
Fast Wire Length Estimation by Net Bundling
for Block Placement

Tan Yan Hiroshi Murata

Faculty of Environmental Engineering
The University of Kitakyushu

Kitakyushu, Fukuoka 808-0135, Japan

{yantan, hmurata}@env.kitakyu-u.ac.jp

ABSTRACT

The wire length estimation is the bottleneck of packing based
block placers. To cope with this problem, we present a fast
wire length estimation method in this paper. The key idea
is to bundle the 2-pin nets between block pairs, and mea-
sure the wire length bundle by bundle, instead of net by
net. Previous bundling method [5] introduces a huge error
which compromises the performance. We present an error-
free bundling approach which utilizes the piecewise linear
wire length function of a pair of blocks. With the function
implemented into a lookup table, the wire length can be
computed promptly and precisely by binary search. Further-
more, we show that 3-pin nets can also be bundled, result-
ing in a further speedup. The effectiveness of our method
is verified by experiments.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids—Placement and
Routing ; J.6 [Computer Applications]: Computer-Aided
Engineering—Computer-aided design (CAD)

General Terms

Algorithm, Experimentation

Keywords

Wire length estimation, Net bundling, Lookup table

1. INTRODUCTION
To cope with the continuously increasing system size, hi-

erarchical design methodologies are desired and the support-
ing block placement algorithms are studied. The most ex-
tensively studied optimization scheme for the block place-
ment problem is the packing based one. In this scheme,
many strategies have been proposed for area optimization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5–9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

[6, 9, 10, 16] while little work is focused on the wire length.
Recent research shows that the wire length estimation dom-
inates the runtime when wire length is taken into considera-
tion [5]. This problem becomes even more crucial when deal-
ing with larger circuits. Table 1 illustrates such a trend by

Table 1: The partitioning results of ISPD’98 bench-
marks [2] and the profile of MCNC/GSRC bench-
marks [15].

IBM01 (12506 cells, 14111 nets)
#partitions 50 100 200 300

#nets (block level) 1899 2669 3259 3659
#pins (block level) 4819 7628 10327 12627
avg. #pin per blk. 96 76 52 42

IBM18 (210341 cells, 201920 nets)
#partitions 50 100 200 300

#nets (block level) 15374 21650 27489 31416
#pins (block level) 36498 60158 85143 105723
avg. #pin per blk. 730 602 426 352

MCNC/GSRC benchmarks
#blocks 49 100 200 300
#nets 408 885 1714 1893
#pins 953 1873 3640 4358

avg. #pin per blk. 19 19 18 15

showing the comparison between the partitioning results of
the smallest (IBM01) and biggest (IBM18) ISPD’98 bench-
marks [2] produced by hMetis [14]. It can be seen that the
interconnection scale (avg. #pin per blk.) increases dramat-
ically as the circuit size (#cells) enlarges. Therefore, how to
restrain the increasing time cost of wire length estimation as
the interconnections scale up becomes the major challenge
for packing based block placers.

A recent work [5] mentioned a net bundling method to
speed up the wire length estimation. Although it could
achieve a quite satisfying speedup, this naive bundling causes
a huge error in the estimated wire length because it relocates
the pins. This error leads to a regression in performance.

In this work, we propose an error-free bundling approach
that speeds up the wire length estimation, especially when
the interconnection scale is large. Our approach is based on
the fact that the total HPWL of the nets spanning between
two blocks forms a piecewise linear convex function with
respect to the relative position of the two blocks [13, 17].
With this function implemented as a lookup table, we can
compute the total wire length promptly and precisely by
binary-searching the table instead of scanning the nets one

172

by one. Furthermore, we show that 3-pin nets can be bun-
dled together with 2-pin nets.

The contribution of this paper lies in the following aspects:
• The piecewise linear wire length function is usually ex-

ploited for wire length optimization in the single-row fixed-
ordering cell placement problem [3,13,17]. When facing the
order-free block placement problem in which optimization
by this function becomes a hard task, researchers turn to
the omnipotent simulated annealing (SA) and totally for-
get about this function. We show that this function is still
useful for wire length estimation in the SA context.

• By the use of this function, the wire length estimation is
greatly sped up, especially when the interconnections scale
up.

• We are the first to show that 3-pin nets can be bundled.
• We also present an approximate bundling method as

fast as that of [5] but with a much smaller error.
The rest of this paper is organized as follows: Section 2

gives the motivation of this paper. Section 3 outlines the
naive bundling approach. Section 4 presents our lookup ta-
ble based bundling approach. Section 5 analyzes the exper-
imental results and Section 6 concludes this paper.

2. MOTIVATION
The block placement problem is to place a set of hard

rectangular blocks without any overlap while optimizing the
area and the wire length. One solution to this problem is the
packing based method, in which the placement is encoded
and the code is iteratively perturbed and evaluated in an
SA scheme. During the evaluation, the code is first decoded
to its corresponding placement and then the area cost and
the wire length cost of this placement are computed.

