
Cost-aware synthesis of asynchronous circuits based
on partial acknowledgement

Yu Zhou, Danil Sokolov and Alex Yakovlev
School of Electrical, Electronic and Computer Engineering, University of Newcastle upon Tyne

e- m ai I : { y u . z h o u , dan i I. so ko Iov, alex. ya kovlev}@ ncl . ac. u k

ABSTRACT
Designing asynchronous circuits by reusing existing syn-
chronous tools has become a promising solution to the
problem of poor CAD support in asynchronous world. A
straightforward way is to structurally map the gates in a
synchronous netlist to their functionally equivalent modules
which use delay-insensitive codes. Different trade-offs exist
in previous methods between the overheads of the imple-
mentations and their robustness. The aim of this paper is
to optimise the area of asynchronous circuits using partial
acknowledgement concept. We employ this concept in two
design flows, which are implemented in a software tool to
evaluate the efficiency of the method. The benchmark re-
sults show the average reduction in area by 28% and in the
number of inter-functional module wires that require timing
verification by 67%, compared to NCL-X.

1. INTRODUCTION
In the past few years, designers were trying to build

a bridge between synchronous and asynchronous circuits.
Rather than synthesising the circuits from “truly” asyn-
chronous specifications such as communicating processes [9]
or signal transition graph [2, 141, asynchronous circuits are
built at a low cost by reusing synchronous CAD tools in their
design flows. Asynchrony, in return, makes the circuits more
robust in coping with the variations in the fabrication pro-
cess, which is an increasingly important concern to digital
circuit designers.

The well-known approaches to asynchronous circuit syn-
thesis are NCL-D [8] and NCL-X [6]. Both of them map a
gate in the synchronous circuit to a dual-rail encoded mod-
ule with an equivalent function. NCL-D replaces a gate with
one of the NCL (Null Convention Logic) operators based on
threshold logic [l l] . A further optimisation of such a NCL
network is introduced in [5] . Besides the threshold logic,
other techniques exist to implement the functional modules
used in a NCL-D circuit. They include DIMS (Delay Insen-
sitive Minterm Synthesis) [20], DL (Direct Logic) [21] and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5-9,2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ... $5.00

RDL (Reduced Direct Logic) [13]. NCL-D approach is very
robust because all the inter-module wires are allowed to have
arbitrary delays without damaging the circuit’s correct be-
haviour. Critical forks exist only within a functional module
whose timing closure can be ensured through careful routing
of the library elements. Whilst robust, it suffers from large
area and slow speed. NCL-X, on the other hand, uses sim-
pler and faster functional modules for the functional part of
a circuit. However, it needs extra complet ion detection (CD)
circuitry to tell when the computations are done.

This paper proposes two design flows to synthesise asyn-
chronous circuits from synchronous ones. We formulate the
first design flow (DF1) as a unate covering problem and its
solution decides which type of functional module replaces
a gate in the synchronous netlist, NCL-D or NCL-X. More
“fine-grained” functional modules are added to the library
of the second design flow (DF2) and we formulate it as a
binate covering problem. We define the partial acknowl-
edgement to guide the synthesis procedure. Intuitively, the
covering problems determine which type of functional mod-
ule is chosen to replace a gate in the original circuit so that
all the circuit variables are “covered” by the meaning of par-
tial acknowledgement. Solutions to these covering problems
are then found to minimise the cost functions that are de-
fined in terms of a circuit’s area in this paper. DF1 reduces
the circuit’s area compared with NCL-D but increases the
number of inter-module wires to be verified for timing clo-
sure. The DF2 further reduces the overhead of the first one
with the penalty of a 50% increase in verification demand.
Compared with NCL-X solutions, DF2 has reduced both
the circuit area (by 28% on average) and the verification
demand (by 67% on average).

Our work is also motivated by the optimisation of an asyn-
chronous circuit’s performance. We believe a circuit can be
synthesised to keep its robustness level to some extent with-
out hurdling the data-dependent flows. For this purpose, we
will apply the idea of partial acknowledgement during the
static timing analysis of a circuit. The functional modules
synthesised in DF2 are the candidates for this future work.

