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Abstract – Identifying worst-case voltage drop conditions in every 
module supplied by the power grid is a crucial problem in modern 
IC design. In this paper we develop a novel methodology for power 
grid verification which is based on accurately constructing the 
space of current variations of the supplied modules and locating its 
precise points that yield the worst-case voltage drop conditions. 
The construction of the current space is performed via plain 
simulation and statistical extrapolation using results from extreme 
value theory. The method overcomes limitations of past methods 
which either relied on loosely bounding the worst-case voltage 
drop, or abstracted the current space in a vague and incomplete set 
of bound-type constraints. Experimental results verify the potential 
of the proposed method to identify worst-case conditions and 
demonstrate the pessimism inherent in previous bound-type 
approaches. 
 

I. INTRODUCTION 
The deterioration of the voltage level supplied on the active cells or 
modules by the lines of the power distribution network (voltage-
drop or IR-drop) constitutes one of the biggest reliability problems 
in modern nanometer-scale VLSI circuits as it adversely affects 
circuit speed and noise margins [1]-[2]. Upcoming generations of 
ICs are going to experience substantial voltage drops (due to 
increased currents and parasitics), which combined to the reduced 
supply levels (and increased drop-to-supply ratios) will make the 
situation extremely harsh. To circumvent these problems designers 
are interested in checking if the designed power grid is robust, i.e. 
if it constantly maintains a safe voltage level at all active modules 
under all possible loading conditions. 
The voltage drop is a dynamic phenomenon, its value at any time 
instant being dependent on the transient current waveforms drawn 
over time by the active modules (acting as current sinks). These 
current waveforms can be determined by means of simulation of 
the nonlinear signal network representing the digital circuit, and 
the voltage drop may be subsequently computed by solution of the 
linear network representing the power grid where the sink currents 
are denoted as independent (time-varying) current sources (this is 
really an approximation since the current sources are voltage-
dependent on the supplied level, but the error of ignoring this 
interdependence and performing the computation in two steps is 
usually negligible). Since the output of the simulation for the sink 
currents is a function of the sequence of input patterns applied on 
the digital circuit, to fully check grid robustness one has to repeat 
the above procedure for all possible input patterns which is 
obviously impractical. This means that dynamic analyses can only 
be executed for a representative set of input patterns. Thus most 

existing methodologies complement dynamic analyses with some 
kind of static (DC) analysis in which one vector (or maybe a 
collection of vectors) of static values for the sink currents is used to 
represent the transient current waveforms over all input patterns 
[1]-[2]. Apart from its comprehensive coverage quality, the static 
analysis is also simpler to implement in terms of modeling and 
solution of the power grid, since only the resistive model of the 
latter needs to be extracted and utilized for the calculation of 
voltage drop. Two obvious choices for the static currents are the 
average and maximum values of the transient waveforms over all 
input patterns. Average current values are relatively easy to 
estimate but may clearly overlook the worst case and miss out 
conditions for which the grid is essentially non-robust. On the other 
hand maximum currents do present an upper bound on voltage drop 
at all sinks, and hence can guarantee grid robustness under all 
possible input conditions. Estimating maximum sink currents over 
all input patterns is a challenging problem by itself, and has been 
addressed in the past by some papers [3]-[4], although more recent 
techniques for overall maximum power/current estimation of the 
circuit based on simulation and statistical extrapolation [5]-[8] are 
more appropriate and accurate for the estimation of maximum 
current at each sink as well. The problem of using maximum 
currents as static values for grid verification is that they are overly 
pessimistic and may erroneously indicate problems that do not 
exist, since the currents drawn from different sinks are highly 
correlated and never attain their maximum values simultaneously. 
In this paper we develop a novel methodology for deriving a 
collection of static current vectors that provide a realistic worst-
case voltage drop (not just a loose upper bound) at each sink over 
all input patterns, and also calculate this worst-case voltage drop. 
The methodology is based on constructing an accurate profile of 
the space (or locus) of simultaneous sink current variations and 
locating the specific points that yield the worst-case voltage drop at 
each sink. Of course in order to find the space of current variations 
in every detail one has to simulate the circuit for all input patterns 
which brings about the same obstacle. However, a scaled image of 
the current space can be obtained via a sample of vectors of sink 
currents, which can be subsequently extrapolated to the entire space 
by using results from extreme value theory (EVT) [9]. Some past 
approaches [10]-[11] tried to abstract the current space by 
prompting the user to enter constraints that express relationships 
between sink currents. The problem is that the user cannot 
determine with much accuracy relationships between different 
sinks and formulate them as constraints, and even if he did, he 
cannot possibly capture all different relationships and 
interdependencies in the form of a small number of constraints. A 
large part of them will surely be missed and the calculated worst-
case voltage drops (which only reflect the constraints externally 
provided) will fall short of the observed reality. On the other hand, 
it is certainly much more accurate and easier for him to simulate 
the design for a set of input patterns, and construct the current 
space exclusively out of the simulation results. In addition, 
constraints in the previous approaches were in the form of vague 
upper bounds and thus do not generate the actual current space, but 
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only a superset of it which is still much pessimistic. The approach 
in this paper accurately constructs the current space (or, 
specifically, its portion containing the worst-case points for voltage 
drop) without enclosing it into bounds and accounting for all 
potential correlations between sink currents. 
The rest of the paper is organized as follows. The next section 
provides the necessary background for conditions on sink currents 
that lead to the worst-case voltage drops. Section III builds on the 
results of the previous section to formulate a practical methodology 
for power grid verification. Section IV presents our experimental 
results from various case studies comprising of test grids and 
typical benchmark circuits, and finally section V gives the overall 
concluding remarks. 
 