In this work, we use the fixed-outline criterion [1, 11] for
area estimation. Under this criterion, the area cost is re-
garded as zero when all the blocks fit into the given outline.
Otherwise, some penalty is charged for the exceeding part.
This fixed-outline context eliminates the disturbance of area
optimization when certain level of compactness is achieved
and helps the placer focus on the wire length optimization.

Wire length is usually evaluated in several models, such as
Half Perimeter Wire Length (HPWL), Minimum Spanning
Tree (MST) and Rectilinear Steiner Minimal Tree (RSMT).
Owing to its fast speed and high consistency with the RSMT
model [12], HPWL becomes a standard estimation model for
block placers. We also base our study on this model.

Since perturbing the code usually takes only O(1) for
most of the representations, evaluation time becomes the
key. Area estimation can be done in O(b) to O(b log b), de-
pending on the representation used, where b denotes the
number of blocks. HPWL estimation is possible in O(p)
time, where p denotes the total number of pins. Which one
dominates the runtime depends on the average #pin per
block (the value of p/b). In [5], it is observed that over
80% of the runtime is spent on wire length estimation be-
cause p/b � 1 in the tested benchmarks. Of course, the
p/b value may vary between different design instances. In
practice, it is determined by several methodological factors,
such as the tractable size of intra-block implementation [18],
the tractable number of blocks in the block placers [7], the
number of levels in the hierarchical [1] or multi-level frame-
work [8], etc. However, as can be seen from Table 1, the p/b
value inevitably increases as the chip scale increases. Fur-
thermore, this table also suggests that the MCNC/GSRC [15]

benchmarks, on which [5]’s work is based, greatly underesti-
mate the p/b value for larger circuits (such as IBM18). This
means that wire length estimation for large designs may take
far more than 80% of the runtime. Therefore, the runtime
issue of wire length estimation in block placers is a critical
problem for large circuits.

3. THE NAIVE BUNDLING
A naive solution to speed up the wire length estimation

is to replace a set of nets by a single heavy net. Following
methods fall into this category.

3.1 Bundling by Block Center
In [5], a technique called “conglomerate parallel 2-pin nets

into a heavily weighted net” is introduced to reduce the
number of 2-pin nets for its embedded placer. Here, the
“parallel 2-pin nets” means the 2-pin nets that connect one
pair of blocks. Before packing, all the 2-pin nets connecting
a pair of blocks are replaced with one representative net
with the weight same as the number of the nets bundled.
The two pins of this heavy net is assumed to be located at
the center of each block.

During the estimation, the weighted wire length of the
representative net is used to estimate the total wire length
of all the bundled nets. (Multi-pin nets are estimated in the
conventional net-by-net fashion.) Fig. 1 gives an illustration
of this approach. Due to our observation that usually over

���������	�
�������

�������
���	

����
������
��

�����������

���	��������

���	

����
������
��

����������

Figure 1: Four 2-pin nets connecting a pair of blocks
are bundled into one net with a weight of four.

80% of the nets are 2-pin nets in industrial and academic
benchmarks (refer to Table 2) and that many 2-pin nets are
“parallel”, this approach achieves a quite satisfying speedup.

Table 2: The percentage of 2/3-pin nets in
MCNC/GSRC benchmarks.

nets ami33 ami49 n100 n200b n300

2-pin 84.6% 82.4% 88.9% 88.4% 72.4%
2-pin + 3-pin 92.7% 95.1% 99.4% 99.3% 97.5%

However, since the pins are relocated in this approach, it
is obvious that this block center bundling (referred as BC-
bundling hereafter) has the following drawbacks:

• The estimation is no longer exact, in the sense that it
does not measure the true sum of the wire length of the

173

nets in a bundle because the distribution of the pins is ig-
nored. The magnitude of the error depends on the problem
instances. In our experiments, a huge error (41.6% at max-
imum) is observed for ami33.

• This approach cannot sense the change in wire length
when a block rotates or flips because the block center does
not move. This may mislead to wrong rotation or flipping
of abutting blocks. An example is shown in the Fig. 2.

�
� � � � �

��	
���
�
� ��	
���
�
�

�
� � � � �

�

�� � � �

�

�
�

�
�
�

�
� � � � �

�

� ����

��	
���
�
�

Figure 2: Inexact bundling may lead to bad rotation
(b) or flipping (c).

3.2 Bundling by Pin Centroid
We can enhance BC-bundling by a simple modification.

Instead of the block center, we use the centroid of the pins
of the bundled 2-pin nets as the pin location of the represen-
tative net (see Fig. 1). Considering that the pins of parallel
nets usually stay very close to each other in a block, such
a modification greatly reduces the error. This pin centroid
bundling (referred as PC-bundling hereafter) could also pre-
vent the occurrence of bad block rotation because it can of-
ten sense the change in wire length when a block is rotated.
However, ignoring the detailed pin locations will still lead to
bad block flipping and therefore, the number of Local Net
Crosses (referred as LNC hereafter), which are the crosses
of the nets spanning between adjacent boundaries of abut-
ting blocks (the shaded area in Fig. 2 shows the adjacent
boundaries), will eventually increase. Since the LNC num-
ber models the routing congestion of the channels between
blocks, its increase will result in an increase in the routing
space which is definitely not welcome.

