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ABSTRACT 
Designing asynchronous circuits by reusing existing syn- 
chronous tools has become a promising solution to the 
problem of poor CAD support in asynchronous world. A 
straightforward way is to structurally map the gates in a 
synchronous netlist to their functionally equivalent modules 
which use delay-insensitive codes. Different trade-offs exist 
in previous methods between the overheads of the imple- 
mentations and their robustness. The aim of this paper is 
to optimise the area of asynchronous circuits using partial 
acknowledgement concept. We employ this concept in two 
design flows, which are implemented in a software tool to 
evaluate the efficiency of the method. The benchmark re- 
sults show the average reduction in area by 28% and in the 
number of inter-functional module wires that require timing 
verification by 67%, compared to NCL-X. 

1. INTRODUCTION 
In the past few years, designers were trying to build 

a bridge between synchronous and asynchronous circuits. 
Rather than synthesising the circuits from “truly” asyn- 
chronous specifications such as communicating processes [9] 
or signal transition graph [2, 141, asynchronous circuits are 
built at a low cost by reusing synchronous CAD tools in their 
design flows. Asynchrony, in return, makes the circuits more 
robust in coping with the variations in the fabrication pro- 
cess, which is an increasingly important concern to digital 
circuit designers. 

The well-known approaches to asynchronous circuit syn- 
thesis are NCL-D [8] and NCL-X [6]. Both of them map a 
gate in the synchronous circuit to a dual-rail encoded mod- 
ule with an equivalent function. NCL-D replaces a gate with 
one of the NCL (Null Convention Logic) operators based on 
threshold logic [ l l ] .  A further optimisation of such a NCL 
network is introduced in [ 5 ] .  Besides the threshold logic, 
other techniques exist to implement the functional modules 
used in a NCL-D circuit. They include DIMS (Delay Insen- 
sitive Minterm Synthesis) [20], DL (Direct Logic) [21] and 
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RDL (Reduced Direct Logic) [13]. NCL-D approach is very 
robust because all the inter-module wires are allowed to have 
arbitrary delays without damaging the circuit’s correct be- 
haviour. Critical forks exist only within a functional module 
whose timing closure can be ensured through careful routing 
of the library elements. Whilst robust, it suffers from large 
area and slow speed. NCL-X, on the other hand, uses sim- 
pler and faster functional modules for the functional part of 
a circuit. However, it needs extra complet ion detection (CD) 
circuitry to tell when the computations are done. 

This paper proposes two design flows to synthesise asyn- 
chronous circuits from synchronous ones. We formulate the 
first design flow (DF1) as a unate covering problem and its 
solution decides which type of functional module replaces 
a gate in the synchronous netlist, NCL-D or NCL-X. More 
“fine-grained” functional modules are added to the library 
of the second design flow (DF2) and we formulate it as a 
binate covering problem. We define the partial acknowl- 
edgement to guide the synthesis procedure. Intuitively, the 
covering problems determine which type of functional mod- 
ule is chosen to replace a gate in the original circuit so that  
all the circuit variables are “covered” by the meaning of par- 
tial acknowledgement. Solutions to these covering problems 
are then found to minimise the cost functions that are de- 
fined in terms of a circuit’s area in this paper. DF1 reduces 
the circuit’s area compared with NCL-D but increases the 
number of inter-module wires to be verified for timing clo- 
sure. The DF2 further reduces the overhead of the first one 
with the penalty of a 50% increase in verification demand. 
Compared with NCL-X solutions, DF2 has reduced both 
the circuit area (by 28% on average) and the verification 
demand (by 67% on average). 

Our work is also motivated by the optimisation of an asyn- 
chronous circuit’s performance. We believe a circuit can be 
synthesised to keep its robustness level to some extent with- 
out hurdling the data-dependent flows. For this purpose, we 
will apply the idea of partial acknowledgement during the 
static timing analysis of a circuit. The functional modules 
synthesised in DF2 are the candidates for this future work. 