II. BACKGROUND FOR WORST-CASE 
VOLTAGE DROP CONDITIONS 

The model that we will assume for the power grid is the resistive 
linear model with time-varying current sources in place of sinks, 
since we are seeking static current vectors for DC analysis. Instead, 
however, of using one single DC vector (such as the vector of 
overall average or maximum currents) to represent all transient 
waveforms for all possible input patterns, we will adopt a multi-
cycle DC current scheme [1] in which only the cycle-accurate 
current waveform for each sink (corresponding to one specific 
input pattern) is substituted by a constant DC value (Fig. 1). Based 
on this scheme we will subsequently attempt to find those cycle-
DC current vectors that provide the worst-case voltage drop at any 
sink for the given power grid. This particular scheme is able to 
account for the diverse current workloads which arise for dissimilar 
input patterns (due to the different number of devices being 
switched), and can even faithfully reproduce the transient behavior 
of the grid on condition that there exists sufficient decoupling 
capacitance to smooth out large dynamic peaks of voltage drop 
during the period of a cycle (especially right after a clock edge 
when multiple devices switch simultaneously). Of course the latter 
may not be entirely true in modern ICs with operating frequencies 
above 1GHz, and that is why sample dynamic analyses may still 
have to be run. However those analyses can never cover all input 
pattern combinations and thus do not overshadow the value of a 
static analysis, especially one that is based on the considerably 
more accurate multi-cycle DC current scheme. 

 
Fig. 1. Multi-cycle DC current scheme. 
 
We assume that the power grid (or the portion of the power grid 
that needs verification) has been extracted as a linear network of 
resistive branches that meet at pq +  nodes, of which p nodes are 
connected to the external power supply via power pads (which are 
either located at the periphery of the grid in the case of a wire-bond 
package, or are scattered across the entire grid area in a C4 
methodology), and the remaining q nodes are divided to n sink 
nodes (with current sources to an external ground node) and nq −  
internal nodes (for which usually nq >> ). According to the 

modified nodal analysis (MNA) [12], the 1×q  vector of 

instantaneous voltages )(tU  (relative to ground) at all internal and 

sink nodes is determined by the instantaneous currents drawn by 
the sinks and the specific network structure, and is given by the 
following matrix equation: 

(1) 
dd

VGtItUG ⋅+−=⋅ )()(  

where G  is the qq×  conductance matrix of the network (formed 

by the conductances of the network branches), )(tI  is a 1×q  

vector of current excitations at the nodes (with positive currents to 
the ground at sink nodes and zero entries at all internal nodes), and 

dd
V  is another 1×q  vector with all entries equal to the supply 

voltage 
ddV . By defining )()( tUVtV dd −=  as the voltage drop at 

all nodes we can rewrite the above network equation in a form 
which can be solved directly for the voltage drop values: 
(2) )()( tItVG =⋅  

In order to obtain appropriate expressions for the voltage drops at 
the n sink nodes which are of interest, we must enumerate them 
first in the matrix G  and vectors )(tI  and )(tV , and then we can 

write eq. (2) as follows: 
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G , 
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G , 
21

G , and 
22

G  are submatrices of G  with sizes 

nn× , )( nqn −× , nnq ×− )( , and )()( nqnq −×−  respectively, 

while )(tV s
 and )(tI

s
 are vectors of size 1×n  (representing the 

voltage drops and current excitations at the sink nodes respectively) 
and )(tV i

 is a vector of size 1)( ×− nq  (representing the voltage 

drops at the internal nodes). The latter equation can be solved with 
respect to )(tV s

 and after some calculations gives: 
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where the matrix 1

21

1

221211
)( −−−= GGGGR  is of size nn×  and 

consists only of non-negative values since G  is an M-matrix. The 

process of power grid verification typically involves checking that 
the voltage drop at all sink nodes does not exceed a safety threshold 
voltage 

0V  (e.g. 
ddVV 1.00 = ) at all time instants t, i.e. 