2. BACKGROUND

2.1 Functional modules using dual-rail code
For each bit of a signal, the dual-rail encoding under the

return-to-zero protocol (a.k.a. 4-phased protocol) represents
null by rail‘= rail’ = O and valid code word l(0) by raiP=O,
rail’ =1 (ruiP=l, rail’ =O). In a circuit using this conven-
tion, data and null wavefronts alternate (the circuit signals

158

switch from nulls to valid code words and from valid code
words to nulls, respectively).

Library

42

a,

m

FI

E
Y u
3

I
1 Conventional I Ootimised 1

Table 1: Different implementations of an AND gate

Gates in a single-rail netlist are converted to their corre-
sponding functional modules, the dual-rail encoded entities
with the equivalent functions. We categorise the functional
modules into two classes by their impact on the data flow-
ing through them. Table 1 illustrates the classification of
the functional modules implementing an AND gate. The
first class can produce a valid (null) output when only par-
tial inputs are valid (null) and hence called early propaga-
tive (EP). For example, a code word of 0 (y()=l, y1 =0)
is produced at the output of an EP AND functional mod-
ule in Table 1 when only one input turns into 0 (a”=l,
a’ =0) in a data wavefront. The second class must wait
for all the inputs becoming valid (null) before producing a
valid (null) output. It is called input complete (IC) accord-
ing to the definition of completeness of inputs [4]. Table 1
demonstrates the implementation of an IC AND gate based
on Muller-C elements (DIMS) and on threshold logic (the
2NCL operator). Optimisation using sum-partitioning and
product-partitioning is available in the threshold logic im-
plementation [18, 11, 171.

2.2 Asynchronous circuits implementations
and their timing assumptions

Asynchronous circuits rely on the dependencies between
signals, rather than the global clock, to tell when the compu-
tation is done. The monotonic transitions from nulls (valid
code words) to valid code words (nulls) provide one scheme
where the dependencies are sought in the two phases sepa-
rately. Furthermore, signalling schemes are proposed for a
circuit’s behaviour: the “weak conditions” by Seitz [16] and
the “completeness of inputs” [4] by NCL.

NCL-D [8, 201 builds an asynchronous circuit by replac-
ing the gates in a synchronous one with their correspond-
ing IC functional modules. Figure l (b) illustrates how this
method implements the circuit in Figure l(a). Satisfying
the weak conditions and the “completeness of inputs” re-
quirement, it is very robust except for some “small” timing
assumptions required for some forks in an IC module, for-
mally known as the “isochronic fork assumptions” [l]. We
show these forks with dotted wires in Table 1 when inputs
a and b change from nulls to “1”s in a valid data wave-
front. On the other hand, NCL-X replaces the gates with
their EP functional modules for computation and demands

(b) NCL-D (c) NCL-X

Timing assumptions in different imple-
mentation methods

extra completion detection (CD) circuitry for the “complete-
ness of inputs”. Figure l (c) illustrates the implementation
of NCL-X, where the CDs are simply the OR gates whose
outputs are synchronised by the C-element trees. In NCL-
X, the timing assumption imposed on the inter functional
module wires (the dotted ones in Figure l (c)) is to bound
their delays by the stabilisation time of the CD circuitry.

3. PARTIAL ACKNOWLEDGEMENT
Suppose 71, is a dual-rail encoded variable in circuit C

fanning into F , a functional module whose dual-rail output
is 0 3 . Let C work under the return-to-zero protocol. We
have v L 1‘ denoting the rising phase transition of v, from null
to a valid code word and o2 J the falling phase transition
of 71, from the valid code word to null. A valid code word
represents either 0 or 1.

