Exploring Linear Structures of Critical Path Delay Faults to
Reduce Test Efforts -

Shun-Yen Lu
Department of of Electrical
Engineering
National Tsing Hua University
Hsinchu, Taiwan 30013

Pei-Ying Hsieh
Department of of Electrical
Engineering
National Tsing Hua University
Hsinchu, Taiwan 30013

Jing-Jia Liou
Department of of Electrical
Engineering
National Tsing Hua University
Hsinchu, Taiwan 30013

sylu@larc.ee.nthu.edu.tw pyhsieh@larc.ee.nthu.edu.tw jjliou@ee.nthu.edu.tw

ABSTRACT

It has been shown that the delay of a target path can be
composed linearly of other path delays. If the later paths
are robustly testable (with known delay values), the target
path can then be validated through simple calculation. Yet,
no decomposition process is available to find paths that sat-
isfy the above property. In this paper, given a set of target
critical paths, we propose a two-stage method to find a set
of robust-testable paths (with smaller number than the orig-
inal set). The first stage constructs a necessary subset for
critical robust paths, and the second stage identifies remain-
ing functional sensitizable segments and their corresponding
composing robust paths. The experiments show that a large
percentage (several benchmarks close to 100%, 75% on av-
erage) of critical paths can be covered for most circuits. All
paths and coverage are verified to match the best possible
results. The data also indicate that the remaining hard-to-
test (functional sensitizable) paths actually result from only
a few tens of segments in the circuit (except for one circuit,
$35932). DIT technique can then be applied to these uncov-
ered segments for full testability with small overheads.

1. INTRODUCTION

Due to increasing process variability, path delay fault test-
ing is widely implemented to ensure circuit performance
quality. Yet, several key problems in testing path delay
faults are lacked for practical solution: (1)Since no complete
path delay fault coverage is achievable (the number of path
explodes), critical or longest paths are selected for testing.
However, the number of “most critical” paths grow dramat-
ically for most highly-optimized circuits, which renders the
selection process meaningless. (2)Even we have well-defined
critical paths (paths longer than a specified period), ATPG
tools cannot find all appropriate patterns to guarantee test

*Sponsored by National Science Council of Taiwan, ROC
#NSC95-2220-E-007-013

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICCAD ’06, November 5-9, 2006, San Jose, CA

Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

100

quality, especially for functionally sensitized faults [1]. The
test generation for these faults is so complex that the result-
ing patterns often cannot test paths in full confidence.

[2,3] observed that the delay of a target path can be ex-
pressed as a linear combination of other path delays. Hence
it is not necessary to test all paths if a subset of paths can
be tested with known path delays. Subsequently, [4] intro-
duced the concept of utilizing a small set of testable paths to
bound circuit delays. Though conceptually interesting, the
proposed method is not used in full scale. In practice, the
test method requires more test time and produces limited
knowledge about uncovered critical paths (the original goal
is on speed binning). Therefore, it is not straightforward to
apply to test chip DPM level.

Based on the above findings, we proposed a method to
find robustly-testable basis paths for a given set of critical
paths. The objective is to decompose each critical path into
comprising basis paths. We can ameliorate the problem of
test time if we keep a reasonable number of final to-be-tested
bases paths, say, hundreds to thousands. More importantly,
many functional sensitizable paths will be validated without
testing them directly. It is important to minimize the num-
ber of targeting functional-sensitizable paths. Very often,
the ATPG process for these functional sensitizable paths are
very time-consuming or even fail to find average-quality test
patterns. The treatment of these hard-to-test faults, mod-
eled as primitive faults [5,6,6-8], remains an open problem
in the domain of delay testing.