Fig. 2 gives an example of good (sub-figure (a)) and bad
(sub-figure (b) and (c)) rotation/flipping of blocks. The
wrong rotation of block B in (b) results in an increase in
wire length. The wrong flipping of B in (c) results in an
increase in the LNC number. BC-bundling could not sense
the difference between (a) and (b), (c). Therefore, it may
lead to unpreferred placements such as (b) or (c). Inter-
estingly, the LNC number of BC-bundling might be even
smaller than the precise estimation because wrong rotation
may result in less local nets between adjacent boundaries
(there is no net between the adjacent boundaries of A and
B in (b) and therefore, the LNC number becomes zero).
However, this advantage is obtained by the sacrifice of wire
length which is more important. PC-bundling could sense
the difference between (a) and (b) but becomes blind when
facing (a) and (c). Therefore, it risks a larger LNC number.

There might be other enhancements on this naive bundling.
However, as far as they replace multiple nets by one, they
will inevitably introduce error that degrades the performance.

4. OUR PRECISE BUNDLING
In this section, we present our error-free bundling ap-

proach. In HPWL computation, x span and y span can be
calculated separately. Here we only show how to estimate
the wire length in the x direction (referred as x wire length
hereafter). The y wire length can be estimated similarly.

An interesting fact is that the total x wire length of all
the 2-pin nets between a pair of blocks is a piecewise linear
convex function with respect to the relative x-position of
the two blocks [13, 17]. An example can be found in Fig. 3.
Each indifferentiable point (which we call “bend”) in this
function corresponds to a position where the two pins of a
net align vertically.

�����������

	
�����
�����������

����������
������

���

���

���

���
��

���
��

�

�

�
�

� �

�

�

�

� �

�

�
�

�

���������������
����

�������
���������

���������������
����

�������
���������

���������������
����

�������
���������

�������� �

!� !� !�
��� ��� ���

���
��
���"�#�������

$���"
��� �
�������� ����

��
��"��
���
����

���������%"
�
��"
�

����
���������
��

��������
���������������

�������� �������
��
��"
�����
��������

������%��
��
���"����

�"
�
����������

Figure 3: The relationship between the x wire length
and the relative position of the two blocks is a piece-
wise linear convex function.

This fact is well exploited for wire length optimization of
one dimensional single-row cell placement with fixed order-
ing [3, 13, 17]. However, when it comes to the more com-
plex two dimensional block placement, researchers find it
no longer possible to use this function for optimization be-
cause the order of the blocks is not fixed. They then turn to
the omnipotent SA and totally forget about this function.
In the following, we will show that this function is still use-
ful in the annealing context. It can be used for wire length
estimation instead of optimization.

4.1 Bundling by Lookup Tables
The basic idea of our lookup table based bundling (re-

ferred as LT-bundling hereafter) is to record the position xi

of each bend and its corresponding x wire length WLi into
a lookup table. With the table sorted by the position, the
x wire length can be looked up promptly by binary search.
Fig. 3 shows the data structure of the lookup table. In this
part, we only focus on 2-pin nets and in the later part we
will show how to bundle 3-pin nets. Nets with more than 3

174

pins are estimated in the conventional net-by-net style.
Before the annealing process, one lookup table is built for

each pair of blocks. At first, empty tables are built for the
block pairs. Then, we scan through all the 2-pin nets. For
each net, we arrange its two connected blocks in such a way
that the two pins of this net align vertically. The relative
position of the two blocks and the corresponding total x
wire length of all the 2-pin nets between the two blocks are
then computed and inserted into the table for this pair of
blocks. To keep the table ordered, some technique similar
to insertion sort is used.

During the annealing process, the total x wire length can
be estimated by the use of these lookup tables. Instead of
scanning through the nets, we examine the connected block
pairs one by one. For each pair of blocks, say A and B, the
absolute rotation/flipping/position are transformed into rel-
ative ones. The relative x-position xAB is then looked up in
the table and the x wire length WLAB can be computed by
linear projection or interpolation as follows (also see Fig. 3):

Case 1: xAB is too large (small) to be covered by the
table. In this situation, the slope of its located segment in
the function is the same as (the negative of) the number of
2-pin nets connecting the two blocks. Thus WLAB can be
projected from the last (first) entry of the table.

Case 2: xAB is located between two entries (xi ≤ xAB ≤
xi+1). In this situation, a linear interpolation between WLi

and WLi+1 is performed to obtain WLAB .
Since linear projection and interpolation of a linear segment
are exact, the resultant x wire length is also exact. More-
over, since the piecewise linearity of this function still holds
when the 2-pin nets are weighted, our approach can be easily
extended to consider net weights.