We define that the rising phase transition of 71, is partially
acknowledged by that of v j , iff

(Vu7 t 3.uJ T. t i WJ t) (3.1)

(V U (1 j U , 1. v, 1+ vj 1) (3.2)

Similarly, we define that the falling phase transition of v L
is partially acknowledged by that of 0 3 , iff

The following proposition can be proved by contradiction.
If the rising phase transition of v, is partially acknowledged
by that of 7 i J , transition of 7 i J from null to valid code word in-
dicates the transition of 71, from null to valid code word. The
proposition can be derived for the falling phase transitions
of o2 and 0 3 , too. The acknowledgement is partial because
we don’t know if the same relations as those defined in (3.1)
and (3.2) exist between 71, and other functional modules’
outputs.

v L is partially acknowledged if both its rising and falling
phase transitions are partially acknowledged. In particular,
v, is partially acknowledged by v j , iff

(3 . 3)
According to our definitions, the output of an IC func-

tional module partially acknowledges all its inputs. On the
contrary, the output of an EP functional module partially
acknowledges none of its inputs. In NCL-D, an input (in-
ternal) variable is partially acknowledged by all the outputs
of the functional modules it fans into. In NCL-X, however,
a variable is only partially acknowledged by the outputs of

(V W Z T: 3 W J T: v, t i vJ t) A
(V W Z 1: 3 W J 1: v7 1- VJ 1)

159

the completion detection circuitry.

4. DESIGNS FLOWS BASED ON PARTIAL
ACKNOWLEDGEMENT

Our two design flows have the same objective, which is
described below.

Design objective: Given the synchronous single-rail
netlist, implement its equivalent circuit where every gate
in the original netlist is replaced by the appropriate type of
dual-rail encoded functional module. Find a solution with
the minimum area under the requirement that each input
and internal variable in the final implementation is at least
partially acknowledged.

The first design flow (DF1) contains only IC and EP func-
tional modules and is formulated as a unate covering prob-
lem. The second design flow (DF2) is supplemented with
functional modules partially acknowledging particular phase
transitions of certain inputs and is defined as a binate cov-
ering problem. Unate (and binate) covering problems (also
referred as mincos t sat problems [12]) are discussed in de-
tail in [3]. A unate covering problem has its well known
application in 2-level circuit minimisation and binate cov-
ering problem in technology mapping [15]. We choose the
constraint equation forms of the covering problems for our
presentation, though the matrix forms work as well.

4.1 Design flow 1
Revisit the example of Figure l (a) . This time we replace

gate G1 and G3 with their IC implementations whereas G2
its E P one. Figure 2 illustrates the decision. According to
our definitions, a and d are acknowledged while b and c are
partially acknowledged by G1 and G3, respectively. It satis-
fies the requirement of the design objective with 60 transis-
tors by RDL. As a comparison, NCL-X uses 110 transistors
plus extra interconnections in the CD circuitry. In terms of
robustness, the amount of inter-module wires required for
timing verification is greatly reduced (4 vs 12).

Figure 2: Intuitive implementation of the exemplar
circuit

4.1.1 Formulation of DFI as a unate coveringprob-
lem

Let 11, be an input or internal variable and G, be a gate be-
longing to circuit C. A variable in DF1 can only be partially
acknowledged by the IC functional modules it fans into. Let
boolean variable Gi' denote the implementation of G, as an
IC functional module. A clause is written for each variable
of the circuit indicating which IC functional modules can
partially acknowledge it. For example, the clause for vari-
able 11, can be written as c ? , ~ = Cc, f a , , + u u t (u ,) GY .
Suppose ioL is the cost of the implementation of G, as an

IC functional module, the design objective is formulated as
a unate covering problem:

Find the assignment to the boolean variable Gi' of every
gate in the circuit that satisfies the constraint equation:

while minimising the cost function C , (w , 0 G:r) . Satis-
faction of 4.1 ensures each input and internal variable in the
circuit is partially acknowledged. After finding one satisfy-
ing assignment] implement a gate G, by its IC functional
module if Gi' = 1 or otherwise by its E P functional module.

Example. In the circuit shown in Figure l (a) , the clauses
of inputs a, b, c and d are G;', G;' + Gy , Gy + GY and
GY, respectively. Therefore, the constraint equation of the
circuit can be expressed as GY (GY +GY)(GY +GY)GY = 1.
The solution is obvious: G;' = GY = 1. As a result, Gland
GS are implemented as IC functional modules while Gz as
EP.