In our proposed method, we utilize a similar path graph as
in [4] to store path information. Basically, the path graph is
a duplicate representation of circuit graph with the following
property: a path is in the path graph only and only if the
path has known path delay after tests. The path delays (of
paths in the graph) are obtained either by direct testing or
calculation from other path delays. Therefore, we transform
our problem to finding paths for constructing a compact
path graph with as many critical paths covered as possible.
The flow of the overall procedure can be described in the
following 3 major steps:

Step 1 Critical path selection

Arbitrary selection tool can be used to specify the tar-
get set of paths for testing, such as the one proposed
in [9] if statistical models are applied. The critical
paths can be sensitized with different criteria: Ro-
bust, Non-Robust, Functional Sensitizable (FS), and
untestable. We usually first filter out untestable paths
after this step (to avoid further processing).

Step 2 Construct a path graph with critical robust
path
Next, we select a few robust paths from the target
set of critical paths, and use these robust paths to
construct a base path graph. This step processes only
robust faults to improve the overall efficiency, since
they are easily testable and do not require the following
steps. The complete procedure for Step 2 is described
in Section 3.

Step 3 Add non-critical robust paths for uncovered
FS paths
For the remaining F'S paths, which is critical but not
covered by the above path graph, we propose a method
(Section 4) to search additional non-critical robust paths
to augment the above path graph. For this purpose,
we analyze several generic cases of path graph for the
general solution.

2. CIRCUIT MODEL

Before describing details of the proposed method, several
terminologies are referenced in this section.

2.1 Circuit Graph and Path Graph

We assume that all paths can be traced in a gate-level
circuit model. In order to provide the linear structure for
path delays, we represent the circuit in a circuit graph. The
nodes in the circuit graph represent the converging fanin
or diverging fanout points. For example, a two-input gate
will become a node, since at least two different paths will
converge at the gate. And a gate with fanout branch is also
a node, since multiple paths will lead to POs from the node.
An example circuit and its equivalent graph are given in
Fig. 1 and Fig. 2, respectively.

Path graph is a collection of paths in the circuit. The
main purpose of a path graph is to represent a set of paths
non-enumeratively [10]. It also holds a property that any
path in the path graph has known path delay after tests. In
other words, if a path can be traced in a path graph, the
path is either robust-testable or the path delay is a linear
combination of other robust-testable path delays [4]. An
example of path graph is shown in Fig. 3, where we have 4
independent paths from the original circuit graph (Fig. 2).
Note that rising and falling transitions for paths are con-
sidered but shown in the path graph in order to simplify
discussion.

PI1
= :
Pl2 I PO1
n2 n5
PI3 o [>o—— PO2
n3 n6 n7

Figure 1: An example circuit

2.2 Simplified Circuit/Path Graph

The circuit graph shown in Fig. 2 implies that each edge
represent a pin-pin delay. We can actually simplify the
graph significantly with the following transformation rules.
The resulting graph contains less nodes and edges, and hence
requires less processing in the later procedure. It is impor-
tant to note that Rule 3 and 4 are vital in the identifica-

101

Plint nin4 o n4ns5 n5PO1O
PI1 n1 n5 POf1
o P12n2 o
PI2 PI2n3
o PI3n3 n3n6 On7P02 o
PI3 n3 n6é n7 PO2

Figure 2: Equivalent circuit graph for the example
circuit in Fig. 1

Cn5PO1O
n5 PO1
@) nén5
Pl2 PI2n3
o PI3n3 n3n6 nén7 On7P02 o
PI3 n3 né n7 PO2

Figure 3: A path graph

tion of properties of edges, which will be further used in
Section 3. Even though all transformed graphs are equiva-
lent, if Rule 3 and 4 are not applied, special treatments of
PIs/POs should be considered otherwise. Note that an edge
is also called a segment in the following discussion, and mul-
tiple connected edges constitute a sub-path. In order to be
compatible with simplified circuit graph, the same segments
and nodes should be applied to the path graph (simplified
path graph).

Rule 1 Merge a node with single fanout to its suc-
cessor
As shown in the partial circuit graph (Fig. 4), the node,
n2, has a single fanout. The delay of the edge, S1, can
be merged into each of Sz, Ss and S4. And the result-
ing graph in the right contains the same information.

