
An Efficient Technique for Synthesis and Optimization of
Polynomials in GF(2m)

Abusaleh M. Jabir
School of Technology

Oxford Brookes University
Oxford OX3 0BP, UK

ajabir@brookes.ac.uk

Dhiraj K. Pradhan
∗

Department of Computer
Science

University of Bristol
Bristol BS8 1UB, UK

pradhan@cs.bris.ac.uk

Jimson Mathew
Department of Computer

Science
University of Bristol
Bristol BS8 1UB, UK

jimson@cs.bris.ac.uk

ABSTRACT
This paper presents an efficient technique for synthesis and optimiza-
tion of polynomials over GF(2m), where m is a non-zero positive
integer. The technique is based on a graph-based decomposition
and factorization of polynomials over GF(2m), followed by efficient
network factorization and optimization. A technique for efficiently
computing coefficients over GF(pm), where p is a prime number, is
first presented. The coefficients are stored as polynomial graphs over
GF(pm). The synthesis and optimization is initiated from this graph
based representation. The technique has been applied to minimize
multipliers over all the 51 fields in GF(2k), k = 2 . . .8 in 0.18 micron
CMOS technology with the help of the Synopsys� design compiler.
It has also been applied to minimize combinational exponentiation
circuits, and other multivariate bit- as well as word-level polynomi-
als. The experimental results suggest that the proposed technique
can reduce area, delay, and power by significant amount.

1. INTRODUCTION
Polynomials over finite fields and their extensions of the form

GF(2m) are crucial to certain types of crypto systems (e.g. the el-
liptic curve cryptography) [8], error control codes (e.g. BCH, Reed-
Solomon) [26], VLSI testing [18], and DSP [6]. They also lead to de-
signing high speed, low complexity systolic VLSI realizations [11].
In most cases the evaluation of the polynomials cannot be justi-
fied unless they are realized in high speed, low power, low com-
plexity dedicated hardware. A polynomial over GF(2m) constitutes
addition, multiplication, and exponentiation. While addition over
GF(2m) can be realized with m 2-input EXOR gates, multiplication
and exponentiation are costly in terms of area, delay, and power re-
quirements. Most of the recent research on realizing these polyno-
mials have focused on efficient synthesis of multipliers [2, 5, 17, 22]
and sequential [15, 16] and hybrid [8] exponentiation over GF(2m).
However in general a multiple output multivariate polynomial over

∗Partially funded by the Engineering and Physical Science Research
Council (EPSRC), UK. Grant No. GR/S40855/01.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICCAD’06, November 5–9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

GF(2m), constituting addition, multiplication, and exponentiation in
different configurations, can be synthesized in hardware efficiently
if appropriate factorization with simplification is first carried out. As
our experimental results seem to suggest significant amount of area
(up to 68 times), and well over an order of magnitude delay and
power reduction can be achieved if the polynomials are synthesized
and optimized as a preprocessing step before they are passed on to
the industrial tools such as the Synopsys� design compiler.

Hand synthesizing complex multiple output multivariate polyno-
mials by factorizing, common sub-expression elimination (CSE) and
algebraic simplification over GF(2m) can be very tedious. Instead an
automatic synthesis tool which can perform all of these is desirable.

Keeping this in view we propose a synthesis and optimization
technique for polynomials over GF(2m). For m = 1, i.e. GF(2), the
proposed technique performs gate-level synthesis and optimization.
For m > 1 it performs word-level synthesis and optimization based
on the properties of GF(2m). The technique requires that the multi-
variate polynomials are available in terms of their coefficients, either
in a graph-based form or in terms of a network of adders or multi-
pliers over GF(2m), i.e. in a netlist form. If the graph-based rep-
resentation is given then it performs a graph-based decomposition
over GF(2m) to obtain the netlist of adders and multipliers. How-
ever most industrial tools require AND-OR PLAs or VHDL/verilog
forms as the initial specification. Therefore we also present a tech-
nique for constructing the polynomials from directed acyclic graphs
(DAGs) representing the PLAs or netlists.

The underlying problem of representing polynomials over
GF(pm), p is a prime number, is the computation of the coeffi-
cients because the polynomials are determined by their coefficients.
A number of techniques exist based on interpolation algorithms for
small finite fields (e.g. GF(K) and K ≤ 4), e.g. [1, 14, 27, 28]. Al-
though the technique of [19] seems to be applicable to large fields,
it relies heavily on the size of the fields, and also for small fields
a solution only exists if the interpolation points are chosen from
a sufficiently large extension field [20]. Most of these techniques
(e.g. [27,28]) are suitable for only the 0-polarity (i.e. only one polar-
ity). However most practical circuits have different representations
in different polarities in finite fields, e.g. certain polarities will re-
quire fewer terms or non-zero coefficients and hence fewer nodes in
a graph than others for the same circuit. In this regard a technique
has been presented in [24] for computing the expressions under the
optimal polarity in GF(2) only. Owing to its exhaustive nature its
application is limited to small circuits. Fourier like matrix based al-
gorithms (e.g. based on coding theory, and the butterfly algorithm)
exist for functions in finite fields and also generalized Reed-Müller
forms [12]. However the size of the matrices is exponential and

151

grows exponentially with the size of the inputs and field sizes.
Keeping these in view we present an efficient DAG based tech-

nique for computing the coefficients of polynomials over GF(pm) in
any polarity. The coefficients are stored as DAGs also as they are
computed, which is the starting point of our synthesis technique.