4.2 Space & Time Analysis
For each pair of connected blocks, totally 8 lookup ta-

bles are built as follows: when one block is fixed, the other
block has 8 different relative orientation to it (4 relative
rotation multiplied by 2 relative flipping) and for each ori-
entation, two separate tables are built for x and y direc-
tion respectively. This leads to 16 tables. However, since
vertically flipping a module does not change the x coordi-
nate of the pins, the orientations before and after vertical
flipping can share the same x table. Similarly, the orien-
tations before and after horizontal flipping can share the
same y table. Therefore, the number of the tables can be
cut in half, only 8 tables are needed. For each 2-pin net
connecting this pair of blocks, one entry is created in each
table. Therefore, for a circuit with b blocks and n 2-pin nets,
at most 8(b(b − 1)/2) lookup tables with totally 8n entries
are built. A lookup table contains two pointers to the two
blocks, one pointer to the head of entry list and one integer
storing the length of the entry list. Each entry contains two
floats, one for the relative position and the other for the
wire length. Therefore, the memory required for the lookup
tables is (4b(b− 1)× 4+8n× 2)× 4 bytes assuming pointer,
float and integer each consumes 4 bytes. It can easily fit
into 71MB memory considering that b is less than 1000 and
n is less than 100, 000 in practical cases. In our experiments,
less than 50MB memory is used.

The table can be built in O(np̂) time where n is the total
number of 2-pin nets and p̂ is the maximal number of 2-
pin nets between a pair of blocks. This is because for each
net, both computing the total wire length between the two

blocks it connects and inserting the generated entry into the
lookup table require O(p̂) only. In our experiments, building
the table takes less than 1% of the total runtime.

Since we use binary search, the time to obtain the total
wire length between a pair of blocks is O(log p), where p is
the number of 2-pin nets between them. Noticing that con-
ventional estimation method scans through the nets one by
one, its time complexity should be O(p). To estimate all the
nets, all the connected block pairs should be checked in our
approach. Therefore the worst case complexity is O(b2 log p̂)
where b is the number of blocks and p̂ is the maximal num-
ber of nets between a pair of blocks. However, the runtime
for practical circuits is much shorter because their intercon-
necting structures are far from random. In other words, not
every pair of blocks is connected and therefore it is not nec-
essary to examine all of them. For example, only O(b) pairs
of blocks are connected in the grid, ring and tree structure.
The time complexity is then O(b log p̂) for those structures.
Our experiments also confirm such a difference.

4.3 Bundling the 3-pin Nets
For a 3-pin net with pins p1, p2 and p3, we know its x

wire length follows:

HPWLx = max(xp1
, xp2

, xp3
) − min(xp1

, xp2
, xp3

)

= (|xp1
− xp2

| + |xp2
− xp3

| + |xp3
− xp1

|)/2

Its y wire length has the same property. In other words,
the HPWL of a 3-pin net is equal to half of the sum of
the Manhattan distances between every pair of pins in this
net. To our best knowledge, there has been no literature on
this equation although similar equation is discovered for cut
number [4], which is a totally different metric to wire length.
By this, we decompose a 3-pin net into three virtual 2-pin
nets and bundle them together with those actual 2-pin nets.
Before we build the lookup table, we scan through all the
nets and decompose every 3-pin net into virtual 2-pin nets,
each with a weight of 0.5. Then we build the lookup tables
taking the net weight into consideration. When we compute
the wire length for each entry in the lookup tables, we use
the weighted sum of the wire length of all the actual and
virtual 2-pin nets between the corresponding two blocks.

When a 3-pin net is decomposed into three virtual 2-pin
nets, the number of pins doubles, making the size of the
lookup table increase. However, this will cause no seri-
ous problem either in the memory consumption or the table
lookup time. Since the pin number will be at most twice as
before, the size of the lookup table will at most double. As
for time complexity, although the number of pins increases,
bundling the virtual nets with the actual nets makes the to-
tal runtime decrease in most cases. Experiments also show
the effectiveness of such decomposition.

5. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of our method, we com-

pare our method with the conventional estimation approach
and the previous bundling method [5] in the terms of run-
time and performance. We build an SA-based fixed-outline
block placer with these estimations embedded for compar-
ison. The outline is set to be a square with the area 10%
larger than the total area of all the blocks. When the width
(height) of the placement exceeds the outline, a cost of the
ratio of the exceeding part to the outline width (height)

175

is charged as the punishment. Wire length is evaluated
as the ratio of the average HPWL to the half perimeter
of the outline. The cost function is shown in the follow-
ing equations. Sequence-pair [16] is used for packing and
Algorithm 1 in [19] is used for decoding the sequence-pair.
The placer is implemented in C language and all the exper-
iments are conducted on Sun Blade 1000.