0)( VtV s < , 

ℜ∈∀t . Since the latter is equivalent to 
0

)(max VtV
sRt

<
∈

 (where the 

“max” operator is interpreted component-wise in vector )(tV s
), we 

need to find the maximum voltage drop )(max tV
kRt∈

 at each sink 

nk ≤≤1 . Supposing that the matrix R  has rows and elements: 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

T

n

T

T

nnnn

n

n

r

r

r

rrr

rrr

rrr

R
M

L

MOMM

L

L

2

1

21

22221

11211

 

then each component )(tVk
 in vector )(tV s

 would be as follows: 

(5) )()()()()(
2211

tIrtIrtIrtIrtV s

T

knknkkk
⋅=+++= L  

Thus the verification problem is concerned about maximizing the 
function )(tVk

 given by the above equation. Note that the standard 

practice of taking maximum current values at each sink effectively 
executes: 

[ ])()()(max)(max
2211

tIrtIrtIrtV
nknkktkt

+++=
ℜ∈ℜ∈

L  

)(max)(max)(max)(max 2211 tIrtIrtIrtIr st

T
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⋅=+++≤ L  

which obviously leads to a very conservative upper bound. 
In the latter equation the function of time )(tVk

 can be seen as a 

composite function of a vector variable (i.e. a multivariable 
function) )(

sk IV , where )(tII ss =  is a vector-valued function  

(i.e. a vector of functions) n

sI ℜ→ℜ:  of the independent scalar 

variable ℜ∈t . If n

sID ℜ⊂ℜ= )(  is the range space (or simply 

range) of )(tI
s

 within the n-dimensional space nℜ , then it 

constitutes the domain on which the composite function )(
sk IV  is 
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defined, i.e. ℜ→DVk : . The maximum of )(tVk
 over all ℜ∈t  

would then be equal to the maximum of )(
sk IV  within its domain 

nD ℜ⊂ , i.e. )(max)(max skDIkt
IVtV

s∈ℜ∈
= . The latter is effectively a 

problem of maximizing an objective function )(
sk IV  over a 

feasible set D that is formed by imposing constraints on the 
parameter vector sI . The problem is thus transferred to 

constructing a realistic profile of the feasible domain D of current 
variations (via analytical relationships or using a finite number of 
points in nℜ ), or a part of it where the maximum is located, and 
then finding the maximum of )(

sk IV  over this profile. 

From eq. (5) the function )(
sk IV  is perceived to be a linear 

function of the vector variable sI . Also the domain D  is obviously 

bounded in nℜ  (since no current can have an infinite value) and 
therefore has a boundary D∂  (which also belongs to D, making it a 

compact set in nℜ ). Based on these observations, the following 
facts will help constructing the domain D and ease the task of 
finding the maximum of )(

sk IV  over it. 

Definition 1. A point I  is called a maximal (or noninferior) point 

of the partially ordered set nD ℜ⊂  [13] if for every DI ∈'  the 

relation II ≥'  implies II =' , or equivalently if there does not exist 

a DI ∈'  such that II ≥'  (component-wise) with at least one 

component nk ≤≤1  being 
kk II >′ . 

Theorem 1. Let IrIV
T ⋅=)( , 0>r  (component-wise), be a linear 

function of the vector variable I  that is defined on a compact set 
nD ℜ⊂ . If 

*
I  is a maximizer of )(IV  (i.e. a point that maximizes 

)(IV ), then 
*

I  is a maximal point of D. 

Proof. Since IrIV
T ⋅=)(  is a continuous function defined on a 

compact set, a maximizer 
*

I  always exists due to the famous 

Weierstarss theorem [13]. Suppose this maximizer 
*

I  is not a 

maximal point. Then there would exist a point DI ∈'  such that 
*' II ≥  and *

kk
II >′  for at least one component nk ≤≤1 . This 

means that 
*

' IrIr
TT ⋅>⋅  (since 0>r ) and therefore 

*
I  cannot be 

a maximizer of IrT ⋅ , which is a contradiction. 

Theorem 2. Let P be the set of maximal points of a compact set 
nD ℜ⊂ . Then P is a subset of the boundary D∂ , i.e. DP ∂⊂ . 

Proof. Obvious, since any point DI ∈  that does not belong to the 

boundary D∂  is an interior point of D, for which there always 
exists a DI ∈'  such that II ≥'  and 

kk II >′  for at least one 

component nk ≤≤1 , which means that I  cannot be a maximal 

point. 
The above theorems state that the maximum of a linear function 

s

T

ksk
IrIV ⋅=)( , 0>kr  over a compact set nD ℜ⊂  will be 

located at a maximal point of the boundary D∂ . This is intuitively 

shown in Fig. 2, where the maximum of the function 
s

T

k
Ir ⋅  is the 

specific value of the constant c for which the hyperplane 

cIr
s

T

k
=⋅  in nℜ  just touches the boundary of D (the maximizer 

*

sI  is then the common point of the hyperplane and the boundary 

D∂ ). It is also obvious from above that if ℜ⊂= ],[ kkkD ωα  is the 

range of each individual component 
kI , nk ≤≤1  (i.e. the 

projection of the set nD ℜ⊂  on the k-axis), then there exists (at 
least) one maximal point DI s ∈  for which 

kDIkk
II

s∈
== maxω . 

 
Fig. 2. Maximal points of a compact set nD ℜ⊂  and 
maximization of a linear function over it. 