Background. Let GF(N) denote a set of N elements, where N
is a power of a prime number, with two special elements 0 and 1
representing the additive and multiplicative identities respectively,
and two operators addition ‘+’ and multiplication ‘·’. GF(N) defines
a finite field, also known as Galois Field, if it forms a commutative
ring with identity over these two operators in which every element
has a multiplicative inverse. Additional properties of finite fields
can be found in [23, 26]. Finite fields over GF(2m) and m ≥ 2 can
be generated with primitive polynomials (PP) of the form p(x) =
xm +∑m−1

i=0 cixi, where ci ∈ GF(2) [26]. For any α,β ∈ GF(2m), if α
and β are in their polynomial basis as α(x) = ∑m−1

i=0 αixi and β(x) =
∑m−1

i=0 βixi, where αi,βi ∈ {0,1} and 0 ≤ i < m, then multiplication
over GF(2m) can be defined as w(x) = α(x) ·β(x) mod p(x), where
p(x) represents the PP used to generate the fields [5, 23, 26]. α+β,
i.e. addition over GF(2m), is the bitwise EXOR of the bit vectors
corresponding to α(x) and β(x).

+ 0 1 α β
0 0 1 α β
1 1 0 β α
α α β 0 1
β β α 1 0

(a) Addition

× 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α β 1
β 0 β 1 α

(b) Multiplication

Figure 1: Addition and multiplication over GF(4).

Fig. 1 shows the addition and multiplication tables over GF(4).
Here α and β are assumed to be elements in GF(4). For example
assume that α(x) = x, and β(x) = x + 1. α + β = α(x) + β(x) =
x + x +1 = 1. There is only one PP for generating GF(4), which is
p(x) = x2 + x + 1. Now α ·β = α(x) ·β(x) mod p(x) = x · (x + 1)
mod x2 +x+1 = 1.

In this paper PPs will be considered in their decimal notation. For
example the PP p(x) = x3 +x+1 in GF(8) can be represented by the
bit vector [1,0,1,1], which is 11 in decimal.

The following notation is used in this paper. Let IN =
{0,1, . . . ,N − 1}, and δ : IN → GF(N) be a one-to-one mapping
with δ(0) = 0, δ(1) = 1 and, without loss of generality, δ(2) = α,
δ(3) = β, etc. Let f (x1,x2, . . . ,xk, . . . ,xn) represent an n input func-
tion over GF(N). The cofactor of f w.r.t. xk = y, denoted by f |xk=y,
is f |xk=y = f (x1,x1, . . . ,xk = y, . . . ,xn), i.e. f |xk=y represents the fact
that each occurrence of xk in f is replaced with a y.

Given a variable xi in GF(N) and πi ∈ IN (1 ≤ i ≤ n, n is the
number of inputs), xi can appear in one of the N polarities denoted
by xi,πi = xi + δ(πi). Certain polarities require more resources to
represent a polynomial than others. As an example, let f (x1,x2) =
αx1x2 represent a function in 0-polarity in GF(3), i.e. both x1 and
x2 are in 0-polarity (note that xi,0 = xi). In another polarity with
x1 in 1-polarity and x2 in 2-polarity replacing x1 with x1,1 − 1 and
x2 with x2,2 − δ(2) = x2,2 −α and simplifying we get f (x1,x2) =
1+ x2,2 +αx1,1 +αx1,1x2,2, which contains more terms in this case.
Finding an optimal polarity is a very hard problem.

Graph-Based Representation. Any function over GF(N) can
be expanded in its literal based form as f (x1, . . . ,xi, . . . ,xn) =
∑N−1

e=0 ge(xi) f |xi=δ(e) where ge(xi) = 1− [xi − δ(e)]N−1 [23]. Here
ge(xi) is called a literal over GF(N). This can be viewed as
generalization of Shanon’s expansion to GF(N). Such a literal
based form allows Multiple-Valued Decision Diagram (MDD)-like
canonic graph-based representations as shown in Fig. 2 [3, 4].

10

xi

f |xi=0 f |xi=1 f |xi=δ(N−1)

δ(N −1)

Figure 2: MODD—A literal based representation over GF(N).

Here the internal nodes represent the variables of expansion, xi
in this case, whereas the terminal nodes represent the values of
the function corresponding to each value of xi represented by the
edges. However since the MDDs are defined in MIN-MAX postal-
gebra [13], this representation will be called (M)ultiple (O)utput
(D)ecision (D)iagram or MODD to distinguish it from the MDDs.
There are two MODD reduction rules [3]: (a) If all the N children
of a node v point to the same node w, then delete v and connect the
incoming edge of v to w. (b) Share equivalent subgraphs. A reduced
MODD can be further optimized and normalized based on additional
two rules mentioned in [4]. An MODD which is reduced by all 4
rules will be called a (Z)ero suppressed and (N)ormalized MODD or
ZNMODD [4].

This paper is organized as follows. Section 2 presents a tech-
nique for computing and storing coefficients over GF(pm). Section 3
presents a synthesis and optimization technique based on the DAG
based representation of Section 2. Finally, Section 4 presents exper-
imental results.

2. COMPUTATION OF COEFFICIENTS
Given a function f (xn,xn−1, . . . ,x1) in GF(N) (N is a power of a

prime number) and a polarity number t, f can be represented in the
following canonical multivariate polynomial form [23].

f (xn,xn−1, . . . ,x1) = κ0,t +κ1,t x̃1 +κN,t x̃2 + · · ·+
κi,t x̃

ik
jk

x̃ik−1
jk−1

· · · x̃i1
j1

+ · · ·+κNn−1,t x̃
N−1
n x̃N−1

n−1 · · · x̃N−1
1 .

Here κi,t represents the coefficient of the ith term containing k
number of variables in polarity number t, where both i and t are
defined in the radix-N number system as i = ikN jk + ik−1N jk−1 +
· · ·+ i1N j1 and t = πnNn−1 +πn−1Nn−2 + · · ·+π1.