(4.1) nuJ E { i n p u t s a n d zn t c r n a l u a r z a b l c s o j CT} C?iJ = 1,

4.1.2 Timing assumptions
In the final implementation, a fork is non-critical if all

the gates it fans into are implemented as their IC functional
modules. For the fork wires fanning into EP functional mod-
ules] we need to ensure their timing closure to avoid a po-
tential hazard.

4.2 Design flow 2
DF1 binds all the inputs of an IC module for their par-

tial acknowledgement because a gate is casted either as an
IC module or EP one. By enlarging the spectrum of the
functional modules in DF2, we expect more optimisation
space for both the area and speed. We first introduce how
to synthesise a functional module that partially acknowl-
edges the rising or(and) falling phase transitions of certain
inputs. Then we formulate the design procedure satisfying
the design objective as a binate covering problem.

In literature, Martin's adder [lo] is a well-known example
to distribute the evaluation of the inputs' nulls and valid
words among those of the circuit's outputs. In [13], Nielsen
proposed RDL for similar distributions. In this paper, we
resort to Boole's expansion theorem in its dual-rail form.

4.2.1 Functional modules synthesis
The naming convention for a functional module used in

DF2 is a module ' s func t ion- (input n a m e followed by i ts
phase t rans i t ion t o be partially acknowledged)*. A phase
transition could be one of the following: rising phase tran-
sition (T), falling phase transition (J), or both rising and
falling phase transition (*). For example, AND3 aT de-
notes the 3-input-AND module that partially acknowledges
the rising phase transition of input a. Another example,
MAJ3 a*b*, represents a 3-input-majority-voting mod-
ule where both the rising and falling phase transitions of
a and b are partially acknowledged by the output variable.
We know that the EP and IC functional modules in DF1
can be viewed as special instances of this enlarged library.

The implementations of the functional modules used in
this paper is by, but not restricted in general to, pseudo-
static logics. Figure 3(a) illustrates its prototype comprising
the pul l -up-ne twork (PUN), pul l -down-ne twork (PDN), and
the output inverter pairs. The weak feedback inverter is used
to fight against the charge leakage problem, an alternative
solution to which is the cross-coupled p-typed transistors
used in the DCVSL style [7]. The rest of this section is

160

(a) Functional module (b) Multiplexer

Figure 3: Pseudo-static logic implementations

devoted to the design procedures of a functional module in
4 steps, through the example of MUX2:l - aTc*.

Step 1: Derive the dual-rail functions, i.e., f o and f ' ,
of the functional module from its single-rail function f. f'
is converted from f by replacing the uncomplemented vari-
ables in f with the corresponding rail-1s whereas the com-
plemented ones with rail-Os. f o is simply the dual of f ' .
E.g., the boolean function of module MUX2:l aTc* is
f = co, + c'b, whose dual-rail boolean functions can be de-
rived as f' = c'a' + cob' and f o = c'a' + cobo.

Step 2: Decompose f' and f" w.r.t. the dual-rail
minterms of the inputs whose rising phase transitions are
chosen to be partially acknowledged, according to Boole's
Expansion Theorem. If there are no such inputs, f' and
f o remain as they are in step 1. Dual-rail minterms are the
dual-rail equivalence of the minterms expressed in single-rail
form. For instance, the dual-rail minterms in the example
are a"c", aocl, a'(?' and a'c ' . The decompositions are shown
in 4.1.

I =O ,=O
In 4.1, n is the number of the inputs whose rising phase

transitions are chosen to be partially acknowledged. rrto, ...,
~ Y - I are the 2'L ~ ldual-rad mznterms. fAl.8=1 (fiiLt=l) is
the positive cofactor o f f ' (f o) with respect to m,.

The decomposition process of the example is listed in 4.2.
f ' = aoco f ' o L c " = ' + a 0 1 c f ;LCL'

+ alc" f q I L , L l + a c f (L 1 = , l L 1 -
1 1

~

~ aBco. (b ') + aOc' ' (0)
+a'cO (b ') + a ' c ' (1)

14 21

Step 3: Build the PDN of the functional module by con-
necting the n-typed transistors due to 4.1. The connection
rules follow those for the NMOS network and transistors are
shared to save the area. The rising phase transitions of the
chosen inputs are partially acknowledged through this con-
nection as the series connection of a dual-rail minterm exists
in any path from ground to the module's output rails, and,
only one of the minterms will be asserted during a valid code
word wavefront.