Rule 2 Merge a node with single fanin to its prede-
cessor
Same as Rule 1, but applied to a single fanin condition.

Rule 3 Merge all PI nodes
All PI nodes can be identified by their fanout edges,
so specifying individual PI nodes is not necessary. For
example, in Fig. 2, both fan-outs of P12, PI2n2 and
PI2n3, can be identified unambiguously regardless of
label of P12, so we can merge PI2 with any other PI
nodes.

Rule 4 Merge all PO nodes
Same as Rule 3, but applied to POs.

Q

n3™S2 n3 -S>
oSN, 8y e S o

n4 /SQ%% ni nd g ni
0 O

n5 n5

Figure 4: A partial circuit graph

After the transformation of the circuit graph in Fig. 2, we
can obtain a simplified version in Fig. 5. Note that no path
is missing in the last circuit graph.

PI1n1n4n5PO1
Pl1n1n2n4n5P0O1
P12n2n4n5P0O1
PI2n3n6 nén5P0O1
PI3n3n6

Pl

O
né

Figure 5: Simplified circuit graph from Fig. 2

3. CONSTRUCT BASE PATH GRAPH

After selecting a set of target critical paths, the next step
in our method is to construct a base path graph from a sub-
set of robust paths. It is important that we obtain only the
necessary robust paths in this step. Also since our proce-
dure is not influenced by the order of selection, we would be
able to handle each robust path one by one.

Fig. 6 is the flow to add one robust path to path graph.
We will continue the process until all critical robust paths
are covered by the path graph. For a path, each segment on
the path will be checked if it’s in the path graph or not. We
need to handle the following three possible situations:

1. Covered segments
If there is a sub-path of the to-be-added path connect-
ing to PI or PO in the path graph, we will consider
any segment on the sub-path as covered. If all seg-
ments on the to-be-added path are covered, the path
will be processed in Section 3.1. Basically we use the
new path to merge nodes in the path graph.

2. Overlapping segments
If a segment is in the path graph, but not a covered seg-
ment. The segment is considered as overlapping (not
covered) case. We will add the path containing such
segments to the path graph and handle the duplication
of sub-paths in Section 3.2.

3. Missing segments
If a segment is not found in the path graph (the to-be-
added path is a prime with respect to the current path
graph), it will also be process in Section 3.2. Though
this case will be handled in the same way as overlap-
ping segments, the distinction will be further utilized
in Section 4 for adding non-critical paths.

3.1 Covered Segments

If all segments in path P are covered and P is not in path
graph, there exists at least one node to split the path P into
two sub-paths, and each sub-path is covered but not con-
nected together in the path graph. Otherwise, we will have a
covered path (which is already filtered out in the second box
of Fig. 6). For example, in Fig. 7, a path P = (51,52, S3) is
added to path graph. Sub-path P; = (S1, S2) and P, = (S3)
are covered in path graph. Under such condition, we know
that node pair n2’ and n2” actually split P to P; and Ps.
(n2" and n2" correspond to the same n2 node in the circuit
graph, but they are covered by different paths to PI/PO:
(S1,52,55) and (S4,S52,S53) in our example. We call n2’
and n2” node copies of n2.) Therefore, after P is added to
path graph, according to the following Merge Property,
n2’ and n2"” can be merged (Fig. 8). The merging process is
important, because more covered critical paths can be found.

102

Select a new robust path

Count path as
covered

Path is is already in
path graph?

Add path to basis set

. All segments type
Overlapping

o Covered
or missing

:

Add segments to
path graph

l

Handle copy subpaths
l l

Find out the nodes that
split the path

Merge nodes

More path?

Figure 6: Add path to path graph flowchart
P O

S1 ~ 82 SS

ni

@)
n2

O
PO

<>

Figure 7: Add a path with covered segments

G Sq So Ss
nt’
S
S< n2 - 58 pg

ni"

Figure 8: Merge n2 and n2”

Otherwise, we will select more robust paths to covered these
cases.