Costarea = max(0, Wplacement − Woutline)/Woutline

+ max(0, Hplacement − Houtline)/Houtline

CostWL =

Pn

i=1
HPWLneti

/n

Woutline + Houtline

, n = #net (1)

Costtotal = 0.5 × Costarea + 0.5 × CostWL

The efficiency of the bundling greatly depends on the circuit
structure. Intense connections lead to great speedup while
sparse connections make the bundling inefficient. We design
four benchmarks: rand, grid, ring and tree to show such a
trend. All the four benchmarks have 100 blocks and 10000
2-pin nets but their interconnection structures are different.
The connections of rand are distributed randomly among
the block pairs while the connections of grid, ring and tree
form grid, ring and tree structures respectively. The av-
erage numbers of nets between a pair of blocks are 2, 56,
100 and 101 for rand, grid, ring and tree respectively, indi-
cating that the bundling efficiency of rand is low and that
of tree is high. This is agreed by the experimental result
in Table 3, in which conventional estimation (CV) and LT-
bundling (LT) are compared. We can see that for rand, less
than 2 times speedup occurs while for tree, an impressive 20
times speedup takes place.

Table 3: Experimental result of our testset.
Runtime rand grid ring tree

CV 1711 1718 1716 1711
LT 1038 107 82 83

We then use the popular MCNC/GSRC [15] benchmark
to verify the effectiveness of our proposed approaches. Since
the GSRC benchmarks are for floorplanning and lack the in-
formation on pin location, we randomly distribute the pins
to the peripheries of the blocks. As can be seen from Table 1,
the scale of the inter-block connections (#pin per blk.) in
the MCNC/GSRC benchmarks is over 23 (=352/15) times
smaller than the IBM18 benchmark. This means that the
MCNC/GSRC benchmarks greatly underestimate the inter-
connection scale of large circuits. Therefore, we replicate
their nets by 3, 10 and 30 times to project the inter-block
connections in small, medium and large scale circuits. When
replicating a net, we move the pins by a small offset so that
the new net does not overlap with the original one.

We embed the conventional estimation, BC-bundling [5]
as well as our proposed LT-bundling and PC-bundling into
the same annealing scheme to estimate the 2-pin and 3-pin
nets. Multi-pin nets are estimated in a net-by-net fashion.
Four runs with different random seeds are performed for
each case and the average runtime is shown by the first
sub-column under each estimation method in Table 5. Run-
time longer than 12 hours is not reported. The meaning
of each column is explained in the footnote of the table.
For BC-bundling, we only bundle the 2-pin nets following
the description in [5]. In order to show the percentage of

runtime spend on wire length estimation in each method,
we use gprof under Solaris to profile the placer. Since the
profiled placer runs very slowly, we use a shorter annealing
schedule and perform only one run for each case. However,
since we find that this percentage does not change a lot as
the schedule and random seed change, we believe that the
numbers in the table give a rough image on which procedure
dominates the runtime. The second sub-column under each
method shows the portion of time spent on estimating the
bundled nets (the 2-pin nets for BC, PC-2 and LT-2, and
the 2 and 3-pin nets for PC-3 and LT-3, there is no bundled
net for CV). The third sub-column shows the percentage
of time spent on estimating the unbundled nets in the net-
by-net fashion. The time to build the lookup tables is less
than 1% of the total runtime and is therefore not reported.
The memory consumption of our placer is only 50MB for
the largest n300*30. The solution quality of these meth-
ods is shown in the first three columns in Table 6 (under
the label “Same Annealing Scheme”). Since both CV and
LT-bundling are precise, they have the same result.

To show the error introduced in inexact estimations (BC,
PC-2 and PC-3), we compare their results with those of
precise estimation each time we call the estimator in the
annealing process. The maximal and average error during
a complete annealing process is shown in Table 4. Since
adding such function makes the placer very slow, only one
run is performed for each case. Here, we only present the
error of the original MCNC/GSRC benchmarks. Those of
the net-replicated benchmarks are quite similar.

Table 4: The maximal and average error (%) of in-
exact methods.

Bench BC PC-2 PC-3
mark max avg max avg max avg

ami33 41.6 24.0 5.6 1.8 5.0 1.8
ami49 19.0 6.3 3.3 0.8 5.8 1.4
n100 44.8 33.9 28.9 18.9 32.0 20.6
n200 46.1 34.3 25.0 16.8 27.2 17.9
n300 14.5 10.0 6.4 3.6 21.7 13.4

Several interesting points can be observed from the result:
• BC-bundling has an obvious speedup over the conven-

tional estimation method, especially when the interconnec-
tions scale up. However, its huge error (41.6% maximal
and 24.0% average for ami33) results in a much longer wire
length. For ami33, we observe a 33% (= 0.359−0.270

0.270
) increase

in wire length which is intolerable for block placement.
• PC-2 bundling is as fast as BC-bundling but its er-

ror is much smaller for MCNC benchmarks. However, for
GSRC benchmarks, the error is as significant as that of BC-
bundling. This is because the pins are randomly distributed
around the block boundary and lack adjacency. As a result,
their centroid tends to be close to the block center. There-
fore, PC-bundling’s behavior resembles that of BC-bundling
in certain degree for GSRC benchmarks.