2. BACKGROUND 

2.1 Functional modules using dual-rail code 
For each bit of a signal, the dual-rail encoding under the 

return-to-zero protocol (a.k.a.  4-phased protocol) represents 
null by rail‘= rail’ = O  and valid code word l(0) by raiP=O, 
rail’ =1 (ruiP=l, rail’ =O).  In a circuit using this conven- 
tion, data and null wavefronts alternate (the circuit signals 
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switch from nulls to valid code words and from valid code 
words to nulls, respectively). 
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Table 1: Different implementations of an AND gate 

Gates in a single-rail netlist are converted to their corre- 
sponding functional modules, the dual-rail encoded entities 
with the equivalent functions. We categorise the functional 
modules into two classes by their impact on the data flow- 
ing through them. Table 1 illustrates the classification of 
the functional modules implementing an AND gate. The 
first class can produce a valid (null) output when only par- 
tial inputs are valid (null) and hence called early propaga- 
tive (EP). For example, a code word of 0 (y()=l, y1 =0) 
is produced at the output of an EP AND functional mod- 
ule in Table 1 when only one input turns into 0 (a”=l,  
a’ =0) in a data wavefront. The second class must wait 
for all the inputs becoming valid (null) before producing a 
valid (null) output. It is called input complete (IC) accord- 
ing to the definition of completeness of inputs [4]. Table 1 
demonstrates the implementation of an IC AND gate based 
on Muller-C elements (DIMS) and on threshold logic (the 
2NCL operator). Optimisation using sum-partitioning and 
product-partitioning is available in the threshold logic im- 
plementation [18, 11, 171. 

2.2 Asynchronous circuits implementations 
and their timing assumptions 

Asynchronous circuits rely on the dependencies between 
signals, rather than the global clock, to tell when the compu- 
tation is done. The monotonic transitions from nulls (valid 
code words) to valid code words (nulls) provide one scheme 
where the dependencies are sought in the two phases sepa- 
rately. Furthermore, signalling schemes are proposed for a 
circuit’s behaviour: the “weak conditions” by Seitz [16] and 
the “completeness of inputs” [4] by NCL. 

NCL-D [8, 201 builds an asynchronous circuit by replac- 
ing the gates in a synchronous one with their correspond- 
ing IC functional modules. Figure l (b )  illustrates how this 
method implements the circuit in Figure l(a).  Satisfying 
the weak conditions and the “completeness of inputs” re- 
quirement, it is very robust except for some “small” timing 
assumptions required for some forks in an IC module, for- 
mally known as the “isochronic fork assumptions” [l]. We 
show these forks with dotted wires in Table 1 when inputs 
a and b change from nulls to “1”s in a valid data wave- 
front. On the other hand, NCL-X replaces the gates with 
their EP functional modules for computation and demands 

(b) NCL-D (c) NCL-X 

Timing assumptions in different imple- 
mentation methods 

extra completion detection (CD) circuitry for the “complete- 
ness of inputs”. Figure l (c )  illustrates the implementation 
of NCL-X, where the CDs are simply the OR gates whose 
outputs are synchronised by the C-element trees. In NCL- 
X, the timing assumption imposed on the inter functional 
module wires (the dotted ones in Figure l (c ) )  is to bound 
their delays by the stabilisation time of the CD circuitry. 

3. PARTIAL ACKNOWLEDGEMENT 
Suppose 71, is a dual-rail encoded variable in circuit C 

fanning into F ,  a functional module whose dual-rail output 
is 0 3 .  Let C work under the return-to-zero protocol. We 
have v L  1‘ denoting the rising phase transition of v, from null 
to a valid code word and o2 J the falling phase transition 
of 71, from the valid code word to null. A valid code word 
represents either 0 or 1. 

We define that the rising phase transition of 71, is partially 
acknowledged by that of v j  , iff 

(Vu7 t 3.uJ T. t i  WJ t) (3.1) 

( V U (  1 j U ,  1. v, 1+ vj 1) (3.2) 

Similarly, we define that the falling phase transition of v L  
is partially acknowledged by that of 0 3 ,  iff 

The following proposition can be proved by contradiction. 
If the rising phase transition of v, is partially acknowledged 
by that of 7 i J ,  transition of 7 i J  from null to valid code word in- 
dicates the transition of 71, from null to valid code word. The 
proposition can be derived for the falling phase transitions 
of o2 and 0 3 ,  too. The acknowledgement is partial because 
we don’t know if the same relations as those defined in (3.1) 
and (3.2) exist between 71, and other functional modules’ 
outputs. 

v L  is partially acknowledged if both its rising and falling 
phase transitions are partially acknowledged. In particular, 
v, is partially acknowledged by v j ,  iff 

( 3 . 3 )  
According to our definitions, the output of an IC func- 

tional module partially acknowledges all its inputs. On the 
contrary, the output of an EP functional module partially 
acknowledges none of its inputs. In NCL-D, an input (in- 
ternal) variable is partially acknowledged by all the outputs 
of the functional modules it fans into. In NCL-X, however, 
a variable is only partially acknowledged by the outputs of 

( V W Z  T: 3 W J  T: v, t i  vJ t ) A  
( V W Z  1: 3 W J  1: v7 1- VJ 1) 
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the completion detection circuitry. 