Note that there might be other candidate nodes to be
merged, such as n1’ and nl1” in path graph. The merged
results are shown in Fig. 9.

G S4 S5
O< Se Sp O
S4 nt’ n2® o
Pl PO

Figure 9: Find out split nodes n1’ and n1” and con-
verge again

PROPERTY 1 (Merge Property). If node copies have
the same sub-path to PI or PO, these node copies can be

merged.

ProOF. We will use the path graph in Fig. 10 as an ex-
ample to proof the above property. Generalization to multi-
ple node copies and multiple segments is trivial. Given the
three paths in the path graph, Pi, P> and Ps, after tests, we
know their respective delays as Dp,, Dp, and Dp,. We know
DP1 = D51 +Ds3, Dp2 = D51 +Ds4 and l)p3 = D32 +Ds4.
For the target path Py = (S2, S3):

Dp, = Ds, + Ds; = Dp, + Dp, — Dp,

Therefore, P, is actually covered by the path graph. We can
safely add Sz from PO to nl. Finally, we find that nl and
nl’ have exactly the same sub-paths to PI, and hence they
can be merged (Fig. 11). O

S S3
ni
PI 51 S o
O
So n’

Figure 10: nl1 and nl1’ to be merged

S S3
™
o o
§ S 7
@ ni 4 —"po

Figure 11: Merge node nl and nl’

3.2 Overlapping and Missing Segments

When the robust path has either overlapping or missing
segments, these segments will be added to path graph. Usu-
ally the addition of new segments involves copying existing
nodes (producing node copies). Of course, if there is a cov-
ered segment, it will simply be ignored, but the new seg-
ments will be appended to these covered segments. (More
examples will be provided later).

After the path is added, a special type of linear rela-
tions (same sub-paths appearing at different node copies)
will emerge in the path graph. They should be handled
properly according to Copy Property to keep the path
graph optimal.

PROPERTY 2 (Copy). If a sub-path appear at different
node copies, any other sub-paths share the same end nodes
of the sub-path will also appear at all node copies.

PROOF. A special case in Fig. 12 will be considered. Gen-
eralization to other cases is omitted. For the partial path
graph in the figure, we can always find two paths containing
Sl and SQZ

P, = (Sq,51,5), and P> = (Sa, S2, Sh)
and
Dp, = Ds, + Ds, + Ds, and Dp, = Dg, + Ds, + Ds,
Then we can get the delay difference of S; and S» by:
Dp, — Dp, = Ds, — Ds,

Therefore, after tests, the difference of delays of S; and
S5 is obtained. And consider another tested path P; =

(Se, S1,S4) in the left-bottom path graph (the S] between
nl’ and n2" of Fig. 12). We can also obtain the delay of
Py = (SC, SQ, Sd), where l)p4 = 1)133 +Dp2 7DP1. Since the
delay of Py is known, S5 can be copied between n1’ and n2’
(right-hand side of Fig. 12). [

S4 St
s, S0 s, S0
ni n2 ni n2
, — SH
oSt =0 g, S0
ni’ n2’ ni’ n2’

Figure 12: Copy subpath S2 to (nl’,n2")

Note that two possible situations can occur for finding
sub-path copies: (1)the newly added sub-path P’ copy all
shared sub-paths connected to the same end-nodes of the
original P. (2)All shared sub-paths connected to the same
end-nodes of the newly added sub-path P’ are copied to the
original P.

In the following, we will use an example to illustrate the
addition of overlapping or missing paths, and the handling
of sub-path copies. In Fig. 13, P = (S, S2, Ss,S4) is the
path to be added to path graph G. S; and Si are covered
segments, S2 is a overlapping segment and Ss is a missing
segment.

oS o8 o 8 o S g
PI ni n2 n3 PO
S
G S, ! 7 S,
s nt 82 S n3 S
< 95 o—8 .o 20 O
Pl S10 S@nz’ n3" SI PO
Q S
e n3@®

Figure 13: Add path P to path graph G

S1 and Sy are ignored and, both Sz and Ss are connected
to G via S1 and S4, as shown in Fig. 14.