• The effectiveness of bundling 3-pin nets is not obvi-
ous for original MCNC/GSRC benchmarks due to the small
scale of interconnections. However, when the interconnec-
tions are replicated to simulate larger circuits, we can see
an obvious speedup in both PC-bundling and LT-bundling.

• Smaller error in the bundling leads to shorter resultant
wire length. The resultant wire length of PC-3 bundling
is much shorter than that of BC-bundling and achieves the

176

same level as that of precise estimations (CV and LT) for
MCNC benchmarks. However, the number of local net crosses
of its result is much larger than that of the exact estimations.
For GSRC benchmarks, since PC-3 bundling’s behavior is
between CV and BC, its resultant wire length is also be-
tween CV and BC. Please note that although PC-bundling
introduces a fairly large error for GSRC benchmarks, its
ability to distinguish good and bad rotation of blocks helps
it to achieve a shorter wire length than BC-bundling.

• Our LT-bundling fails to outperform the CV estimation
for the original MCNC/GSRC benchmarks. This is because
for small interconnection scale, the system overhead over-
whelms the time saving of table lookup. However, as the
interconnections scale up, the advantage of the LT-bundling
becomes obvious. A 10 (= 21338

2074
) times speedup can be

observed for n100*30. Moreover, since it is error-free, its
behavior is the same as CV, outperforming those inexact
bundling methods (BC, PC).

• The portion of time spent on wire length estimation is
reduced when bundling is used (from 98.9% in CV to 70.4%
(= 52.1 + 18.3) in LT-3 bundling for n100*30).

• As the interconnections increase, wire length estima-
tion for multi-pin nets begins to dominate the runtime (from
14.7% in ami49 to 81.9% in ami49*30 for LT-3). Bundling
2/3-pin nets can hardly provide any further speedup.

We also design an experiment to examine the impact of
the speedup on the quality improvement when the design
time is constrained. We tune the annealing scheme of CV
and LT-3 so that they run within the same time as PC-
3. The result is concluded in the rightmost two columns of
Table 6 (above the label ”Same Runtime”). Here we also
perform four runs for each case and take the average as the
result. Since the runtime for n300*30 and n200*30 under
CV is not available, the comparison is not made for those
two cases. It can be seen that within the same runtime, LT-
3 bundling still outperforms the even faster PC-3 bundling
for most of the cases, especially when the design instance is
large. The speedup of LT-3 over CV could be translated into
a great improvement in the wire length in a time-constraint
context. A 16.4% (= 0.182−0.152

0.182
) wire length improvement

can be observed for ami49*30.

6. CONCLUSION
Recent research [5] shows that wire length estimation be-

comes the bottleneck in the packing based block placers.
As the circuits keep sizing up, the increasing number of in-
terconnections will make the problem even worse. Naive
bundling by block center could speed up the wire length
estimation but the introduced error compromises the per-
formance. In this work, we propose an error-free bundling
approach using the piecewise linear wire length function of
two connected blocks. Our method achieves a significant
speed up for large circuits while keeping the estimation ex-
act. Moreover, we show that 3-pin nets can be bundled
together with 2-pin nets by net decomposition. It is also
possible to assign different weights to different nets in our
method to consider issues such as timing constraint, etc.
Due to its precise estimation result and its sensibility to
wrong rotation and flipping of blocks, we suggest its usage
in the final placement in which the rotation and flipping of
blocks greatly affects the difficulty of the later routing.

We also present a pin centroid bundling method which
achieves the same speed as previous block center bundling [5]

but with a much smaller error. Its resultant wire length is
comparable to that of precise estimation although the num-
ber of local net crosses of the resultant placement increases.
This method is suitable for early stage floorplanning in which
the flipping of blocks is less important.

7. ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewer

for the idea on cutting the size of the lookup tables by half.

8. REFERENCES

[1] S. N. Adya and I. L. Markov. Fixed-outline
floorplanning: Enabling hierarchical design. IEEE
Trans. on VLSI Systems, 1(11):1120–1135, December
2003.

[2] C. J. Alpert. The ISPD98 circuit benchmark suite. In
Proc. ISPD’98, pages 80–85. ACM, April 1998.

[3] U. Brenner and J. Vygen. Faster optimal single-row
placement with fixed ordering. In Proc. DATE’00,
pages 117–121. ACM/IEEE, March 2000.

[4] A. E. Caldwell, A. B. Kahng, and I. L. Markov.
Optimal partitioners and end-case placers for
standard-cell layout. IEEE Trans. on CAD of
Integrated Circuits, 19(11):1304–1314, November 2000.

[5] H. H. Chan, S. N. Adya, and I. L. Markov. Are
floorplan representations important in digital design?
In Proc. ISPD’05, pages 129–136. ACM, April 2005.

