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ABSTRACT 
Adaptive body biasing (ABB) is a powerful technique that allows 
post-silicon tuning of individual manufactured dies such that each 
die optimally meets the delay and power constraints. Assigning 
individual bias control to each gate leads to severe overhead, 
rendering the method impractical. However, assigning a single bias 
control to all gates in the circuit prevents the method from 
compensating for intra-die variation and greatly reduces its 
effectiveness. In this paper, we propose a new variability-aware 
method that clusters gates at design time into a handful of carefully 
chosen independent body bias groups, which are then individually 
tuned post-silicon for each die. We show that this allows us to 
obtain near-optimal performance and power characteristics with 
minimal overhead. For each gate, we generate the probability 
distribution of its post-silicon ideal body bias voltage using an 
efficient sampling method. We then use these distributions and 
their correlations to drive a statistically-aware clustering technique. 
We study the physical design constraints and show how the area 
and wirelength overhead can be significantly limited using the 
proposed method. Compared to a fixed design time based dual 
threshold voltage assignment method, we improve leakage power 
by 38-71% while simultaneously reducing the standard deviation of 
delay by 2-9X. 

1. INTRODUCTION 
Modern CMOS circuits suffer from high parametric yield loss due 
to the strong dependence of leakage and delay on process 
parameters such as channel length and threshold voltage [7]. A 
number of approaches have been proposed to mitigate this using 
pre-silicon statistical optimization. These approaches optimize the 
selection of design time variables (such as gate sizes and threshold 
voltages) to maximize yield [6,10]. Using statistical models of the 
underlying silicon variation, these techniques aim to maximize the 
number of chips that will meet power and delay constraints post-
silicon. However, since the obtained optimization decisions apply 
to the entire set of manufactured die, it is inevitable that for some 
dies with badly skewed process parameters, delay or power 
constraints will not be met post-silicon. 

On the other hand, post-silicon tuning techniques have been 
introduced [3,12] that allow adjustment of device characteristics 
after a die has been manufactured to compensate for the specific 
deviations that occurred on that particular die. Because post-silicon 
tuning allows each die to be adjusted independently, even dies with 
strongly skewed process conditions can be adjusted to meet power 

and delay specifications. Hence, post-silicon adaptive techniques 
provide the opportunity for almost all manufactured chips to 
exactly meet their constraint and it is well accepted that post-
silicon adaptive techniques significantly outperform conventional 
pre-silicon statistical optimization. 

This unique opportunity necessitates a fundamental shift in design 
time optimization formulations. Conventional pre-silicon statistical 
optimization is akin to predicting the most likely process 
conditions and centering the design parameters to give a maximum 
yield within its vicinity. In contrast, post-silicon tunable 
methodologies leave the compensation for process variation to the 
post-silicon phase, and aim to provide the maximum tuning 
flexibility while at the same time limiting overhead incurred by the 
added hardware. To effectively make the trade-off between fine-
grain control and low tuning overhead, the design optimization 
process should group or cluster gates based on predicted, post-
silicon tuning values of the individual gates. For an effective 
clustering, the tuned values of each gate must be computed and 
compared across a large set of possible die. While this process is 
statistical in nature, it is clear that this task is fundamentally 
different from the traditional statistical design optimization 
problems that have been formulated. In this paper, we therefore 
propose an entirely different optimization methodology to address 
this problem. We focus on adaptive body biasing (ABB) [12] as the 
method for post-silicon tuning, but note that the methodology is 
generally applicable to other post-silicon tuning approaches as 
well.  

Many issues arise while implementing an ABB scheme in practice. 
Although it is desirable to bias each gate in a design independently, 
supplying this many separate voltages inside a die is not viable due 
to well-spacing related layout rules as well as the high routing and 
bias generation overhead. On the other hand, using the same body 
bias for all devices limits the ability to compensate for intra-die 
variations and results in sub-optimal power results. It is therefore 
necessary to cluster the gates in a design such that gates within a 
cluster share the same body bias.  As we will later show, it is vital 
that the correct gates are clustered together. Clustering hence 
becomes a difficult problem and must be considered at design time 
while accounting for the expected levels of process variation. 