 
III. DEVELOPMENT OF A PRACTICAL  

POWER GRID VERIFICATION METHODOLOGY 
As outlined in the beginning of the previous section, we will 
assume a multi-cycle DC scheme for the vector of sink currents 

)(tI
s

 where each waveform )(tI k
, nk ≤≤1 , is substituted by a 

constant DC value during the period of a clock cycle. This means 
that the time-dependent current vector )(tI

s
 is actually a function 

of the pair of binary vectors },{
np

vv  being applied on the digital 

circuit before and after a clock edge, i.e. ( )},{)(
npss vvItI = , or 

alternatively stated, the vector-valued function n

sI ℜ→Ω:  is 

defined on the set Ω  of all possible pairs },{
np

vv  for the specific 

circuit (with the cardinality of Ω  being r4=Ω , where r is the 

number of primary inputs). 
One can use any type of DC values for the cycle period in a multi-
cycle DC current scheme. In this paper we have employed cycle-
accurate maximum values, i.e. ( ) )(max},{

],0[
tIvvI

ktnpk τ∈
= , nk ≤≤1  

(where τ  is the clock period), which provide an upper bound on 
voltage drop. However, these values may indeed be slightly 
pessimistic since they effectively make the assumption that all 
sinks attain their maximum current simultaneously during the same 
clock cycle. This means that other per-cycle DC values such as the 

cycle average ( ) ∫=
τ

τ 0
)(

1
},{ dttIvvI

knpk
 or the cycle RMS 

( ) ∫=
τ

τ 0

2 )(
1

},{ dttIvvI
knpk

 might be more accurate eventually, even 

though they are not entirely foolproof (these can also be computed 
more efficiently by gate-level simulators instead of expensive 
transistor-level ones). Nonetheless, the differences inside the same 
clock cycle are not expected to be very large (compared to the 
corresponding differences over the entire set Ω  of all input pairs). 
As maintained in the previous section, in order to be able to find 
the maximum of )(tVk

 we have to construct an accurate profile of 

the space of current variations D (or particularly the maximal 
points of the boundary D∂ ) which now becomes the range space 
of the function ( )},{

nps vvI . We can obtain a sampled image of D 

by randomly selecting a number of its points DI is ∈,
, mi ≤≤1  

[i.e for m random pairs },{
np

vv ] which make up the random 

sample T

mssss
IIII ],,,[

,2,1,
K=  (a visual example in two 

dimensions taken from an actual circuit is shown in Fig.3). Of 
course we cannot perform maximization of )(

sk IV  solely within 
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this sample since this would be equivalent to maximizing )(tVk
 

over the pairs that we have selected for the sample. We must 
somehow make an inference about the entire space D (or its portion 
containing the maximal boundary points) on the basis of the 
available sample. 

 
Fig. 3. Sample space of current variations for two sinks in a typical 
benchmark circuit. 
 
For this we adopt a statistical viewpoint and consider the set Ω  of 
input pairs as a statistical population and the vector function 

n

sI ℜ→Ω:  as a vector of random variables or a random vector. 

The required range space n

sID ℜ⊂Ω= )(  will then be equal to the 

range of the random vector sI . If the latter is characterized by a 

multivariate distribution with pdf )(
s

If  (in which univariate 

distributions for the constituent random variables 
kI  can be 

extracted as marginals), then the range coincides with the 
supporting domain or support of )(

s
If  i.e. the set 

{ }0)(: >ℜ∈=
s

n

s
IfID  (an example of a bi-variate pdf for a 

vector of two sink currents in an actual circuit is shown in Fig. 4). 

 

Fig. 4. Bi-variate pdf for a random vector of two sink currents in a 
typical benchmark circuit. 

In the univariate case, the range space of each individual random 
variable 

kI  in the vector sI  (i.e. the support of its pdf )( kk If ) is 

the interval ],[ kkkD ωα=  of the real line, where the maximal point 

of the boundary set },{ kkkD ωα=∂  is the single point 
kDIk

I
s∈

= maxω  

(the maximal point of a compact subset of the real line - where 
complete order exists - is only one and coincides with its 
supremum) which is formally known as the upper endpoint [9]. 
The estimation of the upper endpoint of a (bounded) random 
variable from an existing sample has been performed successfully 
in [8] (for the problem of maximum power estimation) using 
elements from univariate extreme value theory (EVT). Specifically, 

if 
kI  is a random variable and T

mkkkk
IIII ],,,[

,2,1,
K=  is a random 

sample of size m (with the acquired units 
ikI ,
, mi ≤≤1 , forming 

themselves “iid” random variables with the distribution of 
kI ), and 

if 
k

I  is partitioned into lm /  sub-samples of size l from which the 

maxima units ),,max(
,1)1(,, jlkljkjk

IIZ K+−= , lmj /1 ≤≤ , are taken 

out to create a new sample T

lmkkkk
ZZZZ ],,,[

/,2,1,
K=  of size lm / , 

then an estimate for the upper endpoint 
kω  of 

kI  can be computed 

as follows: 