Further, each πq represents the polarity of the variable xq and
1 ≤ q ≤ n, i.e. xq,πq = xq + δ(πq). Here x̃l represents the fact that
xl is in any one of the polarities {0,1, . . . ,N − 1}, as determined
by t. For example, the term associated with the coefficient κi,t is

x̃ik
jk

x̃ik−1
jk−1

· · · x̃i1
j1

, where the polarity of each variable is determined by
t. Each coefficient can be determined by the following.

THEOREM 1. [4] Let f (xn,xn−1, . . . ,x1) represent an n variable
function in GF(N). Its ith coefficient corresponding to a term con-
taining k number of variables in the polarity number t is

κi,t = (−1)k
δ(N−1)

∑
x jk

=δ(0)

δ(N−1)

∑
x jk−1 =δ(0)

· · ·
δ(N−1)

∑
x j1 =δ(0)

θi,t(x̃1, x̃2 , . . . , x̃n)

f (x jk ,x jk−1 , . . . ,x j1 ,−δ(πl),−δ(πl−1), . . . ,−δ(π1)), (1)

152

where δ(πl),δ(πl−1), . . . ,δ(π1) are the polarities of the variables
xl ,xl−1, . . . ,x1 as determined by t.

Here θi,t is defined in [4, 23]. In Eq. (1) those variables which
are (not) assigned any value will be called assigned (unassigned)
variables.

In many cases the MODD (or MDD) may be available as a part of
existing resources during a synthesis, verification or simulation pro-
cess, in which case the coefficients can be derived from the graphs by
means of an efficient path oriented technique given in [4] based on
Theorem 1. We call this technique ‘CompByPath’. For many bench-
marks it executed quickly. However applying this algorithm for de-
termining all the coefficients in large fields can render the process
slow since it could involve repeated search through the MODDs. In
this paper we further improve this technique for significant speedup
in large fields as illustrated in the following example.

Let f (x1,x2,x3) be a function over GF(4) with x1, x2, and
x3 in polarities π1, π2, and π3 respectively. The coefficient

κ2,t of the term x2
3,π3

can be computed as κ2,t = ∑β
x3=0(x3 +

δ(π3)) f (δ(π1),δ(π2),x3) from Theorem 1 using Algorithm Comp-
ByPath [4]. Let us denote P C = (x3 + δ(π3)) f (δ(π1),δ(π2),x3),
which we have termed as the partial coefficient. If during this com-
putation P C is stored (e.g. in a hash table) for the relevant values
of x3 from the MODD, then the coefficient of x3,π3 can be computed

as κ1,t = ∑β
x3=0(x3 +δ(π3))2 f (δ(π1),δ(π2),x3) = ∑β

x3=0 P C · (x3 +
δ(π3)), i.e. by multiplying the values of x3 +δ(π3) by the stored val-
ues of P C and then adding them together without having to revisit
the MODD. In this way any coefficient over GF(N) with smaller
exponents can be determined from those with larger ones without
revisiting the MODDs as explained below.

Let us represent each unassigned variable with 1 and each as-
signed variable with 0. This results in a set of binary vectors of
dimension n. The set of all such binary vectors defines a lattice
over Boolean algebra. The Greatest Lower Bound (GLB) of this
lattice is [00 · · ·0] (i.e. all variables assigned), while the Least Up-
per Bound (LUB) is [11 · · ·1] (i.e. all variables unassigned). Clearly
an n-variable function over GF(N) will have 2n points in the lat-
tice. For each 1 in the vector corresponding to a point in the
lattice, apart from the GLB, the corresponding variable will have
N different exponents in the term ranging from 1 to N − 1 (each
point will correspond to a single coefficient over GF(2)). The al-
gorithm proceeds as follows. Each point pt in the lattice is consid-
ered once from [00 · · ·0] to [11 · · ·1]. The point [00 · · ·0] is deter-
mined by Theorem 1 directly. For example for a 4-input function
over GF(N) assume pt = [0101]. This corresponds to the exponents
{(0,N − 1,0,N − 1),(0,N − 1,0,N − 2), . . . ,(0,0,0,0)}. The expo-
nents are ordered so that they differ in one place and by exactly one
and processed from the highest to the lowest exponent. The coeffi-
cient corresponding to the highest exponent, i.e. (0,N −1,0,N −1),
is determined by Algorithm CompByPath. The rest of the coeffi-
cients are determined incrementally as outlined previously without
revisiting the MODD, e.g. the coefficient of (0,N −1,0,N−2) from
(0,N −1,0,N −1), etc.

Storing the Coefficients. The coefficients are stored as they
are computed in a reduced and shared DAG called the (S)hared
(G)alois (P)olynomial (D)ecision (D)iagram or SGPDD. The basic
idea follows. Any function in GF(N) can be represented (expanded)
based on the following polynomial form: f (x1, . . . ,xi, . . . ,xn) =
hπi,0 + ∑N−1

r=1 xr
i,πi

hπi,r. Here hπi, j is the coefficient corresponding
to the jth term in πi polarity. This can be represented by means of
a graph as shown in Fig. 3. Here the terminal nodes represent the
coefficients over GF(N) while the edges represent the exponents of

xi,πi

hπi ,0 hπi ,1 hπi ,N−1

N −110

Figure 3: Representing and storing coefficients.

xi. The GPDD can be reduced as follows: Given two nodes v and
w such that childi(v) = w and 0 ≤ i ≤ N − 1, (a) if all the nonzero
edges of w point to the zero terminal node, then reconnect childi(v)
to child0(w) and delete w, (b) Share equivalent subgraphs. A GPDD
reduced based on these two rules can be shown to be canonic and
minimal under a fixed variable ordering. Note that the MODDs
represent functions over GF(N) in their literal based forms whereas
the GPDDs represent them in their polynomial forms based on their
coefficients. An efficient GPDD reduction algorithm having linear
complexity in the number of nodes has been developed for arbitrary
GF(N) and any polarity. This algorithm is analogous to the BDD
reduction algorithm [7] with the exception that the reduction rule
has been replaced with rule-(a) above while the sharing rule remains
the same and, obviously, the number of children has been extended
to N. Note that the GPDD reduces to the functional decision dia-
gram (FDD) over GF(2) [25]. It also has integer interpretation as
TED [21].