Step 4: Design the PUN of a functional module. If the
falling phase transition of an input is to be partially ac-

knowledged, cascade two p-typed transistors controlled by
the input's dual rails in the paths from VDD to both f ' and
f" [13]. If no inputs of a functional module are partially
acknowledged for their falling phase transitions, we make its
PUN complementary to the PDN and thus remove the feed-
back inverters. Figure 3(b) shows the final implementation
of the module MUX2:l - aTc*.

4.2.2
Our synthesis method allows separation of the partial ac-

knowledgements of the rising and falling phase transition for
a circuit variable. However, the size of the library support-
ing this function and the complexity of the relevant covering
problem are not practical. In fact, whether we choose to par-
tially acknowledge the falling phase transition of a variable
or not - this will not influence the area optimisation because
its cost is a constant (4 p-typed transistors per circuit vari-
able). Therefore, in this paper we require that a functional
module will partially acknowledge both the rising and falling
phase transitions of a variable, if it does acknowledge any
phase transition of that variable. There is another consider-
ation behind this requirement to exclude any possible "on"
path between the power rails.

We list the costs (transistor counts) of some functional
modules in Table 2. The E P column estimates the costs
EP functional modules that are based on complementary
CMOS. Decomposition is applied to the functional modules
with large fan-ins.

4.2.3

Determination of the design library

Formulation of DF2 as a binate coveringprob-
lem

An input or internal variable v L can be partially acknowl-
edged by any functional module it fans into containing a '02*

in the suffix. Table 3 lists the possible functional modules
in Figure l (a) to partially acknowledge the circuits input
variables, where a Boolean variable m, denotes the selection
of the corresponding module in the final implementation.

for a circuit variable 71, to be partially ac-
knowledged is the sum of all the Boolean variables covering
it. For example, cu = ml +m3 andeb = m~+m3+m4+m6.

The constraint equation to ensure that all the inputs and
internal variables are partially acknowledged becomes the
multiplication of the clauses corresponding to these circuit
variables. For our example we have:

(ml + m : j) (m z + m : j + m 4 + m c j) (m s +rrtcj +rrt7 +rrt!j)(rrtg +
rrtsj) = 1.

However there are extra constraints in DF2. It is clear
that a gate cannot be casted as different types of functional
modules in one implementation. Therefore, no boolean vari-
ables can be simultaneously assigned to 1 whose correspond-
ing functional modules are mapped from the same gate. For
example, ml , m2 and m3, the boolean variables correspond-
ing to the functional modules mapped from GI, are mutually
exclusive. Applying the DeMorgan theorem to the boolean
expression (rrt1rrtz) + (rrtzrrt:j) + (rrtlrrt:j), we have the sum-
of-product equivalence (ml+rn2)(rn2+?7$(ml+E$. The
additional clauses for the constraint equation of DF2 are de-
rived for each gate in the circuit in a similar manner. The
additional clauses generated for our example are:

The clause

(m + m) (m + m) (m + m) (m + m) (m + m) (m +
m) (m7 + ms) (ms + m) (m7 + m).

The overall constraint equation of the example is:
(ml + m : j) (m z + m : j + m 4 + m c j) (m s +rrtcj +rrt7 +rrt!j)(rrtg +

161

functional
module

rrt!)) (m+ m) (m+ 1113) (m + m) (&+ m) (m+ m) (&+

The solution to DF2 is to find the assignment to the
Boolean variables mL that satisfies the constraint equation
while minimising the cost function of x (r r t t 0 c o s t (m ,)) . It
is a binate covering problem in that the Boolean variables
appear in both the complemented and uncomplemented lit-
erals. The solution with the minimal cost to our example is:
ml = m6 = m8 = 1.