S, -@. S,
n2
G S, 0/8/7 Sy

nt” S, n3’
S ..@ SS Sg
Pl ~Sho " n02 %V F%
Sy
O
n1® n3®

Figure 14: Add sub-path copy S2 and sub-path S3
to G

Since S has two copies in G, Sg should be shared by both
copies. Therefore, we copy Ss to S5 in Fig. 15.

There is another segment with two copies: S7 and S5. All
shared sub-paths are copied (Fig. 16). From this example,
we can see that the copying of shared sub-paths requires
several level of processing until no segment copies are left
out.

4. HANDLE UNCOVERED FS PATH

Se

G

S
it S ng X4
S oTg mo o Sisg
Pl Sio nt , n2 3" St PC
Q S
) 3@

Figure 15: Add sub-path copy S; to path graph

Se
OS\
f ; n2’
G S1 87 S4
nt’ 82 s n3'
Ss o8 S o
PI 10 nt' , n2 g § PC
Sy
n1(3) Sll > S, n3®
n2"

Figure 16: Add sub-path copy S5, S and S¢ to G

After we construct a base path graph from critical robust
paths, we can guarantee that all critical robust paths will
be covered. Otherwise, the uncovered robust paths will be
chosen as another “prime” path for the graph. In this sec-
tion, we propose a method to handle the remaining critical
FS (functional sensitizable) paths. It is also important that
the decomposition of these F'S paths will require non-critical
robust paths, or it should have been covered. Our method
consists of two major phases (Fig. 17). The objective of the
first phase is to make missing segments of F'S paths to be-
come overlapping ones (Section 3) in the path graph. Next,
in the second phase, we will try to select robust paths to
transform all segments as covered in the path graph. Re-
spective description of each phase is as follows.

4.1 Phase 1: Include Non-existent Segments

In this phase, as long as we find one robust path contain-
ing any missing segments, the segments will be included in
the path graph. Hence the path containing the segments
will be eligible as covered candidates (for next phase). It is
found that many F'S paths share common missing segments.
To avoid processing individual segments multiple times, we
first scan remaining paths and collect their corresponding
missing segments. Then robust paths will be selected to
cover these segments.

Yet another way to improve efficiency is to store func-
tional sensitizable segments that are not contained in any
robust paths. If any paths have these FS segments (usu-
ally short segments), the paths will never be covered by the
path graph. Techniques in [11,12] can be adapted for FS
segments.

The search of robust paths has to observe the following
rule: once it is added to the path graph, the less additional
(overlapping) segments, the less complexity will be for the
next phase. Since in the next phase we need to process all
added segments, we would like to keep this number as low
as possible. An analogy to solving linear equations: added
segments correspond to additional unknown variables. For
each additional unknown variable, we need at least include
one new equation (robust paths in our discussion).

104

Collect all missing segments
of uncovered FS paths

,

Select one missing segment S
from the collection

i Phase 1

Add one non-critical robust path
containing S to path graph

'

Any segment to be
processed?

Collect all node copies that
split uncovered FS paths

,

Select one node copy pair
(N1, N2) from the collection

i Phase 2

Add non-critical paths to merge
(N1,N2) inthe path graph

!

Yes Any node copies to

be processed?