[6] Y.-C. Chang, Y.-W. Chang, G.-M. Wu, and S.-W.
Wu. B*-trees: a new representation for non-slicing
floorplans. In Proc. DAC’00, pages 458–463.
ACM/IEEE, June 2000.

[7] T.-C. Chen and Y.-W. Chang. Modern floorplanning
based on fast simulated annealing. In Proc. ISPD’05,
pages 104–112. ACM, April 2005.

[8] T.-C. Chen, Y.-W. Chang, and S.-C. Lin. IMF:
Interconnect-driven multilevel floorplanning for
large-scale building-module designs. In Proc.
ICCAD’05, pages 159–164. ACM/IEEE, November
2005.

[9] P.-N. Guo, C.-K. Cheng, and T. Yoshimura. An
O-tree representation of non-slicing floorplan. In Proc.
DAC’99, pages 268–273. ACM/IEEE, June 1999.

[10] X. Hong, G. Huang, Y. Cai, J. Gu, S. Dong, C. K.
Cheng, and J. Gu. Corner block list: an effective and
efficient topological representation of non-slicing
floorplan. In Proc. ICCAD’00, pages 8–12.
ACM/IEEE, November 2000.

[11] A. B. Kahng. Classical floorplanning harmful? In
Proc. ISPD’00, pages 207–213. ACM, April 2000.

[12] A. B. Kahng and S. Reda. A tale of two nets: Studies
of wirelength progression in physical design. In Proc.
SLIP’06, pages 17–24. ACM, March 2006.

[13] A. B. Kahng, P. Tucker, and A. Zelikovsky.
Optimization of linear placements for wirelength
minimization with free sites. In Proc. ASP-DAC’99,
pages 241–244. ACM/IEEE, Janurary 1999.

[14] G. Karypis and V. Kumar. Multilevel k-way
hypergraph partitioning. In Proc. DAC’99, pages
343–348. ACM/IEEE, June 1999.

[15] MCNC/GSRC Floorplan Benchmarks.
http://www.cse.ucsc.edu/research/

177

surf/GSRC/progress.html.

[16] H. Murata, K. Fujiyoshi, S. Nakatake, and
Y. Kajitani. VLSI module placement based on
rectangle-packing by the sequence pair. IEEE Trans.
on CAD, 15(12):1518–1524, December 1996.

[17] M. Ohmura, S. Wakabayashi, J. Miyao, and
N. Yoshida. Improvement of one dimensional module
placement in VLSI layout design. Electronics and
Communications in Japan, 74(7):67–76, July 1991.

[18] D. Sylvester and K. Keutzer. Getting to the bottom of
deep submicron. In Proc. ICCAD’98, pages 203–211.
ACM, November 1998.

[19] X. Tang, R. Tian, and D. F. Wong. Fast evaluation of
sequence pair in block placement by longest common
subsequence computation. In Proc. DATE’00, pages
106–111. ACM/IEEE, March 2000.

Table 5: Time comparison of the estimation methods under the same annealing scheme.
Bench CV BC PC-2 PC-3 LT-2 LT-3
mark TT BN UN TT BN UN TT BN UN TT BN UN TT BN UN TT BN UN

ami33 13 - 77.8 10 12.3 57.4 10 12.3 57.4 10 16.2 52.4 13 19.4 48.6 14 24.6 42.7
ami33*3 56 - 92.2 31 6.2 80.9 31 6.5 80.4 27 8.7 77.1 35 10.2 74.9 33 14.1 69.6
ami33*10 190 - 97.6 113 2.3 93.6 113 2.2 93.7 102 3.1 92.3 118 3.8 91.0 107 5.4 88.7
ami33*30 563 - 99.1 327 0.7 97.8 326 0.8 97.7 290 1.1 97.3 332 1.7 96.4 298 2.4 95.2
ami49 104 - 81.7 47 20.9 43.5 48 20.1 42.9 41 33.9 21.7 71 28.6 33.9 76 42.8 14.7
ami49*3 349 - 93.5 119 11.8 70.6 119 11.4 70.5 64 25.2 45.1 148 17.7 61.7 105 34.4 34.2
ami49*10 1124 - 97.9 373 4.4 89.4 374 4.4 89.0 179 12.5 73.9 403 7.3 84.3 225 19.4 63.4
ami49*30 3393 - 99.2 1240 2.7 95.1 1242 2.7 94.9 561 7.0 87.8 1332 4.0 93.0 661 11.0 81.9