Fig. 4(a) shows a reduced and shared GPDD for the polynomial
f (a,b,c) = ac+b2c in GF(4) in 0-polarity. Each internal node has
4 children. The edges are labeled 0 to 3. However edges terminating
at the 0 terminal node are not labeled for brevity.

3. SYNTHESIS AND OPTIMIZATION
Once the SGPDD is obtained circuits are synthesized by decom-

posing and factoring the SGPDD based on finding cuts within the
GPDD. A cut is a partitioning of the nodes in the SGPDD into two
sets T and B, where T contains internal nodes and the root and B con-
tains external, internal, and the last nodes, i.e. internal nodes which
have the external nodes as their children. A cut passes through an
SGPDD horizontally and does not cross an edge more than once.
Effectively a cut can factorize an SGPDD realizing a function f in
GF(2m) as f = D ·Q +R. Cut based algorithms have been used for
synthesis in the Boolean domain, e.g. [9]. In this paper we quickly
factorize a polynomial over GF(2m) based on cuts on their GPDDs
to construct an expression DAG based multiple output shared netlist.
The netlist constitutes two types of nodes: internal nodes which can
either be GF(2m) adders or multipliers, or external nodes which can
only be constants and variables in GF(2m). The internal nodes can
have two children. Fig. 5(d) shows the netlist for the expression
ab2 + bc. The netlists are further synthesized based on additional
factorization and optimization.

3.1 Decomposing from GPDD
Given a variable x and a GPDD for a function f , there are two

types of decomposition possible: (i) multiplicative, which represents
f as f = X ×Y , and (ii) additive, which represents f as f = W + Z.
Here X , Y , W , and Z are GPDDs. To perform a decomposition a
cut is performed above the nodes representing x. Let vx be a node
representing x. To obtain the multiplicative decomposition all the
paths in the original GPDD from nodes above the cut leading to vx
are reconnected to the terminal node 1 and the result is reduced. This
gives X . Y is simply the GPDD rooted at vx. To obtain the additive
decomposition all the paths in the original GPDD from nodes above

153

2

2

2

(a) (b) (c)

1
1 1

1 1

1
1

1

1

1

0
0 0

0

0

0

0

a

a

a

b

b
b

c
c

a+b2

c

ac+b2c a

b2

Figure 4: Factorizing from GPDD.

the cut leading to vx are reconnected to the terminal node 0 and the
result is reduced. This gives W . Z is obtained by reconnecting all
the paths from nodes above the cut that do not pass through vx to the
terminal node 0 and reducing the result. The proof for this reasoning
is straight forward and has been left out for brevity. The following
example demonstrates the basic idea.

In the GPDD of Fig. 4(a) the cut is shown with the horizontal bro-
ken line above the node c. Note that cuts can also be made above
node b. However the cut above c has been made because it is a dom-
inator node [9], i.e. all paths ending in the terminal x node (in this
case x = 1) passes through node c. Given a dominator node v, v
can be trivially factored out of a GPDD by reconnecting all the paths
leading to v to the terminal node 1 and detaching the subgraph rooted
at v as another GPDD. This results in a multiplicative decomposi-
tion over GF(2m). After cutting the GPDD each of the component
is reduced. While the bottom GPDD in Fig. 4 cannot be decom-
posed further, the top one can be decomposed as two GPDDs: one
rooted at a, and the other rooted at b (Fig. 4(c)). Here the cut is
performed above node b, which results in an additive decomposition
over GF(2m). These nodes are not further decomposed but instead
added to the netlist as c×(a+b2), which requires one multiplier and
one adder over GF(2m). The exponent b2 can be implemented in two
ways: either using an additional multiplier for the exponentiation, or
using an m-input m-output look-up table (LUT) since we are dealing
with GF(2m). Our tool can do either depending on which option is
given.

A more general case appears in Fig. 5. Here the function consid-
ered is ab2 + bc. Decomposition of expressions like this cannot be
done based on the approach of [9] owing to the presence of the expo-
nent. Fig. 5(b) shows how a multiplicative decomposition is carried
out if the cut is performed above the nodes b.

In this paper we perform factorization of exponents on the netlists,
which we obtain by using a fast greedy heuristic algorithm as out-
lined in Fig. 6.

Much of the algorithm is self explanatory. The algorithm decom-
poses a function f as f = D ·Q + R. In Line 8 the list of parents is
computed for the GPDD rooted at root. Lines 10–17 are executed
for nodes with at least one parent.

The cut is performed above the node Q. Lines 11 and 13 perform
additive decomposition by reconnecting all paths coming from nodes
above the cut not leading to (Line 11) and leading to (Line 13) Q to
the zero terminal node. Line 12 performs multiplicative decomposi-
tion. These steps are repeated for each of the components Q, D, and
R. Line 20 performs netlist optimization as outlined in Section 3.3.
Note that no assumption is made regarding the word-size or the po-
larity.