While ABB as a tuning technique is well established [12], 
relatively little work has been performed in the area of design time 
optimization for ABB. In [5], a framework for assigning tuning 
voltages is cast as an integer linear program (ILP). However, the 
body voltages are fixed at design time using a deterministic 
formulation and post-silicon tuning is not considered. In [4], results 
for two small ABB enabled designs are presented. This work relies 
on a multiple objective evolutionary algorithm to determine ABB 
voltages for individual device wells post-silicon. However, a 
general scalable clustering approach to reduce the number of ABB 
control voltages, and hence reduce overhead to practical levels, is 
not available in literature. 
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In this paper, we present a novel three-phase approach to gate-level 
body bias clustering considering variability. In the first phase, we 
compute for each gate the probability distribution functions of its 
optimal, post-silicon tuned body bias voltage. The underlying 
optimization problem in this phase relies on a Quadratic Program 
(QP) formulation that can be solved very efficiently and is 
therefore embedded inside a Monte Carlo simulation. The second 
phase then performs a statistically-aware clustering of the gates 
using these probability distributions and their correlation 
information. Gates can be partitioned into any given number of 
clusters, allowing us to explore the power/performance impact of 
the number of clusters in a design. Finally, in the third phase we 
perform post-silicon tuning of the ABB clusters by taking dies 
from a sample set and finding the best tuning configuration for 
each die such that it meets power and delay constraints. In addition, 
we present a methodology for obtaining compact layouts for ABB 
enabled circuits. By limiting the number of clusters to just a few, 
the overhead is already drastically reduced compared to approaches 
that use individual gate-level ABB control. We show that modern 
placers [1,8] can be used to incrementally perturb an initial 
placement leading to only small increases in area and wirelength 
and that the gains of the method far outweigh these small penalties. 

We compare our approach to fixed dual threshold voltage (Vth) 
assignment [11] on a set of benchmark circuits. We show that with 
only 2-3 ABB clusters, the proposed approach yields significant 
improvements over dual Vth design. For instance, Figure 1 shows a 
scatter plot of leakage and delay for the c432 circuit for a 
traditional dual Vth design and for a design tuned using our work 
using three ABB clusters. The delay spread as well as the mean 
power is significantly reduced resulting in higher yield. 

In summary, the key contributions of this paper are: 
 This work presents the first gate-level optimization method for 

circuits enabled with ABB while taking process variations into 
account. We also present a physical design methodology 
which delivers tight control on placer overheads. 

 A new gate-level framework for the optimization of post-
silicon tunable circuits is presented. Although results in this 
paper focus on ABB as the underlying post-silicon tuning 
mechanism, the ideas are applicable to other tuning methods 
such as the tuning of Adaptive Supply Voltage (ASV) [3] 
domains. 

 We show that it is important to consider post-silicon tunability 
during the pre-silicon design cycle in order to truly leverage 
the available post-silicon adaptivity. 

Our paper is organized as follows. Section 2 provides background 
and describes our power/delay models and simulation setup. 
Section 3 describes our QP formulation for body bias assignment. 
In Section 4, we present the new variation-aware body bias 
clustering methodology for optimized post-silicon tuning. Section 5 

presents results including an analysis of physical design 
implications. Finally, Section 6 summarizes our findings. 

2. BACKGROUND 
2.1 Power and delay models 
Body biasing relies on the body effect phenomenon to modulate 
the Vth of a MOSFET. Eq. 1 gives the dependence of Vth of an 
NMOS transistor on the body-source (Vbs) voltage. Vth0 is the 
nominal Vth at zero body bias, γ is the body coefficient, and ΦF is 
the Fermi potential. 