(6) ( )1)logerf(log1

ˆ
ˆˆ

−+
+=
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b
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π
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where ∫ −=
x

dttx
0

2 )exp(
2

)(erf
π

 is the well-known error function 

and 
k

â ,
k

b̂  are maximum likelihood (ML) estimates of parameters 

ka ,
kb  that characterize the asymptotic distribution of the sample 

k
Z  (provided that the size l of the sub-samples is sufficiently 

large). The latter is assumed to be the so-called Gumbel distribution 
which constitutes the dominant asymptotic distribution for maxima, 
as it was proved in [14] and validated experimentally in [8] (just as 
the normal distribution is actually the dominant - and not the only - 
asymptotic distribution of the central limit theorem inside a more 

general family known as stable [15]). This means that 
k

â  and 
k

b̂  

are to be obtained by maximization of the following log-likelihood 

function of Gumbel distribution evaluated on the sample 
k

Z : 
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A confidence interval (corresponding to a confidence level of 
%100)1( ×− δ ) has also been constructed in [8] for the estimate 

(6), and is given by: 

(8) 
π

ωω δ 6ˆ

/
ˆ 2/ n

kk

b

lm

z
≤−  

( ) ( )( )2

2

2

1)log(erflog1

1

1)log(erflog1

)1(2

6
)1(

−+
+

−+

−
++−⋅

llllll ππ

γπγ  

where 
2/δz  is the 2/δ  quantile point of the standard normal 

distribution and K5772.0≈γ  is the Euler gamma constant. 
It must be noted here that in order for the above results to be valid, 
the distribution of each random variable 

kI  must be approximately 

continuous even though the population Ω  of input pairs is discrete 
and finite. This is generally safe to assume in practice for circuits 
with a fair number of primary inputs (in which the population of 
pairs increases exponentially) and for sink currents 

kI  with largely 

diverse values for each different input pair },{
np

vv . The latter 

observation limits somewhat the applicability of the method to a 
higher level of hierarchy in the grid where sinks are actually 
functional modules or rows of standard cells instead of end devices 
(a total of 50 to 100 devices per sink is quite sufficient to produce a 
diverse current for each different input pair). 
Unfortunately, extreme value theory is not yet developed up to the 
point where deductions about the boundary and maximal points of 
the support of a multivariate pdf can be extracted (see [16]-[18] for 
some recent facts on multivariate EVT). Nevertheless, given a 

multivariate sample 
s

I  we can always estimate the upper endpoint 

kω  in each of the coordinate axes nk ≤≤1  by applying the above 

results on the univariate samples 
k

I  of 
s

I . Now the sample 
s

I  

(henceforth referred to as the “sample space”), being an image of 
the current space D, forms a boundary of outermost points in nℜ  
and has a set of maximal points of its own. The formed boundary of 
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this small image, however, will be contracted with respect to the 
boundary of the vast space D (since there will always be points 

DI s ∈  lying outside the outermost boundary of 
s

I ), and in 

particular the set of its maximal points (or maximal front) will be 
scaled down in each individual coordinate nk ≤≤1  (Fig. 5). A 
sound approximation for this down-scaling of the maximal front as 
a whole in each nk ≤≤1  would be 

ikmik
I

,1
max

≤≤
−ω , where 

ikmi
I

,1
max

≤≤
 

is the maximum value of each univariate sample 
k

I  (i.e. the 

maximum of the space 
s

I  in each coordinate axis). Writing this 

succinctly in vector form for all nk ≤≤1  as follows: 
(9) ismi

I ,1
max

≤≤
−ω  

we obtain a difference vector by which we can shift the sample 
maximal front in order to transfer it to the location of the maximal 
front of D in nℜ . The shifted sample maximal points will then be 
the ones to be selected as static vectors for DC analysis in (4) in 
order to compute the worst-case voltage drop (of course the 
maximal front of D will have much different structure and include 

many more points than the maximal front of 
s

I , but the maximum 

value of a linear function is fairly insensitive to the structure of the 
maximal front and instead depends primarily on its global position 

in nℜ ). To find the maximal points in the space 
s

I  consisting of m 

points we must compare each point to all others (to determine 
whether a specific point is not dominated by any others in all 
components, according to Definition 1), which leads to a total of 

2m  comparisons. However, it can be shown [19] that the necessary 

comparisons can be reduced to at most ( )2

2
)(log −nmmO , where n is 

the dimension of the space and its constituent points. 
 

 
Fig. 5. Sample current space and shift of its maximal points to meet 
the maximal points of the entire space. 
 
On leaving this section we must point out that we could have 
actually used the procedure described above for the univariate case 
to estimate directly the maximum voltage drop over all input pairs 
at each sink. However, this would be of no real value since the grid 
is likely to undergo many iterations of redesign and verification 
until deemed robust, during which the estimation of the maximum 
voltage drops [involving sample construction, maximization of (7), 
and evaluation of (6)] would have to be repeated, in contrast to the 
estimation of maximum sink currents of the digital circuit which 
needs to be performed only once irrespective of any changes in the 
power grid. Therefore the objective is actually to pinpoint the 
worst-case current conditions raised by the underlying circuit rather 
than compute the maximum voltage drops directly. 
 