Figure 17: The flow to handle uncovered critical
paths

4.2 Phase 2: Cover FS Segments

Since now we only have additional (overlapping) segments
to be processed, our objective is to transform these segments
into “covered”. The key technique is to merge node copies
that are induced by separate paths. For example, in Fig. 18,
we only have Py = (S1,52) and P, = (S3,.54), so there is a
pair of node copies: nl1’ and n1”. As we know that segments
in the path graph, (S, S2, Ss, S4) can be a sub-path contain-
ing overlapping segments of a F'S critical path. If we are able
to merge n1’ and n1”, these segments will be marked as cov-
ered and hence the path containing these segments. In the
following, we list all possible ways to merge these two nodes,
where the path graph configuration is generic (not just an
example) and we can extend it to other cases:

1. One-path selection
Select Ps as either P3 = (S1,S4) or Ps = (S3,52).
According to the Merge Property, after we add Ps,
since from either nl1’ or n1” we have have the same
sub-path (S4 or S2) to PO, nl’ and nl1” are merged.

2. Two-path selection
Select P3 and Py as either

P = (51, 56), P+ = (S3,56)
or

P3 = (S5,52), Py = (S5, 54)

After the addition of these two paths, n1’ and n1” are
merged. In Fig. 18, PI and PO of path (S5, Se) are
drawn as separate nodes to denote that it is a new
path, but actually there should be just one node for
PI and PO.

3. Three-path selection
Select Ps, Py and Ps as either

Py = (51,86), P2 = (S5, 51), Ps = (S5, S6)
or
P = (S3,56), P2 = (S5, 52), Ps = (S5, S6)

This is the most complex scenario we need to consider.
After adding all the paths, n1’ and n1” can be merged

In our findings, the major bottleneck in these path se-
lection processes is the complexity to check robustness of
each new path. It is suggested that only partial ATPG
is performed initially to choose possible robust candidate
paths (only propagate/imply mandatory assignments), and
full ATPG can be delayed until it is necessary to confirm
the robustness of a path.

Sy r<1>1 So
O
Pl S PC
ni"
o Ss o 8 O
Pl n1 PC

Figure 18: Node pair to be merged

S. EXPERIMENTAL RESULTS

To evaluate our method, experiments have been conducted
with combinational parts of ISCAS89 benchmarks (Table 1).
A set of critical paths is chosen for each circuit with a spec-
ified cut-off period (2nd columns): all paths with delays
exceeding the cut-off period are selected (a cell library is
used to derive cell delays). For each circuit, two different
cut-off periods are chosen to show results based on differ-
ent critical path sets. The critical paths are sorted into two
categories: robust (3rd column) and functional sensitizable
(4th column). The total of these two sets of paths is the
number of testable paths.

The results after Step 2 (Section 3) are recorded in column
5-7, while the results after Step 3 (Section 4) are in column
8-10. The last column list the CPU time spent on the Step 2
and 3. After each major step, the critical paths are further
sorted as Basis (column 5 and 8) or Uncovered FS paths
(column 6 and 9). The paths in Basis set will be tested at
a ATE for their path delays. The remaining Uncovered FS
paths require additional ATPG efforts to generate appropri-
ate test patterns. For column 8 and 9, an related percentage
is listed for reference. At column 8 (# New Basis Path), we
show the percentage of selected basis path out of total num-
ber of critical paths. And the column 9 list the coverage
of covered paths, which is defined as the number of covered
paths divided by the number of total paths.

Comparing the results of Step 2 and 3, we found that
choosing more paths from non-critical robust is essential.

105

Certain circuits can benefit from the selection. For example,
in 838584, the F'S paths are reduced from 3085 to 2020 after
step 2, and further reduce to only 640 at Step 3 with only
an increase of 38 paths.

From the table, we found that with a small set of Basis
paths (mostly under 10%), a large percentage of FS paths
are covered (column 9). Our propose method can effectively
reduce both the number of to-be-tested paths (test time)
and the number of FS paths for test generation (test devel-
opment complexity).