( ) )(12V2VV FsbF0thth φφγ −++=  

Forward biasing (FBB) the body with respect to the source reduces 
Vth, increasing speed. However, because of the exponential 
dependence of leakage on Vth, it also leads to a large increase in 
power. Similarly, reverse body bias (RBB) reduces leakage at the 
cost of increased delay. This power-delay tradeoff enabled by body 
bias can be exploited by forward biasing gates on critical paths 
while reverse biasing gates on non-critical paths. Thus the process 
needs to only provide high Vth gates which can be tuned using 
forward and reverse body bias. In comparison, in traditional dual 
Vth schemes the process needs to provide two different Vths. The 
lower Vth provides higher speed at the cost of power and is used 
on critical paths to meet timing in such dual Vth schemes. 

Our work is based upon an industrial 1.2V 90nm triple-well dual 
Vth process. The two Vth values that are available are 0.32V 
(−0.33V) and 0.22V (−0.24V) for NMOS (PMOS). Body bias is 
varied between ±0.5V in our analysis for measuring delay and 
power changes (accounting for all components of leakage such as 
subthreshold leakage, body-source/drain junction diode leakage 
and band-to-band tunneling [9]). 

Figure 2 shows our power and delay models. Figure 2a and 2b plot 
the change in leakage power (averaged across input states) and 
delay as body bias is varied between ±0.5V (normalized to the zero 
body bias). The exact relationship between the leakage and delay 
as body bias is varied is a complex non-linear function. However, 
we see that the change in leakage and delay can be modeled with 
good accuracy using quadratic and linear functions of the body 
voltage. A +0.5V forward bias can provide a speedup of 16% with 
a leakage increase of 4.4X, while -0.3V reverse bias reduces 
leakage by 38% while slowing the gate down by 11%. 

2.2 Simulation setup 
The standard cell library for the target 90nm process contains 2- 
and 3-input NOR and NAND gates and inverters, and the process 
provides a triple-well option which allows for body biasing. Cells 
are characterized using SPICE to quantify their delay and leakage 
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Figure 2. Power and delay modeling.
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Figure 1. Power/delay scatter plots (dual Vth and ABB ). 
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across different Vth and body bias values. Cells are also 
characterized for their delay and leakage as channel length varies. 
In this work, we consider channel length as the source of 
variability. The implicit dependence of Vth variation induced by 
channel length variation is automatically captured in SPICE. 

Our variability modeling is similar to [2]. Spatial correlations 
between gates are modeled by storing them in a grid-based 
correlation matrix (Figure 3).  The correlation coefficients among 
the different quadrants of the grid are taken to be inversely 
proportional to the distance between them. We consider inter-die, 
spatially correlated intra-die as well as random components of 
variation. The 3σ/µ ratio for channel length was set to be 15%. 

Test circuits taken from the ISCAS85 benchmark set are first sized 
up using a TILOS-based gate sizer using only high Vth gates. ABB 
clustering or low Vth assignment is then used to speed up the 
circuit. We consider speedups of 5% and 10% beyond the initially 
sized design. Our implementation of dual Vth assignment is based 
on a sensitivity-driven method presented in [11], which inserts low 
Vth gates on only those timing arcs that most improve timing. 

We also present results for a DSP circuit (‘Viterbi’) with 
approximately 15000 gates to demonstrate the effectiveness of our 
work on larger designs. 

3. QP-BASED BODY BIAS ASSIGNMENT 
This section describes our formulation of the optimization problem 
for body bias voltage tuning in a deterministic scenario. We then 
use this optimization as the basis of Monte Carlo simulations to 
obtain the distribution of body bias voltage across process 
variations. Consider the c17 circuit shown in Figure 4. AT 
represents the arrival time of the signal on a wire. All primary 
inputs (PI) and outputs (PO) are tied to supernodes ‘s’ and ‘t’. 

We now develop the constraints of the optimization problem. All 
gates initially have some delay values as obtained in the gate sizing 
step using only high Vth gates (described in Section 2.2). These 
delay values will now be optimally reduced using a Quadratic 
Program such that the circuit meets the timing target. The 
constraints can be written as in Eq. 2: 
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The first and second constraints in (2) fix the arrival times at PIs to 

zero and limit the arrival time at POs to be less than the target time, 
respectively. The third constraint dictates that the arrival time at 
the output of each gate should be at least equal to the arrival time at 
each of its inputs + the delay of the gate ABB

gated  itself. The delay of a 

gate is expressed using the fourth and fifth constraints through the 
quantity sgate, which represents the amount of speedup (i.e., change 
in delay as plotted in Figure 2b). Here, ‘d0’ and ‘d1’ are the degree-
0 and degree-1 coefficients of the linear function between delay 
and gate bias (bgate). As an example, for the gate shown in Figure 
2b these coefficients are -0.01 and 0.36 respectively. The last 
constraint sets the bounds on the bias voltage to ±0.5V. 