IV. EXPERIMENTAL TESTS AND RESULTS 
For the experimental validation of the method we have generated a 
number of test power grids (since there are no universally accepted 

benchmarks) that will be denoted as Gq-p, where q stands for the 
number of internal/sink nodes and p for the number of voltage 
nodes on which supply pads are to be connected (e.g. the label 
G72-3 denotes a grid with 72 internal/sink nodes and 3 supply 
pads). All test grids were uniform in structure with random values 
for the intermediate conductances (within some process-related 
limits), and also had random placements of the voltage nodes 
across the grid area (assuming the availability of C4 pads). For the 
digital circuits supplied by the grids we have implemented the 
traditional ISCAS85 benchmarks in mµ18.0  and mµ13.0  
technologies, and partitioned each one of them to a number of 
functional modules (representing the n current sinks) which were 
again assigned to random nodes in every test power grid. 
For each digital circuit the process of creation of the sample space 
(by circuit simulation), univariate EVT estimation in each of the 
coordinate axes nk ≤≤1 , and shifting of the maximal points of the 
sample space (to meet the maximal points of the entire space) is 
independent of the supplying power grid and needs to be carried 
out only once. The main steps in this process are summarized 
hereafter along with some brief remarks on their implementation 
and computational complexity: 
• Generate a total of 5000=m  random pairs of binary vectors 

},{
np

vv  for the circuit under consideration. This step can be 

performed by any standard random number generator producing 
uniform numbers. The selection 5000=m  for the number of input 
pairs is discussed below. 
• Simulate the circuit under all generated pairs and record peak 
current )(max

],0[
tI

kt τ∈
 in each sink nk ≤≤1  within a clock cycle. The 

recorded data T

mkkkk
IIII ],,,[

,2,1,
K=  taken jointly for all nk ≤≤1  

as n-dimensional vectors T

msss III ],,,[ ,2,1, K  will constitute the 

sample current space 
s

I . The computational time required to 

complete this step is entirely up to the simulator program 
employed, since there are many different simulators with speeds 
that range considerably depending on the detail of the analysis and 
their algorithmic efficiency. Although larger circuits will definitely 
take longer to simulate for every clock cycle, we must emphasize 
that a total of 5000 input pairs (and consequent cycles) is sufficient 
to produce a reasonable EVT statistical estimate independently of 
the circuit size or sink size, as is further explained below. 

• Arrange each univariate sample 
k

I , nk ≤≤1 , into 

100/ =lm  sub-samples of size 50=l . Here a size 50=l  is 
chosen initially to ensure the validity of the asymptotic result (6) 
(in [8] it was selected 100=l  but we have found that reducing it 
by two also gives satisfactory results). The number 100/ =lm  of 
sub-samples (leading to a total of 5000=m  units) yields estimates 
with relative estimation error (i.e. quotient of confidence interval to 
estimate) of about 5% - at a confidence level 95% - for any sink 
irrespective of its size or the size of the broader circuit, as was 
observed in [8]. This happens because with an increase in the sink 
size, both the mean and the standard deviation of the distribution of 
sink currents are increased, but their ratio which determines the 
relative estimation error remains roughly constant. Only in the case 
where a smaller estimation error and/or a higher confidence level 
are desired, the number lm /  of sub-samples will have to be 
increased (together with the total number m of input pairs). 

• For each nk ≤≤1  construct the sample 
k

Z  of the maxima 

units from the lm /  sub-samples of 
k

I . 

• For each nk ≤≤1  maximize the log-likelihood function (7) 
with respect to the parameters 

ka ,
kb , in order to obtain the ML 

estimates 
k

â ,
k

b̂ . This step is carried out via a standard 

unconstrained optimization algorithm (such as those described in 
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[20]-[21]). Although this is essentially an iterative numerical 

procedure, the initial guesses of 
k

â ,
k

b̂  found by the method of 

moments [8] are extremely close to the final ML values and thus 
the optimization algorithm usually terminates in a matter of milli-
seconds (and always converges to the global optimum). 
• For each nk ≤≤1  compute the univariate upper endpoint 

estimate 
k

ω̂  from (6) and - optionally - its confidence interval (for 

a given confidence level) from (8). 

• Determine the maxima 
ikmi

I
,1

max
≤≤

 of all univariate samples 
k

I , 

nk ≤≤1 , and in conjunction with the estimates 
k

ω̂ , nk ≤≤1 , 

compute the n-dimensional difference vector (9). Here one may 
also wish to augment each estimate 

k
ω̂  by the upper end of its 

confidence interval in the computation of the difference vector, in 
order to incorporate the inherent statistical estimation error. 
The results of executing the above steps in the case of circuits 
c1355 and c6288, each partitioned up to 5=n  modules, are 
reported in the following Table I. Note that the confidence intervals 
are for 95% confidence level, and that since the circuit c1355 is 
about one fifth the size of c6288, the currents were unsurprisingly 
much smaller in the former than in the latter case. 
 
Table I. Sample and estimated maximum currents at each sink for 

two benchmark circuits. 