Fig. 4 shows the decomposition obtained from the GPDD of
Fig. 4(a) using this algorithm. Fig. 5(c) (exponent realized with
LUT) and (d) (exponent realized with repeated multiplication) shows

LUT

(a) (b)

(c) (d) (e)

a
a

a aa

b
bb

b

b

bb

c
c

c cc

+

+

+

×

××

×

×

××

ab2 +bc

ab2 +bcab2 +bc b(ab+ c)

b

ab+ c

0

0

0

0

0

1

1

1

11
1

1

1

1
1

2

Figure 5: Constructing the expression tree.

the resulting netlist after decomposing the GPDD of Fig. 5(a).

3.2 Factorizing Netlists
Common factors are determined by walking through chains of

multipliers following chains of adders. A chain of adders is a non-
empty ordered list of adders 〈Ai,Ai+1, . . . ,Ai+r〉 such that Ai forms a
chain if r = 0; otherwise A j+1 appears as one of the inputs to A j for
i ≤ j < i + r. A chain of multipliers is an ordered list of multipliers
〈Mk,Mk+1, . . . ,Mk+s〉 such that M j+1 appears as one of the inputs to
M j for k ≤ j < k + s. A chain of multipliers can be empty, in which
case a term (i.e. a node u or a subgraph rooted at u) is considered as a
chain. Let CA1 = 〈Ai,Ai+1, . . . ,Ai+r〉 and CA2 = 〈A j,A j+1, . . . ,A j+s〉
be two chains of adders. Let CM1 = 〈Mk,Mk+1, . . . ,Mk+t〉 and
CM2 = 〈Ml ,Ml+1, . . . ,Ml+w〉 be two chains of multipliers. Let Mk
and Ml be one of the inputs to Ai+r and A j+s respectively. Let X
be a subgraph rooted at X such that X appears as one of the inputs
to Mk+t and Ml+w. If Ai = A j, then X is factorizable. The proof
is straight forward and has been left out for brevity. The factor-
ization is carried out as illustrated in Fig. 7. Fig. 7(a) shows the
structure (AX + BX) which can be factored as X(A + B) as shown
in Fig. 7(b) and (c). Fig. 7(d) shows a more general structure of the
form Z = ((AX +Y)+ BX). Clearly X is factorizable. To factorize
X Z is restructured as Z = ((AX +BX)+Y) (Fig. 7(e)) and then the
factorization is carried out as Z = ((X(A +B))+Y) (Fig. 7(f)). The
structure within the circle in Fig. 7(e) is the network of Fig. 7(d) after
its pointers have been readjusted. After restructuring the circuits the
netlist optimization technique of Section 3.3 is applied to obtain the
final circuits. For example factorizing the netlist of Fig. 5(d) yields
the network of Fig. 5(e). This result is the same as decomposing the
GPDD shown in Fig. 5(a) and (b).

The algorithm for factorization proceeds by trying out all possible
factorizations, and only stops when there are no more terms which
can be factored out. Note that no assumption regarding the word-
size or the polarity has been made, i.e. the same approach works for
bit-level as well as word-level circuits in any polarity.

3.3 Optimizing Netlists
Netlists are optimized by processing them recursively from the ex-

ternal (i.e. variable or constant) nodes towards the root node. Each

154

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Algorithm DecompGpdd{
Let NodeQ be a queue initially empty;
Let root be the root of the GPDD;
Let EtRoot be the root of the netlist;
Add root to the netlist and push root on to NodeQ;
do{

Remove head of NodeQ and assign to root;
Construct parent list of root;
if(ParentList > 0){

Q = node with the least number of parents;
D = AssignPassAroundZ(Q);
Reconnect all edges in D leading to Q to 1;
R = AssignPassThroughZ(Q);
D = reduce(D);
R = reduce(R);
Add Q, D, and R to the netlist;
Push Q, D, and R on to NodeQ;

}
}while(NodeQ is not empty);
EtRoot = optimize(EtRoot);

}

Figure 6: A GPDD decomposition algorithm.

X

X

A 1 B 0 Y 0

B B

X

BA

1XA A

X A B YBYXA

(a) (b) (c)

(d) (e) (f)

Figure 7: Factorizing from netlist.

node is visited exactly once. For each node u the following is done.
If u is already processed then its reference is returned so that it can
be shared; otherwise its information is stored in a hash table for shar-
ing. If u is an internal (i.e. GF(2m) multiplier/adder) node, then let
v0 and v1 be its two children. If both v0 and v1 are constants, then
replace u with v0 op v1 where op is either addition or multiplication
over GF(2m), i.e. perform constant propagation. Replace u with vi
(i ∈ {0,1}), if u = vi×1 or u = vi +0. Replace u with 0, if u = vi×0
or u = vi + vi. Note that this algorithm is analogous to the BDD re-
duction algorithm of [7], which can be argued to be optimal under a
fixed variable ordering. Analogously this algorithm can be shown to
be optimal w.r.t. two input addition and multiplication over GF(2m)
under a fixed netlist transformation. Also note that it can be applied
to bit-level as well as word-level correctly with either repeated mul-
tiplication or LUT based exponentiation and in any polarity. This
algorithm can be applied for single as well as multiple output func-
tions.

For example given the netlists of Fig. 7(b) and (e) this algorithm
will yield the netlists of Fig. 7(c) and (f) respectively.

3.4 Exponentiation
Exponentiation is carried out in two ways: (i) using the repeated

multiplication rule, (ii) using LUTs, depending on which option is
given. If rule (i) is specified, then exponents are generated as fol-
lows: square and multiply incrementally, e.g. given x4, x5 and x11,
generate x4 using square and multiply, x5 = x4×x and x11 = x5×x6,
where x6 = x5 ×x. This algorithm is called ‘Exp’.