4. DESIGNS FLOWS BASED ON PARTIAL 
ACKNOWLEDGEMENT 

Our two design flows have the same objective, which is 
described below. 

Design  objective: Given the synchronous single-rail 
netlist, implement its equivalent circuit where every gate 
in the original netlist is replaced by the appropriate type of 
dual-rail encoded functional module. Find a solution with 
the minimum area under the requirement that each input 
and internal variable in the final implementation is at least 
partially acknowledged. 

The first design flow (DF1) contains only IC and EP func- 
tional modules and is formulated as a unate covering prob- 
lem. The second design flow (DF2) is supplemented with 
functional modules partially acknowledging particular phase 
transitions of certain inputs and is defined as a binate cov- 
ering problem. Unate (and binate) covering problems (also 
referred as mincos t  sat problems [12]) are discussed in de- 
tail in [3]. A unate covering problem has its well known 
application in 2-level circuit minimisation and binate cov- 
ering problem in technology mapping [15]. We choose the 
constraint equation forms of the covering problems for our 
presentation, though the matrix forms work as well. 

4.1 Design flow 1 
Revisit the example of Figure l (a) .  This time we replace 

gate G1 and G3 with their IC implementations whereas G2 
its E P  one. Figure 2 illustrates the decision. According to 
our definitions, a and d are acknowledged while b and c are 
partially acknowledged by G1 and G3, respectively. It satis- 
fies the requirement of the design objective with 60 transis- 
tors by RDL. As a comparison, NCL-X uses 110 transistors 
plus extra interconnections in the CD circuitry. In terms of 
robustness, the amount of inter-module wires required for 
timing verification is greatly reduced (4 vs 12). 

Figure 2: Intuitive implementation of the exemplar 
circuit 

4.1.1 Formulation of DFI as a unate coveringprob- 
lem 

Let 11, be an input or internal variable and G, be a gate be- 
longing to circuit C. A variable in DF1 can only be partially 
acknowledged by the IC functional modules it fans into. Let 
boolean variable Gi' denote the implementation of G, as an 
IC functional module. A clause is written for each variable 
of the circuit indicating which IC functional modules can 
partially acknowledge it. For example, the clause for vari- 
able 11, can be written as c ? , ~  = Cc,  f a , , + u u t ( u , )  GY . 
Suppose ioL is the cost of the implementation of G, as an 

IC functional module, the design objective is formulated as 
a unate covering problem: 

Find the assignment to the boolean variable Gi' of every 
gate in the circuit that satisfies the constraint equation: 

while minimising the cost function C , ( w ,  0 G:r) .  Satis- 
faction of 4.1 ensures each input and internal variable in the 
circuit is partially acknowledged. After finding one satisfy- 
ing assignment] implement a gate G, by its IC functional 
module if Gi' = 1 or otherwise by its E P  functional module. 

Example. In the circuit shown in Figure l (a ) ,  the clauses 
of inputs a,  b,  c and d are G;', G;' + Gy , Gy + GY and 
GY, respectively. Therefore, the constraint equation of the 
circuit can be expressed as GY (GY +GY)(GY +GY)GY = 1. 
The solution is obvious: G;' = GY = 1. As a result, Gland 
GS are implemented as IC functional modules while Gz as 
EP. 

(4.1) nuJ E { i n p u t  s a n d  zn t c r n a l  u a r z a b l c s  o j CT} C?iJ = 1, 

4.1.2 Timing assumptions 
In the final implementation, a fork is non-critical if all 

the gates it fans into are implemented as their IC functional 
modules. For the fork wires fanning into EP functional mod- 
ules] we need to ensure their timing closure to avoid a po- 
tential hazard. 