The coverage of final F'S paths are circuit-dependent. Two
exceptions are singled out in the table: s713 and s35932. For
s713, we only have around 40% of covered critical paths.
Yet, even in this circuit, for all uncovered FS paths, there
are actually very few FS segments not covered in our cal-
culation. The number of Uncovered segments after Step 2
and 3 are listed in Column 7 and 10, respectively. Notice
that after Step 3, the number is reduced to under a few
tens for most circuits. This is significant because we can
actually develop DfT (Design-for-Testability) techniques to
make these segments robustly-testable. With little extra
hardware overheads (the number of uncovered segments),
the proposed method in this paper can render the circuits
completely path-delay-fault testable. Note that cut-off pe-
riod is not a important factor in affecting the final results.

There is another anomaly, $35932, in our benchmark. There
is no critical robust paths and only 9-15% of critical paths
are covered. Even worse, there are 1536 remaining uncov-
ered segments. After manual inspection of the circuit topol-
ogy, we found that the possible reason for this case is that
most F'S segments in s35932 are short and connected in se-
ries together to form a longer paths. An example of F'S seg-
ments is shown in Fig.19. There are two short F'S segments
in the example (marked with bold lines). Further reviews
found that similar segments appear repeatively in the cir-
cuit. Actually, these F'S segments are not difficult cases for
ATPGs, since they are short and there is no complex re-
converging structures. Further investigation including full
primitive fault analysis is required for this circuit.

5.1 Verification of Path Structures

In order to verify that the described method indeed con-
struct a correct path graph, and the delays of covered paths
can be calculated by other path delays contained in the path
graph, a procedure is proposed below: We denote all seg-
ments in circuit graph as S;, where j = 1,...m. A path
matrix is constructed to represent a path graph. Each row
represents a path in the path graph. For example, the ith
row is for P;. The elements at each row denote whether a
segment is contained in a path.

Pij:{

Given a path matrix P (which only contains rows of selected
robust paths), we can verify if a F'S path is covered by adding
an additional row for the F'S path. If the rank of new matrix
remains unchanged, we know that this path is covered. On
the other hand, if we add an uncovered path to the matrix,
the rank of the new matrix will increment by one.

With this method, we test all covered and uncovered FS
paths (coding with a linear algebra package, Octave [13]).
All paths are verified to be correctly categorized.

0,
L

if S; is not on P;
if Sj is on PI

Circuit | Cutoff | #Robust #FS #Basis #Uncovered #Uncovered #New Basis #New uncovered #New uncovered | CPU Time
name clock paths paths paths FS paths segments paths FS paths segments (second)
s713 200 1352 5944 164 3824 21 178 (0.44%) 3591 (39.59%) 13 0.87
s713 100 1841 6757 258 3871 19 258 (0.60%) 3871 (42.71%) 19 0.71
1196 50 3336 4986 745 27 6 745 (12.80%) 27 (99.46%) 6 0.09
s1196 20 3659 5309 968 27 6 968 (15.75%) 27 (99.49%) 6 0.10
s5378 130 10143 13790 1156 2473 81 | 1226 (7.61%) 1936 (85.96%) 20 0.67
s5378 120 11852 15743 1359 2366 51 | 1400 (7.70%) 1944 (87.65%) 20 0.57
59234 120 9235 11465 437 1516 80 522 (4.52%) 37 (99.68%) 3 1.13
59234 115 10373 12832 569 1490 66 643 (4.93%) 45 (99.65%) 3 1.61
s13207 180 7956 19347 182 8159 42 225 (0.96%) 3365 (82.61%) 2 16.62
s13207 175 13476 36081 254 13349 26 280 (0.65%) 6293 (82.56%) 3 15.15
s13207 450 84 2598 34 2514 90 88 (0.45%) 814 (68.67%) 32 826.98
s13207 445 136 3692 60 3556 112 138 (0.49%) 814 (77.95%) 32 794.12
$35932 190 0 7936 0 7936 6496 | 3153 (8.05%) 7180 (9.53%) 1536 305.55
$35932 185 0 13056 0 13056 7136 | 3696 (6.66%) 11012 (15.66%) 1536 525.06
s38417 300 0 70 0 70 37 26 (0.55%) 0 (100.00%) 0 2.66
s38417 295 0 154 0 154 58 42 (0.57%) 0 (100.00%) 0 3.40
s$38584 400 752 2061 142 1238 25 173 (1.74%) 336 (83.70%) 3 921.43
$38584 398 984 3085 150 2020 29 188 (1.24%) 640 (79.25%) 4 937.12
Table 1: Experimental Data for the proposed method
WX7228