If rule (ii), i.e. the LUT option is given, then polynomials
of the form p(x) = ∑2m−1

i=0 cixi, where ci ∈ GF(2m), are generated
as a single m-input m-output LUT. For example given an expres-
sion a3(βb9 + b) + c(βb9 + b) in GF(16), it is first factored as
(βb9 +b)(a3 +c). Then the result is implemented using two 4-input
4-output LUTs, one for each βb9 +b and a3, one multiplier and one
adder over GF(16).

3.5 Overall Algorithm
The algorithm proceeds as follows: (i) Store initial specification

as reduced and shared MODD, (ii) apply the technique of Section 2
to compute and store the coefficients as reduced and shared GPDDs,
(iii) apply the techniques of Section 3.1 to decompose the GPDDs
into the netlist, (iv) apply the technique of Section 3.2 to further de-
compose and optimize the netlist. During this process the technique
of Section 3.3 is applied between Steps (iii) and (iv) to obtain an ini-
tial, and also after Step (iv) to obtain the final result. The best result
is retained. The algorithm can be initiated at any point, e.g. if the
GPDD is available then we can start from Step (iii).

4. EXPERIMENTAL RESULTS
The techniques presented in this paper have been implemented in

Gnu C++ 3.2.2-5 on a computer with 640MB RAM and a 600MHz
Athlon processor running RedHat Linux with kernel-2.4.20-43.9.
The Synopsys� design compiler was run on a dual processor Pen-
tium 4 Linux machine with 2GB RAM and kernel-2.4.21-20.EL. The
benchmarks were stored as two-level AND-OR PLAs to enable us
to determine how effective the proposed technique is in optimizing
area, power, and delay. Also the Synopsys� design compiler un-
derstands this format. The PLAs were read into MODDs, and the
algorithm of Section 3.5 was applied from Step (i). After optimiza-
tion the results were saved in the VHDL format, which were passed
to the Synopsys� design compiler (power was estimated with the
Synopsys� power compiler). The PLAs were also passed directly
to the Synopsys� compiler for optimizing without the aid of the
proposed technique.

Unless otherwise specified the tool assumes the follow-
ing primitive polynomials by default for generating the fields:
(2,7),(3,11),(4,19),(5,37),(6,67),(7,137),(8,285). Here the first
number m in the ordered pair (m,d) is the bit width and determines
the field size, i.e. GF(2m), and the second number d is the decimal
representation of the primitive polynomial.

We have minimized multipliers over GF(2m) (2 ≤ m ≤ 8) for all
the 51 primitive polynomials in 0.18 micron CMOS technology. Ta-
ble 1 shows results for the 8-bit multipliers. Column 1 represents the
primitive polynomials, while Column 2 represents the area, delay,
and power reported by the Synopsys� design compiler without the
aid of the proposed technique. The column with the heading “Pro-
posed Technique” shows the result of applying the proposed tech-
nique first, and then applying the Synopsys� compiler on the re-
sulting VHDL files. The letters ‘a’ and ‘m’ represent 2-input EXOR
and AND gates respectively. Here area, delay, and power are in
10−6 mm2, nano seconds, and mW respectively. Power was esti-
mated at 1.8V. Significant area, delay, and power reduction is observ-
able (as much as 57 times for polynomial 487). Clearly the number
of AND gates is m2 for all the cases. The number of EXOR gates

155

Table 1: Multipliers over GF(28) for all the 16 PPs.
Prim Synopsys� only Proposed Technique
Poly (area,delay,power) (a,m) (area,delay,power)

285 (141689.3,18.8,130.9) (87,64) (2628.9,1.6,4.2)
299 (152603.3,14.6,125.7) (85,64) (2609.5,1.7,4.1)
301 (132595.5,15.0,125.4) (84,64) (2580.5,1.5,4.0)
333 (140896.3,15.2,129.3) (84,64) (2574.0,2.0,4.1)
351 (135107.6,17.9,121.5) (100,64) (2757.9,1.5,4.3)
355 (143195.4,17.4,126.0) (88,64) (2612.7,1.8,4.2)
357 (144472.7,14.8,133.5) (84,64) (2548.2,1.5,4.0)
361 (135227.9,16.3,125.6) (88,64) (2628.9,1.7,4.2)
369 (132405.8,17.6,130.2) (89,64) (2722.4,1.9,4.3)
391 (130577.4,15.9,126.5) (79,64) (2441.8,2.2,3.8)
397 (139992.8,14.4,122.3) (87,64) (2532.1,2.0,4.0)
425 (141879.6,15.6,118.9) (94,64) (2690.2,2.0,4.3)
451 (139612.7,17.6,123.9) (79,64) (2493.4,1.8,3.9)
463 (141228.2,17.8,122.9) (90,64) (2661.1,1.9,4.1)
487 (150703.6,16.7,138.8) (92,64) (2632.1,1.9,4.1)
501 (129935.6,16.0,119.2) (104,64) (2906.3,2.3,4.7)

