nets as hyperedges. Since
the quadratic placement is based on the squared Euclidean
distance between two points, these hyperedges have to be
transformed into two-point connections. This transformation
is done by the net model.

For each net, the squared Euclidean distance between every
two-point connection of the net is weighted and added up to
the netlength. All netlengths are then added up in the cost
function Γ of the quadratic placement.

Since Γ can be separated in x- and y-direction, just the x-
direction is described further on for sake of brevity.

3.1. Clique Net Model

Traditionally quadratic placers utilize the clique net model
for each hyperedge in the netgraph, i.e. all possible two-point
connections between the modules in the net are used.

If one net has P pins and the x-coordinate of each pin
is denoted by xi (i = 1, 2, 3, ..., P ), the length of the
corresponding clique net is given by

ΓC,x =
wC

2
·

P∑
i=1

P∑
j=1,j �=i

(xi − xj)2 (16)

The net weight wC of clique model is specified by

wC =
1
P

· 2
P

· λ (17)

Factor 1
P in the net weight adapts the clique model to the

star model [21], [32]. Factor 2
P is to adjust the total net weight

to the number of edges in a spanning tree connecting all pins
of the net [19]. The additional net weight λ can be used to
linearize the quadratic clique length ΓC,x [29].

The number of connections in the clique model is deter-
mined by

NC,con = 0.5 · P (P − 1) (18)

The squared clique length (16) is one metric to measure
netlength. As the placement process should consider the rout-
ing process, the netlength in the placement process should
reflect the routed wirelength. Since nets are routed with
horizontal and vertical wires, the minimal routed wirelength is
the length of the rectilinear Steiner minimal tree (RSMT) [14].
Because the RSMT problem is NP-hard, an efficient estimation
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Fig. 3. Approximation error εC,x and εBB,x between the clique net model respectively the BoundingBox net model and the HPWL metric ΓHPWL,x.

and lower bound for routed wirelength is half-perimeter wire-
length (HPWL). For nets with two or three pins, the RSMT
length is equal to the HPWL [14]. [10] demonstrates that for a
set of circuits the HPWL differs from RSMT length by just 8%
but is 1.4×105 times faster determined. The HPWL is defined
per net by the half-perimeter of the bounding box enclosing
its pins. If this box has width w and height h, then the HPWL
is calculated by

ΓHPWL = ΓHPWL,x + ΓHPWL,y = w + h (19)

Since the HPWL is an efficient estimation for routed wire-
length, the netlength in quadratic placement should reflect the
HPWL.

Figures 3 (a), (b), and (c) illustrate the approximation error
εC,x = ΓC,x

ΓHPWL,x
−1 between the clique netlength and the HPWL

metric of randomly generated nets. To linearize the quadratic
clique length (16), the additional net weight λ was set to λ =

10
ΓHP WL,x+10 . The figures demonstrate that the approximation
error of the clique net model is not constant over ΓHPWL,x, is
up to 150%, is spreading at nets with more than two pins,
and is decreasing in proportion to the number of pins in a net.
Even if the approximation error depends on the net weight λ,
the above statements are valid. Therefore the clique net model
approximates the HPWL metric and thus the routed wirelength
very inaccurately. A new linear net model called BoundingBox
net model is presented in the following that reproduces the
HPWL without error.

3.2. BoundingBox Net Model

Pin bPin a

0 w
x

lx,1

lx,2

lx,5

lx,6 lx,7

lx,4

lx,3

(a) BoundingBox

x
0 w

(b) Clique

Fig. 4. BoundingBox and clique net model of a five pin net in x-direction.

In the BoundingBox net model, a hyperedge in the netgraph
is not transformed into all possible two-point connections, as
it is done in clique net model, but only in a few characteristic
ones, as illustrated in figure 4(a): Pin a with lowest x coordi-
nate is connected with pin b with highest x coordinate. This
creates connection 1 with length lx,1 = w. The remaining

P − 2 inner pins of the net are connected with both outer
pins a and b, which creates connections j and j + 1 with
j = 2, 4, 6, ..., 2(P − 2) and lx,j + lx,j+1 = w. Considering
that the pins a and b are the bounds of the net’s box, the
BoundingBox net model is characterized that all its connection
are joined to the bounds of this box.