Circuit Current 
sink 

Sample 
max. 
(mA) 

Estim. 
max. 
(mA) 

95% 
Conf. 

interval 

Diff. 
vector 

sink-A 27.24 35.42 ±2.58 8.18 
sink-B 24.86 34.51 ±2.45 9.65 
sink-C 28.58 38.60 ±3.03 10.02 
sink-D 12.32 16.31 ±1.27 3.99 

c1355 

sink-E 20.37 30.01 ±2.61 9.64 
sink-A 273.54 349.91 ±23.80 76.37 
sink-B 119.81 157.73 ±11.31 37.92 
sink-C 148.28 190.96 ±11.46 42.68 
sink-D 100.17 133.45 ±7.49 33.28 

c6288 

sink-E 102.48 119.90 ±6.13 17.42 
 

• Locate the maximal points of the sample space 
s

I . As already 

mentioned, this step has complexity of ( )2

2
)(log −nmmO  

comparisons. The resulting number 
cm  of maximal points is 

typically much smaller than the 5000=m  points of the sample 
space (for example, the samples acquired for the circuits c1355 and 
c6288 had 46=cm  and 184=cm  maximal points respectively). 

• Shift the maximal points of the sample space 
s

I  by the 

computed difference vector. This step is performed by plain 
component-wise addition of the difference vector to the 

cm  

maximal points of 
s

I , and is a trivial one. 

The output of all the above steps is a set of shifted sample maximal 
points for a particular circuit which approximate the position of the 
maximal front of its entire current space. Then the DC verification 
of any grid supplying the circuit is performed by the following 
steps: 
• Apply the 

cm  shifted maximal points as static current vectors 

in (4) to perform an equal number of DC analyses for the given 
power grid. This step relies exclusively on a linear network solver, 
and its execution time is determined by the capability of the solver 
to carry out 

cm  DC analyses for the given grid. 

• For each sink nk ≤≤1  determine the maximum value among 
the computed DC voltage drops. The resulting value for each sink 
finally constitutes the worst-case voltage drop over all input pairs. 
The results for the maximum voltage drops in various test grids 
supplying the above benchmark circuits are shown in Table II. All 
computed worst-case voltage drops are compared to accurate 
statistical estimates obtained by directly applying the univariate 
EVT procedure [relations (6) to (8)] on samples of voltage drops 
for the same 5000=m  random input pairs (the indicated 
confidence intervals correspond to 95% confidence level). From 
the table it can be readily verified that the two estimates come 
remarkably close to each other. A slight pessimism observed for 
the proposed method (especially in the case of c6288) can be 
attributed partly to the selection of cycle-accurate maxima for 
multi-cycle DC values (as mentioned in the beginning of section 
III), and in another part to the inevitable deviation of the shifted 
maximal points of the sample space compared to the maximal 
points of the entire space which eventually seems to lie on the 
pessimistic side [i.e. the vector (9) slightly overestimates their 
relative positions]. Of course we have already stressed that a direct 
statistical estimation of voltage drop is not a viable solution for a 
power grid that is subject to many design changes with the same 
underlying circuit. 

 
Table II. Maximum voltage drop (accurate and pessimistic results) at current sinks of the supplied circuits for various test grids. 

Maximum drop to sink-A  (mV) Maximum drop to sink-B  (mV) Case 
study 

Grid Circuit 
Our 

method 
Statistical 
estimation 

Pessimistic 
analysis 

% 
difference 

Our 
method 

Statistical 
estimation 

Pessimistic 
analysis 

% 
difference 

#1 G24-1 c1355 41.2 39.3 (±2.6) 47.6 15.5 33.7 32.9 (±2.3) 39.3 16.7 
#2 G24-1 c6288 227.4 208.0 (±9.7) 273.3 20.1 242.6 217.8 (±9.8) 293.4 20.9 
#3 G23-2 c1355 22.2 21.6 (±1.5) 25.9 16.8 9.2 9.0 (±0.6) 10.5 14.0 
#4 G23-2 c6288 174.8 158.0 (±7.2) 207.0 18.4 146.8 127.5 (±5.5) 176.0 19.8 
#5 G48-2 c1355 17.5 17.0 (±1.2) 20.4 16.5 14.3 13.7 (±0.9) 16.0 12.1 
#6 G48-2 c6288 107.7 95.8 (±4.4) 126.2 17.2 99.8 87.2 (±3.7) 120.4 20.6 
#7 G47-3 c1355 20.4 19.6 (±1.3) 23.6 15.3 11.3 10.8 (±0.7) 12.4 10.1 
#8 G47-3 c6288 91.6 82.5 (±3.9) 108.0 17.9 132.7 116.1 (±4.6) 161.2 21.5 
#9 G72-3 c1355 12.2 11.8 (±0.8) 14.1 15.2 11.8 11.3 (±0.8) 13.4 13.5 

#10 G72-3 c6288 131.9 125.0 (±6.3) 158.8 20.4 142.4 125.8 (±5.8) 168.8 18.6 
#11 G69-6 c6288 49.7 45.7 (±2.3) 57.2 15.2 49.1 43.1 (±1.9) 58.5 19.3 
#12 G94-6 c6288 61.4 57.3 (±2.9) 72.2 17.6 53.5 48.7 (±2.4) 63.9 19.4 
#13 G90-10 c6288 47.4 44.6 (±2.3) 55.8 17.7 46.7 41.4 (±2.0) 55.0 17.6 
#14 G140-10 c6288 31.5 29.9 (±1.6) 35.6 13.2 24.3 22.9 (±1.2) 27.9 14.9 
#15 G135-15 c6288 50.6 49.0 (±2.9) 55.7 10.0 37.1 33.2 (±1.7) 43.0 15.8 
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Table II. (cont’d) 

Maximum drop to sink-C  (mV) Maximum drop to sink-D  (mV) Maximum drop to sink-E  (mV) Case 
study Our 

method 
Statistical 
estimation 

Pess. 
anal. 