varied from approximately m2 −1 for trinomials, e.g. 19 (m = 4, 15
EXORs), 25 (m = 4, 15 EXORs), 37 (m = 5, 25 EXORs), 67 (m = 6,
35 EXORs), 131 (m = 7, 48 EXORs), etc., to m2 + k, where k is a
constant, for pentanomials and polynomials with more than 5 terms.
As compared with [22], which reports 2m2 − 1 2-input AND gates
and 2m2 − 3m + 1 EXOR gates, the proposed technique produced
better results. For the 8-bit multiplier this technique reports max-
imum area of 0.002906 mm2, whereas [22] reported 0.0128 mm2,
i.e. about 4.4 times better (5.2 times better for polynomial 391).
Also, it reports about 2 times reduced delay. For the 4-bit case the
proposed technique reports about 0.000522 mm2 area with the PP
25, i.e. over 5 times better. It is not possible to directly compare
this technique with [2, 5, 17] because these techniques have reported
only theoretical results, with m2 2-input AND gates and m2 −1 (for
trinomials) to m2 +k EXOR gates depending on the number of terms
in the polynomials and their positions without any implementation.
However we were able to compare the examples given in [2, 5]. For
examples [5] reported 18 EXOR and 16 AND gates for the GF(24)
multiplier in the primitive polynomial 25, whereas this technique
reports 15 EXOR and 16 AND gates. As compared with [2] the
proposed technique reported similar result for the polynomial 171
over GF(27), i.e. 64 EXOR and 49 AND gates. Note that these
results closely approximate the theoretical results reported by these
techniques despite the fact that the proposed technique is a heuristic
synthesis algorithm for polynomials, whereas these techniques are
designed for hand synthesizing the multipliers over GF(2m).

Figure 8: Gate count for ab2.

Fig. 8 shows the result of applying the technique for optimizing
the term ab2 in GF(2m), where 2≤m ≤ 8. The total number of AND
gates is exactly m2. The total EXOR gate count is approximately
m2 +m up to m = 7. For m = 8 the EXOR gate count worsens. Note
that techniques such as [10], which are tailored for hand synthesizing
ab2, have reported total EXOR and AND gate counts of (m + 1)2

each.

Figure 9: Variation of 2-input gates with exponent over GF(28).

Fig. 9 shows how the total 2-input gate count varies with the expo-
nent xy, where 2 ≤ y ≤ 255, over GF(28). There are distinct regions
noticeable which seems to be repeating with the exponents. For ex-
ponents 2, 4, 8, 16, 32, and 128 only 2-input EXOR gates were re-
quired with 11 being the minimum (for exponents 2 and 128) and 21
being the maximum (for exponent 32). The hardest exponent was
251, which required 410 and 251 2-input EXOR and AND gates re-
spectively, i.e. 661 gates in total. Exponent 255 requires fourteen
2-input EXOR gates, and nine 2-input AND gates, which can be re-
alized with a single 8-input OR gate.

Table 2: Word-level synthesis and optimization.
Field Polynomial Exp LUT Gate Level
(k,pp) (a,m) (a,m,LUT) (a,m)

(6,67) a13 +b11 (1,10) (1,0,2) (136,83)
[(356,360)] [(134,83)]

(6,67) a6b7 +a7b10 (1,11) (1,2,4) (1295,631)
[(391,396)] [(289,207)]

(6,67) a59b35 +a29b63 (1,27) (1,2,4) (1300,745)
[(951,972)] [(320,247)]

(5,37) a30b29c+b29c17 (1,22) (1,2,3) (1238,748)
[(555,550)] [(189,154)]

Table 2 shows the results for some sample multivariate polynomi-
als. The polynomials have been synthesized at the word as well as at
the gate-level. At the word-level Exp and the LUT based techniques
have been applied for the generation of exponents. The symbols ‘k’,
‘pp’, ‘a’ and ‘m’ represent the word size, primitive polynomial, to-
tal number of 2-input adders (EXOR gates in GF(2)) and multipliers
(AND gates in GF(2)) respectively. The figures within ‘[]’ represent
the maximum number of 2-input EXOR and AND gates required
to implement the adders, multipliers, and LUTs. This figure is ob-
tained by synthesizing the LUTs at the gate level with the proposed
technique, and then adding the total number of 2-input EXOR and
AND gates required for the LUTs, adders, and multipliers (Table 1).
Clearly the LUT based algorithm is winning out, while Exp is in the
second place. However LUTs suffer from exploding in size quite
rapidly, unless they are saved in a DAG based form, e.g. the BDD,

156

as they are created.
We have also applied the proposed technique on aby for 2 ≤

y ≤ 255 over GF(28) at the gate-level. The minimum area is
148.7×10−6 mm2 for ab255, and the maximum area is 60902×10−6

mm2 for ab251. We could not compare all the cases produced by the
Synopsys� compilers alone since for most of the cases it was tak-
ing far too long without the aid of the proposed technique, e.g. for
ab79 we had to terminate the compiler after 51 hours. We could
apply the Synopsys� compilers for certain cases, e.g. for ab68 it
reported 790785 × 10−6 mm2 area, and 24.1 ns delay without the
proposed technique, whereas with the proposed technique it reported
11531×10−6 mm2 area and 3.58 ns delay, i.e. about 68 times area
and nearly an order of magnitude delay improvement respectively. If
the proposed technique is applied at the word level (8-bit word size),
then for ab251 with b251 implemented as LUT the gate count reduces
from 2280 EXOR, and 1275 AND gates down to a maximum of 497
EXOR and 315 AND gates. Here the multiplier and the LUT are
minimized at the gate-level.

Note that in all the cases many 2-input EXOR gates were of the
form 1+x, which is a single NOT gate but still counted as an EXOR
gate.

5. CONCLUSIONS
In this paper we presented a heuristic synthesis and optimization

technique for polynomials in GF(2m) for gate- as well as word-level.
The experimental results suggest that this technique can significantly
reduce area, delay, and power. Also this technique can closely match
techniques tailored for hand synthesizing circuits in GF(2m). There-
fore we can conclude that if this technique is used in conjunction
with those techniques, then near optimal circuits can be designed for
polynomials over GF(2m).

6. REFERENCES
[1] A. Dur and J. Grabmeier. Applying Coding Theory to Sparse

Interpolation. SIAM J. Computing, 22(4):695–703, Aug. 1993.
[2] A. Halbutogullari and Çetin K. Koç. Mastrovito Multiplier for

General Irreducible Polynomials. IEEE Trans. Comput.,
49(5):503–518, May 2000.