4.2 Design flow 2 
DF1 binds all the inputs of an IC module for their par- 

tial acknowledgement because a gate is casted either as an 
IC module or EP one. By enlarging the spectrum of the 
functional modules in DF2, we expect more optimisation 
space for both the area and speed. We first introduce how 
to synthesise a functional module that partially acknowl- 
edges the rising or(and) falling phase transitions of certain 
inputs. Then we formulate the design procedure satisfying 
the design objective as a binate covering problem. 

In literature, Martin's adder [lo] is a well-known example 
to distribute the evaluation of the inputs' nulls and valid 
words among those of the circuit's outputs. In [13], Nielsen 
proposed RDL for similar distributions. In this paper, we 
resort to Boole's expansion theorem in its dual-rail form. 

4.2.1 Functional modules synthesis 
The naming convention for a functional module used in 

DF2 is a module ' s  func t ion-  ( input  n a m e  followed by i ts  
phase  t rans i t ion  t o  be partially acknowledged)*. A phase 
transition could be one of the following: rising phase tran- 
sition (T), falling phase transition (J), or both rising and 
falling phase transition (*). For example, AND3 aT de- 
notes the 3-input-AND module that partially acknowledges 
the rising phase transition of input a. Another example, 
MAJ3 a*b*, represents a 3-input-majority-voting mod- 
ule where both the rising and falling phase transitions of 
a and b are partially acknowledged by the output variable. 
We know that the EP and IC functional modules in DF1 
can be viewed as special instances of this enlarged library. 

The implementations of the functional modules used in 
this paper is by, but not restricted in general to, pseudo- 
static logics. Figure 3(a) illustrates its prototype comprising 
the pul l -up-ne twork  (PUN), pul l -down-ne twork  (PDN), and 
the output inverter pairs. The weak feedback inverter is used 
to fight against the charge leakage problem, an alternative 
solution to which is the cross-coupled p-typed transistors 
used in the DCVSL style [7]. The rest of this section is 
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(a) Functional module (b) Multiplexer 

Figure 3: Pseudo-static logic implementations 

devoted to the design procedures of a functional module in 
4 steps, through the example of MUX2:l - aTc*. 

Step 1: Derive the dual-rail functions, i.e., f o  and f ' ,  
of the functional module from its single-rail function f. f' 
is converted from f by replacing the uncomplemented vari- 
ables in f with the corresponding rail-1s whereas the com- 
plemented ones with rail-Os. f o  is simply the dual of f ' .  
E.g., the boolean function of module MUX2:l aTc* is 
f = co, + c'b, whose dual-rail boolean functions can be de- 
rived as f' = c'a' + cob' and f o  = c'a' + cobo. 

Step 2: Decompose f' and f"  w.r.t. the dual-rail 
minterms of the inputs whose rising phase transitions are 
chosen to be partially acknowledged, according to Boole's 
Expansion Theorem. If there are no such inputs, f' and 
f o  remain as they are in step 1. Dual-rail minterms are the 
dual-rail equivalence of the minterms expressed in single-rail 
form. For instance, the dual-rail minterms in the example 
are a"c", aocl, a'(?' and a'c ' .  The decompositions are shown 
in 4.1. 

I =O ,=O 
In 4.1, n is the number of the inputs whose rising phase 

transitions are chosen to be partially acknowledged. rrto, ..., 
~ Y - I  are the 2'L ~ ldual-rad mznterms. fAl.8=1 (fiiLt=l) is 
the positive cofactor o f f '  ( f o )  with respect to m,. 

The decomposition process of the example is listed in 4.2. 
f '  = aoco f ' o L c " = '  + a  0 1  c f ;LCL'  

+ alc" f q I L , L l  + a  c f ( L 1 = , l L 1  - 
1 1  

~ 

~ aBco. ( b ' )  + aOc' ' (0) 
+a'cO ( b ' ) + a ' c '  (1 )  

14 21 

Step 3: Build the PDN of the functional module by con- 
necting the n-typed transistors due to 4.1. The connection 
rules follow those for the NMOS network and transistors are 
shared to save the area. The rising phase transitions of the 
chosen inputs are partially acknowledged through this con- 
nection as the series connection of a dual-rail minterm exists 
in any path from ground to the module's output rails, and, 
only one of the minterms will be asserted during a valid code 
word wavefront. 