For every Boolean variable assigned the value 1, its func-
tional module is used to implement the corresponding gate.
If none of the Boolean variables of a gate’s implementations
is assigned the value 1, it is implemented as its EP functional
module. G1, G2 and G 3 in our example are implemented as
NAND&- a*, XOR2- b * c* and OR&-&, respectively. This
implementation uses 52 transistors.

m)(m7+m)(m+m)(m7+m) = 1.

-a*(cb*) - C* - a*b* - a*c*(-b*c*) 1 - a*b*c*
EP PUN, PDN, total PUN, PDN, total PUN, PDN, total PUN, PDN, total PUN, PDN, total

rrk I
rrk v

type of functional module inputs cost covers

NAND2-a* a . b 15 (I

NAND2 a* a . b 15 b

r i i 3

ri iq

r i i 5

NAND2-n * b* n.11 20 n .b
XOR2 - a* 11. c 18 11

XOR2 a* 11. c 18 c

4.2.4 Timing assumptions
Both critical and non-critical forks exist in the final im-

plementation. It is very easy to locate the non-critical fork
wires as they are the wires fanning in to the functional mod-
ules that do not part ial ly acknowledge them, i.e., to the
modules without the * notation in their corresponding input
ports.

NCL-X Circuit

clipper 39
comparator 4bit 67
74181 114
74182 30

-

5. EXPERIMENTAL RESULTS

DF2 DF1

10 (26%) 17 (44%)
15 (22%) 21 (21%)
20 (18%) 37 (32%)
10 133%) 12 140%)

I n d i e (http://async.org.uk/screen/indie) is the automatic
tool implemented to test the results of the two design flows.
We choose a wide range of benchmarks including several
combinational circuits in ISCAS85 and different S-boxes cir-
cuits for the advanced encryption standard (AES). The re-
sults are presented in two main categories: area (the tran-
sistor counts), see Table 4, and verification demand (the
number of inter-module wires to be examined for the timing
closure), see Table 5 .

rrkc

DF1 is tested using three different techniques to imple-
ment an IC functional module : DIMS, RDL and NCL. The
“orig.” column shows the circuits’ area of NCL-D implemen-
tation using one of the three techniques. The EP functional
modules used in DIMS and RDL are the complementary
static CMOS logic. The transistor count of NCL functional
modules is according to the pseudo-static implementations
of the 2NCL operators [19]. The “opt.” column shows the
circuits’ area and the reduction by DF1. The average reduc-
tions of the circuit when using DIMS, RDL and NCL are
25%, 15% and 15%’ respectively. The table also shows the
verification demand in DF1 by the number of inter-module
wires that require timing assumptions, which is null in NCL-
D.

Design flow 2 further reduces the circuit’s areas of DF1
but increases the verification demand by an average of 50%.
Compared with NCL-X circuits, DF2 reduces the area by an
average of 28% and the verification demand by an average of
67%. The CD circuitry used in our estimation of NCL-X is
optimised for its area. The verification demand for NCL-X
could be less if the CD circuitry is placed locally in the EP
functional modules when we don’t apply this optimisation.

XOR2-a * b* I b . c 1 22 1 b , c 1
vi8

ri iq

-

OR2-n* c . d 15 d
OR2-n * b* c . d 20 c . d

293
435
593

c432
c499
c1908

Table 5: Verification demand

27 (10%) 60 (20%)
98 (23%) 116 (27%)

117 120%) 134 123%)

6. CONCLUSION AND FUTURE WORK

sbox no pipe
sbox kasumi
sbox unbalanced

- -
-
-

Average

In this paper we propose two design flows that explore the
possibility to design asynchronous circuits where the relia-
bility of the circuit is introduced by the definition of partial
acknowledgement. The designs are directed in a cost-aware
manner to optimise the area of final implementations. The
improvements over previous methods are proved through a
set of benchmarks. In DF2, we also introduced the gen-
eral method to synthesise a functional module that can par-
tially acknowledge arbitrary combinations of input transi-

455 81 (18%) 119 (26%)
633 135 (21%) 134 (21%)

1333 383 (29%) 673 (50%)

22% 33%

162

http://async.org.uk/screen/indie

circuit

Table 4: Area

DF1 DF2
DIMS RDL NCL NCL-X

original optimised 1 original optimised original optimised original 1 optitised

tions. It builds the framework of our future research to com-
bine timing analysis with optimisations that will maximise
the circuit’s performance in addition to the quantifications
of isochronic forks.