[3] A. Jabir and D. Pradhan. MODD: A New Decision Diagram
and Representation for Multiple Output Binary Functions. In
Des. Automat. Test. in Europe (DATE’04), pages 1388–1389,
Paris, France, Feb. 2004.

[4] A. Jabir and D. Pradhan. An Efficient Graph Based
Representation of Circuits and Calculation of Their
Coefficients in Finite Field. In Proc. Int. Workshop on Logic
and Synth. (IWLS’05), pages 218–225, California, USA, June
2005.

[5] A. Reyhani-Masoleh and M.A. Hasan. Low Complexity Bit
Parallel Architectures for Polynomial Basis Multiplication
over GF(2m). IEEE Trans. Comp., 53(8):945–959, Aug. 2004.

[6] R. Blahut. Fast Algorithms for Digital Signal Processing.
Addison-Wesley, Reading, Mass., 1984.

[7] R. Bryant. Graph-Based Algorithms for Boolean Function
Manipulation. IEEE Trans. Comput., C–35(8):677–691, Aug.
1986.

[8] C. Paar, P. Fleischmann, and P. Soria-Rodriquez. Fast
Arithmetic for Public-key Algorithms in Galois Fields with
Composite Exponents. IEEE Trans. Comp.,
48(10):1025–1034, Oct. 1999.

[9] C. Wang, V. Singal, and M. Ciesielski. BDD Decomposition
for Efficient Logic Synthesis. In Int. Conf. Comput. Aided
Design (ICCAD), pages 626–631, 1999.

[10] C.H. Liu, N.F. Huang, and C.Y. Lee. Computation of ab2

Multiplier in GF(2m) Using an Efficient Low Complexity
Cellular Architecture. IEICE Trans. Fund. Electron. Comm.
Comp. Sci., E83-A(12):2657–2663, 2000.

[11] C.H. Wu, C.M. Wu, M.D. Sheih, and Y.T. Hwang.
High-Speed, Low-Complexity Systolic Design of Novel
Iterative Division Algorithm in GF(2m). IEEE Trans.
Comput., 53:375–380, Mar. 2004.

[12] D.K. Pradhan and A.M. Patel. Reed-Müller Like Canonic
Forms for Multivalued Functions. IEEE Trans. Comp.,
C-24(2):206–210, Feb. 1975.

[13] D.M. Miller and R. Drechsler. On the Construction of
Multiple-Valued Decision Diagrams. In Proc. 32nd ISMVL,
pages 245–253, Boston, USA, 2002.

[14] D.Y. Grigoriev and M. Karpinski. Fast Parallel Algorithms for
Sparse Multivariate Polynomials Over Finite Fields. SIAM J.
Computing, 19(6):1059–1063, Dec. 1990.

[15] H. Wu and M.A. Hasan. Efficient Exponentiation of a
Primitive Root in GF(2m). IEEE Trans. Comp.,
46(2):162–172, Feb. 1997.

[16] J.C. Jeon and K.Y. Yoo. Low Power Exponent Architecture in
Finite Field. IEE Proc. Part-E, 152(6):573–578, Dec. 2005.

[17] J.L. Imaña, J.M. Sánches, and F. Tirado. Bit Parallel Finite
Field Multipliers for Irreducible Trinomials. IEEE Trans.
Comp., 55(5):520–533, May 2006.

[18] M. Abramovici, M. Breuer, and A. Friedman. Digital Systems
Testing and Testable Design. IEEE Publications, 1994.

[19] M. Ben-Or and P. Tiwari. A Deterministic Algorithm for
Sparse Multivariate Polynomial Interpolation. In Proc. 20th
Symp. Theory of Computing, pages 301–309, Apr. 1988.

[20] M. Clausen, A. Dress, J. Grebmeier, and M. Karpinski. On
Zero-Testing and Interpolation of k-Sparse Polynomials over
Finite Fields. Theoretical Comp. Sci., 84(2):151–164, Jan.
1991.

[21] M.J. Ciesielski, P. Kalla, Z. Zeng, and B. Rouzeyere. Taylor
Expansion Diagrams: A Compact, Canonical Representation
with Applications to Symbolic Verification. In Design
Automation and Test in Europe, Mar. 2002.

[22] N. Iliev, J.E. Stine, and N. Jachimiec. Parallel Programmable
Finite Field GF(2m) Multipliers. In Proc. IEEE Comp. Soc.
Annual Symp. VLSI Emerging Trends (ISVLSI’04), pages
299–302, Feb. 2004.

[23] D. Pradhan. A Theory of Galois Switching Functions. IEEE
Trans. Comp., C–27(3):239–249, Mar. 1978.

[24] T. Sasao and F. Izuhara. Exact Minimization of FPRMs Using
Multi-Terminal EXOR TDDs. In T. Sasao and M. Fujita,
editors, Representations of Discrete Functions, pages
191–210. Kluwer Academic Publishers, 1996.

[25] U. Kebschull and W. Rosenstiel. Efficient graph-based
computation and manipulation of functional decision
diagrams. In Proc. European Design Automation Conf., pages
278–283, Feb. 1993.

[26] S. Wicker. Error Control Systems for Digital Communication
and Storage. Prentice Hall, Englwood Cliffs, N.J., 1995.

[27] Z. Zilic and Z. Vranesic. A Multiple-Valued Reed-Müller
Transform for Incompletely Specified Functions. IEEE Trans.
Comp., 44(8):1012–1020, Aug. 1994.

[28] Z. Zilic and Z.G. Vranesic. A Deterministic Multivariate
Interpolation Algorithm for Small Finite Fields. IEEE Trans.
Comput., 51(9):1100–1105, Sept. 2002.

157

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