n100 759 - 78.0 452 39.7 21.5 453 40.1 21.3 467 58.1 1.5 805 47.4 14.6 952 60.5 0.9
n100*3 2071 - 91.6 708 28.3 45.3 707 28.3 45.3 484 57.4 4.1 1112 37.8 33.2 1040 60.0 2.4
n100*10 6618 - 97.1 1521 13.8 73.4 1519 13.8 73.3 548 52.2 12.9 1987 23.0 59.4 1198 56.7 6.9
n100*30 21338 - 98.9 5488 9.5 85.8 5467 9.6 85.8 1001 43.9 31.7 7096 15.6 77.0 2074 52.1 18.3
n200 2168 - 72.4 1441 35.3 20.1 1446 35.1 20.1 1484 53.2 1.5 2376 43.3 14.2 2802 56.5 1.0
n200*3 5591 - 88.3 2091 25.4 42.7 2088 25.6 42.6 1544 51.3 4.5 3151 34.7 32.0 3034 55.8 2.8
n200*10 18103 - 95.9 6261 16.4 69.1 6275 16.4 69.2 2075 46.8 15.5 8659 23.7 59.3 3929 52.4 10.1
n200*30 >12h - - 20531 8.8 85.4 20412 8.7 85.5 3621 40.4 33.4 25938 14.3 78.0 7063 49.4 20.9
n300 6610 - 63.5 5488 23.1 30.6 5484 23.3 30.6 5448 46.4 3.8 7682 30.2 24.8 9833 51.8 2.5
n300*3 16201 - 83.3 9228 14.5 56.7 9222 14.4 56.7 5957 43.5 10.5 11698 20.8 49.2 10881 50.3 7.0
n300*10 52024 - 94.1 27930 8.5 79.1 28288 8.3 79.2 10489 37.4 29.4 33826 12.4 74.4 17328 45.0 21.8
n300*30 >12h - - >12h - - >12h - - 25118 27.7 53.6 >12h - - 41796 39.0 41.0

aCV means ConVentional net-by-net estimation, BC means Block Center bundling, PC means Pin Centroid bundling and LT
means our proposed Lookup Table bundling. 2 means only 2-pin nets are bundled and 3 means 2 and 3- pin nets are bundled.
bTT means the Total runTime (in sec.), BN means the percentage of time spent on estimating the Bundled Nets and UN
denotes the percentage of time spent on estimating the Unbundled Nets.

Table 6: Performance comparison of the estimation methods.
Same Annealing Scheme

Bench CV & LT BC PC-3 CV LT-3
mark FR WL LNC FR WL LNC FR WL LNC FR WL LNC FR WL LNC

ami33 75% 0.270 27 100% 0.359 0 75% 0.263 46 0% 0.269 3 100% 0.284 47
ami33*3 100% 0.275 260 75% 0.331 5 100% 0.268 234 50% 0.274 7 50% 0.258 223
ami33*10 50% 0.275 2537 100% 0.340 178 100% 0.264 7793 100% 0.270 3507 50% 0.261 633
ami33*30 50% 0.270 2591 75% 0.332 27 75% 0.272 48720 50% 0.273 28328 50% 0.268 1190
ami49 50% 0.161 102 100% 0.182 39 75% 0.160 96 75% 0.169 59 100% 0.172 57
ami49*3 100% 0.161 539 75% 0.177 428 50% 0.158 722 25% 0.175 742 50% 0.161 704
ami49*10 50% 0.160 11030 75% 0.184 7169 25% 0.163 11169 50% 0.178 7496 50% 0.151 14537
ami49*30 75% 0.154 53126 100% 0.185 50812 100% 0.161 101758 0% 0.182 46897 50% 0.152 65327

n100 100% 0.368 2 100% 0.414 0 100% 0.375 5 100% 0.369 1 100% 0.375 3
n100*3 100% 0.368 60 100% 0.435 41 100% 0.380 24 100% 0.387 20 100% 0.379 35
n100*10 100% 0.371 311 100% 0.429 217 100% 0.380 471 100% 0.401 175 100% 0.378 263
n100*30 100% 0.377 1378 100% 0.424 985 100% 0.389 762 25% 0.417 403 100% 0.381 898
n200 100% 0.360 1 100% 0.408 1 100% 0.368 3 100% 0.361 1 100% 0.363 1
n200*3 100% 0.354 32 100% 0.415 16 100% 0.366 25 100% 0.372 29 100% 0.362 50
n200*10 100% 0.359 322 100% 0.413 303 100% 0.369 336 0% 0.388 158 100% 0.368 259
n200*30 100% 0.364 1391 100% 0.415 4148 100% 0.376 788 - - - 100% 0.372 956
n300 100% 0.291 3 100% 0.312 1 100% 0.297 2 100% 0.293 2 100% 0.296 3
n300*3 100% 0.294 74 100% 0.312 35 100% 0.296 72 100% 0.302 70 100% 0.296 59
n300*10 100% 0.291 478 100% 0.310 381 100% 0.298 382 100% 0.311 358 100% 0.296 410
n300*30 100% 0.296 1001 - - - 100% 0.304 666 - - - 100% 0.300 1346

Same Runtime

cFR (Fit-in Rate) means the success rate of fitting the placement into the outline in the four runs. WL is the Wire Length
cost in the form of Eq. (1). LNC means the number of Local Net Crosses.

178

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