I Average

REFERENCES
K. v. Berkel. Beware the isochronic fork. Integration,
the VLSI journal, 13(2):103-128, June 1992.
T.-A. Chu. Synthesis of Self- Timed VLSI Circuits
from Graph-Theoretic Specifications. PhD thesis, MIT
Laboratory for Computer Science, June 1987.
G. D.Hachte1 and F. Somenzi. Logic Synthesis and
Verification Algorithms. Kluwer Academic Publishers,
1996.
K. M. Fant and S. A. Brandt. NULL conventional
logic: A complete and consistent logic for
asynchronous digital circuit synthesis. In International
Conference on Application-specific Systems,
Architectures, and Processors, pages 261-273, 1996.
C. Jeong and S. M. Nowick. Optimal technology
mapping and cell merger for asynchronous threshold
networks. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and
Systems, pages 128-137. IEEE Computer Society
Press, Mar. 2006.
A. Kondratyev and K. Lwin. Design of asynchronous
circuits using synchronous CAD tools. IEEE Design W
Test of Computers, 19(4):107-117, 2002.
L.Heller, W.Griffin, J.Davis, and N.Thoma. Cascode
voltage switch logic: a differential CMOS logic family.
In International Solid State Circuits Conference, pages

M. Ligthart, K. Fant, R. Smith, A. Taubin, and
A. Kondratyev. Asynchronous design using
commercial HDL synthesis tools. In Proc.
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, pages 114-125.
IEEE Computer Society Press, Apr. 2000.
A. J. Martin. Programming in VLSI: From
communicating processes to delay-insensitive circuits.
In C. A. R. Hoare, editor, Developments in
Concurrency and Communication, UT Year of
Programming Series, pages 1-64. Addison-Wesley,
1990.

16-17, 1984.

75% I 85% I 85% I 72% I

(transistor count)

A. J. Martin. Asynchronous datapaths and the design
of an asynchronous adder. Formal Methods in System
Design, 1 (1):119-137, July 1992.
K. M.Fant. Logically Determined Design - Clockless
System Design with NULL Convention Logic. John
Wiley & Sons, 2005.
G. Micheli. Synthesis and Optimization of Digital
Circuits. McGraw-Hill, 1994.
C. D. Nielsen. Evaluation of function blocks for
asynchronous design. In Proc. European Design
Automation Conference (EURO-DAC), pages
454-459. IEEE Computer Society Press, Sept. 1994.
L. Y. Rosenblum and A. V. Yakovlev. Signal graphs:
from self-timed to timed ones. In Proceedings of
International Workshop on Timed Petri Nets, pages
199-207, Torino, Italy, July 1985. IEEE Computer
Society Press.
R. Rudell. Logic Synthesis for VLSI Design. PhD
thesis, U.C. Berkeley, 1989.
C. L. Seitz. System timing. In C. A. Mead and L. A.
Conway, editors, Introduction to VLSI Systems,
chapter 7. Addison-Wesley, 1980.
S. C. Smith, R. F. DeMara, J . S. Yuan, D. Ferguson,
and D.Lamb. Optimization of null convention
self-timed circuits. Journal of Systems Architecture,

S. C. Smith, R. F. DeMara, J . S. Yuan, M. Hagedorn,
and D. Ferguson. Delay-insensitive gate-level
pipelining. Integration, the VLSI journal,

G. E. Sobelman and K. Fant. CMOS circuit design of
threshold gates with hysteresis. In Proc. International
Symposium on Circuits and Systems, pages 61-64,
June 1998.
J . Sparse and J. Staunstrup. Delay-insensitive
multi-ring structures. Integration, the VLSI journal,

T. E. Williams. Self-Timed Rings and their
Application to Division. PhD thesis, Stanford
University, June 1991.

37(3):135-165, Aug. 2004.

30(2):103-131, 2001.

15(3):313-340, Oct. 1993.

163

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