All together there are

NBB,con = 1 + 2(P − 2) (20)

connections in the BoundingBox net model. and each connec-
tion i = 1, 2, 3, ..., NBB,con has the weight wx,i. The length
of every connection is squared, weighted and added to the
netlength ΓBB,x of this net model:

ΓBB,x =
1
2

NBB,con∑
i=1

wi · l2x,i (21)

With each weight calculated by

wx,i =
2

P − 1
1

lx,i
(22)

the quadratic netlength ΓBB,x of the BoundingBox net model
in x-direction is equal to the width w of the net’s bounding
box and therefore expresses linear netlength.

Proof:

ΓBB,x =
1
2

[
wx,1 · l2x,1 +

+
P−2∑
j=1

(
wx,2j · l2x,2j + wx,2j+1 · l2x,2j+1

) ]

=
1

P − 1

[
lx,1 +

P−2∑
j=1

(lx,2j + lx,2j+1)
]

=
1

P − 1
[
w + (P − 2) · w]

= w (23)

�
With w = ΓHPWL,x this yields an approximation error

εBB,x = ΓBB,x

ΓHP WL,x
− 1 of zero in BoundingBox net model as

is shown in figures 3 (a), (b) and (c).
Please note that in each iteration of the placement algorithm

(see figure 1), the bounds as well as the weights wx,i are
determined for each net.
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By creating the y-part of the BoundingBox net model
similarly to the above described x-part, the netlength ΓBB =
ΓBB,x + ΓBB,y of the BoundingBox net model is equal to the
HPWL ΓHPWL = w + h of the net. As the cost function Γ of
quadratic placement expresses the sum of all netlengths, this
cost function is equal to the HPWL of all nets and therefore
estimates the total routed wirelength efficiently by using the
BoundingBox net model.

3.3. Advantages of the BoundingBox Net Model

Because the BoundingBox net model is based on two-
point connections, it can be used in any quadratic placer.
Thus all quadratic placers can now represent the HPWL, as
a linear metric for netlength and an efficient estimation for
routed wirelength, exactly in the quadratic objective function.
An important disadvantage of quadratic placers compared
to nonlinear-optimization-based placers like APlace [18] and
mPL [7] has been eliminated in this way, while the CPU time
advantage of quadratic placers is maintained.

(18) describes that the number of connections depends
quadratically on the number of pins in the clique model. (20)
shows that in the BoundingBox net model the number of
connections depends only linearly on the number of pins, and
thus is much smaller than in the clique net model. Therefore,
the memory usage is much smaller in the BoundingBox net
model than in the clique net model, since every entry in matrix
Cx needs some memory and the number of matrix entries
is proportional to the number of connections. Consequently,
the CPU time is lower in the BoundingBox model than in
the clique model, as the CPU time of conjugate-gradient
solver used to solve (14) is smaller with smaller number of
connections.

With two pins fixed and no additional forces, all remaining
inner pins are located at the same position in the clique
model. This is because the inner connections, existing in
this net model (see figure 4(b)), pull together the inner pins.
Hence the modules connected to the inner pins overlap a
lot and the module overlap is hard to reduce in the clique
model. The problematic inner connections do not exist in the
BoundingBox net model and therefore this net model does not
tend to glue the inner pins together, but supports the reduction
of module overlap much better than the clique model.

4. Results
All presented results in this paper (except those in section

4.3) are based on circuits of the ISPD-2005 benchmark suite
[23] and the following machine configuration: AMD Athlon
Opteron 248, 2.2 GHz, 8 GB RAM. Please note that for a fair
CPU time comparison we used only one of the two available
CPU cores. The wirelength as a measure of placement quality
is given as total HPWL representing the sum of all netlengths
calculated by the half-perimeter wirelength.

4.1. Clique and BoundingBox Net Model

Table 1 shows the comparison between the traditional clique
net model and our new linear BoundingBox net model. Since
the number of connection is much smaller in our net model,

Clique Net Model BoundingBox Net Model
Circuit HPWL [m] CPU [s] HPWL [m] CPU [s]

adaptec2 102.04 600 95.91 800
adaptec4 219.79 1080 202.90 1580
bigblue1 109.03 820 101.19 930
bigblue2 171.44 1350 157.53 1120
bigblue3 384.55 6160 346.01 5200
bigblue4 962.32 13890 869.75 8400

Average: Total: Average: Total:
1.00 6.64h 0.9189 5.05h

Improvement to Clique 8.11% 22.8%

Table 1. The BoundingBox net model compared to the clique net model

based on circuits of the ISPD-2005 benchmark suite.

the memory usage is about 75% lower and the CPU time is
23% lower using our net model.