Step 4: Design the PUN of a functional module. If the 
falling phase transition of an input is to be partially ac- 

knowledged, cascade two p-typed transistors controlled by 
the input's dual rails in the paths from VDD to both f '  and 
f" [13]. If no inputs of a functional module are partially 
acknowledged for their falling phase transitions, we make its 
PUN complementary to the PDN and thus remove the feed- 
back inverters. Figure 3(b) shows the final implementation 
of the module MUX2:l - aTc*. 

4.2.2 
Our synthesis method allows separation of the partial ac- 

knowledgements of the rising and falling phase transition for 
a circuit variable. However, the size of the library support- 
ing this function and the complexity of the relevant covering 
problem are not practical. In fact, whether we choose to par- 
tially acknowledge the falling phase transition of a variable 
or not - this will not influence the area optimisation because 
its cost is a constant (4 p-typed transistors per circuit vari- 
able). Therefore, in this paper we require that a functional 
module will partially acknowledge both the rising and falling 
phase transitions of a variable, if it does acknowledge any 
phase transition of that variable. There is another consider- 
ation behind this requirement to exclude any possible "on" 
path between the power rails. 

We list the costs (transistor counts) of some functional 
modules in Table 2. The E P  column estimates the costs 
EP functional modules that are based on complementary 
CMOS. Decomposition is applied to the functional modules 
with large fan-ins. 

4.2.3 

Determination of the design library 

Formulation of DF2 as a binate coveringprob- 
lem 

An input or internal variable v L  can be partially acknowl- 
edged by any functional module it fans into containing a '02* 

in the suffix. Table 3 lists the possible functional modules 
in Figure l (a )  to partially acknowledge the circuits input 
variables, where a Boolean variable m, denotes the selection 
of the corresponding module in the final implementation. 

for a circuit variable 71, to be partially ac- 
knowledged is the sum of all the Boolean variables covering 
it. For example, cu = ml +m3 andeb = m~+m3+m4+m6. 

The constraint equation to ensure that all the inputs and 
internal variables are partially acknowledged becomes the 
multiplication of the clauses corresponding to these circuit 
variables. For our example we have: 

(ml + m : j ) ( m z  + m : j  + m 4  + m c j ) ( m s  +rrtcj +rrt7 +rrt!j)(rrtg + 
rrtsj) = 1. 

However there are extra constraints in DF2. It is clear 
that a gate cannot be casted as different types of functional 
modules in one implementation. Therefore, no boolean vari- 
ables can be simultaneously assigned to 1 whose correspond- 
ing functional modules are mapped from the same gate. For 
example, ml , m2 and m3, the boolean variables correspond- 
ing to the functional modules mapped from GI,  are mutually 
exclusive. Applying the DeMorgan theorem to the boolean 
expression (rrt1rrtz) + (rrtzrrt:j) + (rrtlrrt:j), we have the sum- 
of-product equivalence (ml+rn2)(rn2+?7$(ml+E$. The 
additional clauses for the constraint equation of DF2 are de- 
rived for each gate in the circuit in a similar manner. The 
additional clauses generated for our example are: 

The clause 

(m + m) (m + m) (m + m) (m + m) (m + m) (m + 
m) (m7 + ms) (ms + m) (m7 + m). 

The overall constraint equation of the example is: 
(ml + m : j ) ( m z  + m : j  + m 4  + m c j ) ( m s  +rrtcj +rrt7 +rrt!j)(rrtg + 

161



functional 
module 

rrt!) ) (m+ m) (m+ 1113) (m + m) (&+ m) (m+ m) (&+ 

The solution to DF2 is to find the assignment to the 
Boolean variables mL that satisfies the constraint equation 
while minimising the cost function of x ( r r t t  0 c o s t ( m , ) ) .  It 
is a binate covering problem in that the Boolean variables 
appear in both the complemented and uncomplemented lit- 
erals. The solution with the minimal cost to our example is: 
ml = m6 = m8 = 1. 

For every Boolean variable assigned the value 1, its func- 
tional module is used to implement the corresponding gate. 
If none of the Boolean variables of a gate’s implementations 
is assigned the value 1, it is implemented as its EP functional 
module. G1, G2 and G 3  in our example are implemented as 
NAND&- a*, XOR2- b * c* and OR&-&, respectively. This 
implementation uses 52 transistors. 

m)(m7+m)(m+m)(m7+m) = 1. 