% 
diff. 

Our 
method 

Statistical 
estimation 

Pess. 
anal. 

% 
diff. 

Our 
method 

Statistical 
estimation 

Pess. 
anal. 

% 
diff. 

#1 33.3 31.8 (±2.2) 38.0 14.0 39.2 38.1 (±2.6) 46.3 18.1 38.8 37.6 (±2.6) 45.8 18.1 
#2 231.9 210.7 (±9.5) 281.8 21.5 154.4 136.1 (±5.8) 185.2 19.9 206.8 183.1 (±7.2) 253.7 22.7 
#3 19.6 19.0 (±1.3) 22.5 14.6 11.2 10.9 (±0.7) 13.2 18.1 22.8 22.8 (±1.6) 27.0 18.7 
#4 182.6 161.5 (±6.5) 220.2 20.6 148.1 130.7 (±5.6) 179.3 21.0 174.1 153.9 (±6.0) 211.4 21.4 
#5 17.9 17.2 (±1.2) 20.5 14.4 16.8 16.3 (±1.1) 19.9 18.4 19.6 19.3 (±1.4) 23.4 19.4 
#6 131.9 117.6 (±5.1) 156.4 18.5 111.8 96.8 (±4.0) 132.4 18.4 106.5 93.9 (±3.5) 130.7 22.7 
#7 21.6 20.8 (±1.5) 24.6 13.8 14.7 14.4 (±1.0) 17.3 17.9 19.2 19.2 (±1.4) 23.0 19.5 
#8 167.8 145.1 (±5.6) 198.5 18.3 151.5 131.2 (±5.0) 181.5 19.8 152.5 133.5 (±5.1) 184.9 21.3 
#9 13.2 12.6 (±0.9) 14.9 13.0 5.0 4.9 (±0.3) 5.9 17.6 14.3 14.0 (±1.0) 16.8 17.6 

#10 93.2 84.8 (±3.8) 113.1 21.3 38.2 33.3 (±1.4) 45.3 18.7 131.5 116.1 (±4.7) 160.0 21.7 
#11 53.2 46.5 (±1.8) 63.7 19.7 55.9 49.1 (±2.0) 67.2 20.3 56.9 49.9 (±1.8) 69.2 21.7 
#12 58.9 53.2 (±2.4) 70.0 18.9 39.0 33.6 (±1.4) 45.4 16.3 29.0 25.5 (±0.9) 35.6 22.8 
#13 50.2 44.8 (±2.0) 59.6 18.8 17.7 14.9 (±0.6) 19.6 10.6 36.8 32.9 (±1.4) 44.8 22.0 
#14 23.7 21.0 (±0.9) 27.8 17.4 22.8 20.5 (±1.0) 26.2 14.8 24.6 22.8 (±1.0) 29.7 20.5 
#15 11.2 10.7 (±0.6) 12.1 8.2 25.5 22.6 (±1.1) 29.7 16.2 10.5 9.6 (±0.4) 12.7 20.8 

 
For each case a pessimistic analysis has also been performed by 
assuming simultaneous maximum currents at all sinks (i.e. by 
assigning the estimated univariate maxima 

k
ω̂ , nk ≤≤1 , to all 

sinks at once). We can clearly see the overestimation incurred by 
the standard pessimistic analysis which is about 15%-20% in most 
cases, irrespective of the grid density and the number of supply 
pads. We can also observe that the percentage difference is 
generally smaller in the case of c1355 than c6288 for the same 
supplying grid, which can be justified by the fact that there exist 
more complex interdependencies between sinks for larger circuits 
and they produce greater pessimism when assigning simultaneous 
maxima to all sinks. Since the ISCAS85 benchmarks are actually 
small circuits compared to today’s standards, the differences 
between accurate and pessimistic analyses are expected to be even 
more pronounced in the case of larger designs with several current 
sinks and more complex interdependencies between them. All the 
above verify that the standard pessimistic analysis can become a 
source of many false alarms indicating violations in nodes that are 
actually legal, a fact that will usually push for an overdesign of the 
grid (and a waste of valuable routing resources) in an effort to 
prevent problems that are actually nonexistent. 

 
V. CONCLUSION 

A method for power grid verification has been developed, which 
relies on accurate construction of the worst-case portion of the 
current sink space by simulation and statistical extrapolation using 
results from extreme value theory. The method has been shown to 
accurately predict worst-case voltage drop at all sinks, which was 
very pessimistically bounded by previous bound-type approaches. 
It may be used in conjunction with a power grid routing tool in 
order to prevent grid overdesign and point towards efficient use of 
routing resources, which will constitute an essential design need for 
the nanometer-scale generation of VLSI circuits. 
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