In contrast to the clique net model, our new linear net model
reflects the HPWL in the quadratic cost function exactly.
Therefore, the quality of placement, measured in HPWL and
thus representing an efficient estimation for routed wirelength,
is about 8% better in the BoundingBox net model than in the
clique net model.

4.2. Comparison with other Placers

The comparison between our placer and other state-of-the-
art placers is given by table 2, where the results of the other
placers are taken from [17]. Quality of placement for each
placer is described in the column “Average” being the average
ratio between the placer’s HPWL of all five circuits compared
to APlace’s HPWL. Since the authors of [17] just mention that
they use a 1.6 GHz machine, we scaled their CPU time results
according to the ratio between the CPU frequencies: 1.6/2.2.
Only the CPU times of APlace and Capo are given for the
ISPD-2005 benchmarks in [17].

The leading APlace is on average 5.6% better than our
placement approach but needs 16× more CPU time. Looking
at single results reveals that our placer has even the best result
at bigblue3 circuit. Compared with Capo our placer is 9.2%
better and 5.4× faster.

The presented results of our placer are based on quality
control parameter µT = 20. As is shown by the trade-off
figure 2, which is on the basis of the same circuits, the CPU
time could be improved by 50% at a quality loss of 2% or the
quality could be improved by 0.5% at a CPU time increase of
70%.

Since our placement algorithm utilized a simple but fast
method for final placement, we improved the quality of our
placement (at µT = 20) by using the open source RowIroning
package [3], which applies a branch-and-bound placer in
sliding windows. Hence the original quality was improved by
about 2% with a CPU time increase by 60%.

4.3. ISPD-2006 Placement Contest

In the recent ISPD-2006 placement contest [1], in which
placement quality is measured by a combination of total
HPWL netlength, CPU time and respecting a given module
target density , our placer produces the best results. Compared
to mPL[8], which offers the second best results, APlace, and
Capo, our placer is 1%, 11%, and 26% better respectively.
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Circuit
Placer adaptec2 adaptec4 bigblue1 bigblue2 bigblue3 bigblue4 Average CPU [h]

APlace [18], [17] 87.31 187.65 94.64 143.82 357.89 833.21 1.000 82.33
Our Placer (Utilizing RowIroning [3]) 93.84 199.75 99.61 155.19 339.20 857.09 1.041 8.70

Our Placer 95.91 202.90 101.19 157.53 346.01 869.75 1.059 5.05
mFAR [16] 91.53 190.84 97.70 168.70 379.95 876.26 1.064 n/a

Dragon [34], [31] 94.72 200.88 102.39 159.71 380.45 903.96 1.083 n/a
mPL [8] 97.11 200.94 98.31 173.22 369.66 904.19 1.091 n/a

FastPlace [32] 107.86 204.48 101.56 169.89 458.49 889.87 1.155 n/a
Capo [4], [28] 99.71 211.25 108.21 172.30 382.63 1098.76 1.166 27.49
NTUPlace [9] 100.31 206.45 106.54 190.66 411.81 1154.15 1.206 n/a
FengShui [5] 122.99 337.22 114.57 285.43 471.15 1040.05 1.494 n/a

Table 2. Results of our placer compared to other state-of-the-art placers based on the ISPD-2005 benchmark suite [23].

5. Conclusion
Based on a novel non-heuristic force modeling, a fast and

robust quadratic placer was presented in this paper. Conver-
gence to an overlap-free placement is guaranteed and engineer-
ing change order (ECO) is efficiently supported. In addition,
a quality control with just one parameter was proposed to find
the trade-off between CPU time and quality.

Since the move force, which distributes the modules on
the chip, is calculated by a general electrostatic potential, this
potential can be extended to handle for example temperature
aware or congestion driven placement.

Beside the quadratic placer, an universal linear net model
was described. This linear net model expresses exactly the
routed wirelength measured by HPWL in a quadratic cost
function, which can be minimized quite efficiently.
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