-a*(cb*) - C* - a*b* - a*c*(-b*c*) 1 - a*b*c* 
EP PUN, PDN, total PUN, PDN, total PUN, PDN, total PUN, PDN, total PUN, PDN, total 

rrk I 
rrk v 

type of functional module inputs cost covers 

NAND2-a* a . b  15 (I 

NAND2 a* a . b  15 b 

r i i 3  

ri iq 

r i i  5 

NAND2-n * b* n.11 20 n .b  
XOR2 - a* 11. c 18 11 

XOR2 a* 11. c 18 c 

4.2.4 Timing assumptions 
Both critical and non-critical forks exist in the final im- 

plementation. It is very easy to locate the non-critical fork 
wires as they are the wires fanning in to the functional mod- 
ules that do not part ial ly  acknowledge them, i.e., to the 
modules without the * notation in their corresponding input 
ports. 

NCL-X Circuit 

clipper 39 
comparator 4bit 67 
74181 114 
74182 30 

- 

5. EXPERIMENTAL RESULTS 

DF2 DF1 

10 (26%) 17 (44%) 
15 (22%) 21 (21%) 
20 (18%) 37 (32%) 
10 133%) 12 140%) 

I n d i e  (http://async.org.uk/screen/indie) is the automatic 
tool implemented to test the results of the two design flows. 
We choose a wide range of benchmarks including several 
combinational circuits in ISCAS85 and different S-boxes cir- 
cuits for the advanced encryption standard (AES). The re- 
sults are presented in two main categories: area (the tran- 
sistor counts), see Table 4, and verification demand (the 
number of inter-module wires to be examined for the timing 
closure), see Table 5 .  

rrkc 

DF1 is tested using three different techniques to imple- 
ment an IC functional module : DIMS, RDL and NCL. The 
“orig.” column shows the circuits’ area of NCL-D implemen- 
tation using one of the three techniques. The EP functional 
modules used in DIMS and RDL are the complementary 
static CMOS logic. The transistor count of NCL functional 
modules is according to the pseudo-static implementations 
of the 2NCL operators [19]. The “opt.” column shows the 
circuits’ area and the reduction by DF1. The average reduc- 
tions of the circuit when using DIMS, RDL and NCL are 
25%, 15% and 15%’ respectively. The table also shows the 
verification demand in DF1 by the number of inter-module 
wires that require timing assumptions, which is null in NCL- 
D. 

Design flow 2 further reduces the circuit’s areas of DF1 
but increases the verification demand by an average of 50%. 
Compared with NCL-X circuits, DF2 reduces the area by an 
average of 28% and the verification demand by an average of 
67%. The CD circuitry used in our estimation of NCL-X is 
optimised for its area. The verification demand for NCL-X 
could be less if the CD circuitry is placed locally in the EP 
functional modules when we don’t apply this optimisation. 

XOR2-a * b* I b . c  1 22 1 b , c  1 
vi8 

ri iq 

- 

OR2-n* c . d  15 d 
OR2-n * b* c . d  20 c .  d 

293 
435 
593 

c432 
c499 
c1908 

Table 5: Verification demand 

27 (10%) 60 (20%) 
98 (23%) 116 (27%) 

117 120%) 134 123%) 

6. CONCLUSION AND FUTURE WORK 

sbox no pipe 
sbox kasumi 
sbox unbalanced 

- -  
- 
- 

Average 

In this paper we propose two design flows that explore the 
possibility to design asynchronous circuits where the relia- 
bility of the circuit is introduced by the definition of partial 
acknowledgement. The designs are directed in a cost-aware 
manner to optimise the area of final implementations. The 
improvements over previous methods are proved through a 
set of benchmarks. In DF2, we also introduced the gen- 
eral method to synthesise a functional module that can par- 
tially acknowledge arbitrary combinations of input transi- 

455 81 (18%) 119 (26%) 
633 135 (21%) 134 (21%) 

1333 383 (29%) 673 (50%) 

22% 33% 
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circuit 

Table 4: Area 

DF1 DF2 
DIMS RDL NCL NCL-X 

original optimised 1 original optimised original optimised original 1 optitised 

tions. It builds the framework of our future research to com- 
bine timing analysis with optimisations that will maximise 
the circuit’s performance in addition to the quantifications 
of isochronic forks. 