WX7463

WX7164

Figure 19: An example of s35932 uncovered FS segment

6. CONCLUSIONS

In this paper, we propose several techniques to analyze
the linear structure of critical paths using a path graph.
Using these techniques, we select a small set of robust paths
to validate a larger set of critical paths. For example, in
89234, only 643 paths are chosen to cover 23106 paths. By
testing the selected set of paths, we can calculate delays of
other untested critical paths. A large percentage of func-
tional sensitizable paths is thus relieved from difficult test
generation efforts. More importantly, we found that only a
small set of segments (a few tens at most) are responsible
for remaining uncovered FS paths. It is suggested to apply
DT techniques for these segments. With little overheads,
critical paths in a circuit can be validated for their path
delays completely by our proposed method.

7.
1]

REFERENCES

A. Krstic and K.-T. Cheng, Delay Fault Testing for
VLSI Circuits. Boston, MA: Kluwer Academic
Publishers, 1998.

J. D. Lesser and J. J. Shedletsky, “An experimental
delay test generator for lsi logic,” IFEE Transactions
on Computers, vol. 29, no. 3, pp. 235248, Mar. 1980.
[3] W. K. Lam, A. Saldanha, R. K. Brayton, and A. L.
Sangiovanni-Vicentelli, “Delay fault coverage, test set
size, and performance trade-offs,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, vol. 14, no. 1, pp. 32—44, Jan. 1995.

M. Sharma and J. H. Patel, “Bounding circuit delay
by testing a very small subset of paths,” Proceedings of
IEEE VLSI Test Symposium, pp. 333-341, Apr. 2000.
A. Krstic, K. T. Cheng, and S. T. Chakradhar,
“Identification and Test Generation for Primitive

2]

[4]

(11]

106

Faults,” Proceedings of IEEE International Test
Conference, pp. 423-432, Oct. 1996.

R. Tekumalla and P. R. Menon, “Test Generation for
Primitive Path Delay Faults in Combinational
Circuits,” Proceedings of IEEE/ACM International
Conference on Computer-Aided Design, pp. 636—641,
Nov. 1997.

M. Sivaraman and A. J. Strojwas, “Primitive Path
Delay Fault Identification,” pp. 95-100, Jan. 1997.
——, A Unified Approach for Timing Verification and
Delay Fault Testing. Boston, MA: Kluwer Academic
Publishers, 1998.

L.-C. Wang, J.-J. Liou, and K.-T. Cheng, “Critical
Path Selection for Delay Fault Testing Based Upon a
Statistical Timing Model,” IEEE Transactions on
Computer-Aided Design of Integrated Clircuits and
Systems, vol. 23, no. 11, pp. 1550— 1565, Nov. 2004.
K. Fuchs, F. Fink, and M. H. Schulz, “Dynamite: An
efficient automatic test pattern generation system for
path delay faults,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 10, pp. 1323-1335, Oct. 1991.

K. T. Cheng and H. C. Chen, “Classification and
identification of nonrobust untestable path delay
faults,” IEEE Transactions on Computer-Aided
Design of Integrated Clircuits and Systems, pp.
845-853, Aug. 1996.

U. Sparmann, D. Luxenburger, K. T. Cheng, and

S. Reddy, “Fast identificationof robust dependent path
delay faults,” Proceedings of Design Automation
Conference, pp. 119-125, June 1995.

“Octave: Interactive language for numerical
computations,” http://www.gnu.org/software/octave/.

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