I Average 

REFERENCES 
K. v. Berkel. Beware the isochronic fork. Integration, 
the VLSI journal, 13(2):103-128, June 1992. 
T.-A. Chu. Synthesis of Self- Timed VLSI Circuits 
from Graph-Theoretic Specifications. PhD thesis, MIT 
Laboratory for Computer Science, June 1987. 
G. D.Hachte1 and F. Somenzi. Logic Synthesis and 
Verification Algorithms. Kluwer Academic Publishers, 
1996. 
K. M. Fant and S. A. Brandt. NULL conventional 
logic: A complete and consistent logic for 
asynchronous digital circuit synthesis. In International 
Conference on Application-specific Systems, 
Architectures, and Processors, pages 261-273, 1996. 
C. Jeong and S. M. Nowick. Optimal technology 
mapping and cell merger for asynchronous threshold 
networks. In Proc. International Symposium on 
Advanced Research in Asynchronous Circuits and 
Systems, pages 128-137. IEEE Computer Society 
Press, Mar. 2006. 
A. Kondratyev and K. Lwin. Design of asynchronous 
circuits using synchronous CAD tools. IEEE Design W 
Test of Computers, 19(4):107-117, 2002. 
L.Heller, W.Griffin, J.Davis, and N.Thoma. Cascode 
voltage switch logic: a differential CMOS logic family. 
In International Solid State Circuits Conference, pages 

M. Ligthart, K. Fant, R. Smith, A. Taubin, and 
A. Kondratyev. Asynchronous design using 
commercial HDL synthesis tools. In Proc. 
International Symposium on Advanced Research in 
Asynchronous Circuits and Systems, pages 114-125. 
IEEE Computer Society Press, Apr. 2000. 
A. J. Martin. Programming in VLSI: From 
communicating processes to delay-insensitive circuits. 
In C. A. R. Hoare, editor, Developments in 
Concurrency and Communication, UT Year of 
Programming Series, pages 1-64. Addison-Wesley, 
1990. 

16-17, 1984. 

75% I 85% I 85% I 72% I 

(transistor count) 

A. J.  Martin. Asynchronous datapaths and the design 
of an asynchronous adder. Formal Methods in System 
Design, 1 (1):119-137, July 1992. 
K. M.Fant. Logically Determined Design - Clockless 
System Design with NULL Convention Logic. John 
Wiley & Sons, 2005. 
G. Micheli. Synthesis and Optimization of Digital 
Circuits. McGraw-Hill, 1994. 
C. D. Nielsen. Evaluation of function blocks for 
asynchronous design. In Proc. European Design 
Automation Conference (EURO-DAC), pages 
454-459. IEEE Computer Society Press, Sept. 1994. 
L. Y. Rosenblum and A. V. Yakovlev. Signal graphs: 
from self-timed to timed ones. In Proceedings of 
International Workshop on Timed Petri Nets, pages 
199-207, Torino, Italy, July 1985. IEEE Computer 
Society Press. 
R. Rudell. Logic Synthesis for VLSI Design. PhD 
thesis, U.C. Berkeley, 1989. 
C. L. Seitz. System timing. In C. A. Mead and L. A. 
Conway, editors, Introduction to VLSI Systems, 
chapter 7. Addison-Wesley, 1980. 
S. C. Smith, R. F. DeMara, J .  S. Yuan, D. Ferguson, 
and D.Lamb. Optimization of null convention 
self-timed circuits. Journal of Systems Architecture, 

S. C. Smith, R. F. DeMara, J .  S. Yuan, M. Hagedorn, 
and D. Ferguson. Delay-insensitive gate-level 
pipelining. Integration, the VLSI journal, 

G. E. Sobelman and K. Fant. CMOS circuit design of 
threshold gates with hysteresis. In Proc. International 
Symposium on Circuits and Systems, pages 61-64, 
June 1998. 
J .  Sparse and J.  Staunstrup. Delay-insensitive 
multi-ring structures. Integration, the VLSI journal, 

T. E. Williams. Self-Timed Rings and their 
Application to Division. PhD thesis, Stanford 
University, June 1991. 

37(3):135-165, Aug. 2004. 

30(2):103-131, 2001. 

15(3):313-340, Oct. 1993. 

163


	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