We now develop the objective function. Figure 2a showed our 
quadratic model for leakage as a function of body bias. The total 
circuit leakage, which is the objective function to be minimized, 
then becomes the following: 

( )[ ] )3(2
,2,1,0∑

∀

⋅⋅+⋅++
gate

VthHigh
gategategategategategate

VthHigh
gate lbpbpplminimize

Here, the coefficients p0, p1 and p2 correspond to the degree-0, 
degree-1 and degree-2 coefficients of the quadratic function 
relating leakage and bias. For instance, these coefficients are 0.03, 
4.79 and 7.24 for the example gate in Figure 2a. 

The optimization problem has thus been cast using linear 
constraints and a quadratic objective. Also, the objective function 
is separable and convex since it is the sum of convex functions for 
each gate as seen in Figure 2a. This type of optimization problem 
(separable convex quadratic objective subject to linear constraints) 
is amenable to very fast interior point algorithms. 

There is no clustering of gates in this formulation - each gate is free 
to have its optimal post-silicon bgate value, leading to minimum 
leakage cost. The reasons for allowing this freedom in this 
formulation along with our clustering algorithm are described next. 

4. PROPOSED FRAMEWORK 
We now describe our variability-aware body bias clustering 
methodology. Due to variability, each fabricated die exhibits a 
different on-die effective channel length (Leff) distribution, leading 
to variation in delay and leakage. In the QP formulation of the 
previous section, this translates to distributions of Vth High

gated  and 
Vth High

gatel rather than single deterministic values for these terms. 

Hence, the optimal solution found in the deterministic QP run of 
Section 3 will be non-optimal for a general die. Ideally, we could 
solve the QP for each as-fabricated die and choose the optimal 
body biases for each gate on each die individually. This is exactly 
the opportunity that post-silicon tuning provides. However, as 
discussed in Section 3, solving the quadratic program leads to each 

 
Figure 3. Grid for modeling spatial correlations. Figure 4. Setting up the QP for body bias assignment. 
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gate having its own body bias, which is infeasible in practice. In 
general, only a handful of different biases will be allowable and 
hence clustering the gates becomes critical. Once these clusters are 
determined at design time, each cluster can be separately tuned 
post-fabrication for each die. Our methodology achieves each of 
the above discussed objectives in a three phase process. The first 
phase obtains probability distributions of the body biases that 
would ideally be applied to each gate in the presence of variability. 
The second phase then clusters gates based upon these body bias 
probability distributions and their correlations. Finally, after 
clustering the gates the third phase tunes each cluster of each die to 
minimize power while meeting delay. We now detail these phases 
using the simple seven gate c17 circuit for illustration. 

4.1 Body bias probability distributions 
In this phase we obtain the probability distributions of the body 
biases that would be applied to each gate to counteract the effects 
of variability. We begin by generating multiple ‘dies’ drawing 
from the expected Leff distribution for a given circuit in a Monte 
Carlo fashion and then solving each scenario optimally using the 
described QP. Since each die differs from others we obtain 
distributions of body biases for each gate rather than single 
deterministic values. The quadratic formulation of the power-delay 
relationship helps us in this phase, since by solving the QP for each 
scenario we obtain the optimal body bias for each gate in that 
scenario (as each gate is free to choose its own body bias 
independently). Figure 5 shows the frequency histograms of body 
biases for each gate in c17. The gate-level body bias PDFs are then 
obtained from these frequency histograms. 

In essence, the information stored in these PDFs is the optimal 
tuning action (i.e., amount of body bias voltage for each gate) one 
would take post-silicon for each unique die. These probabilities of 
tuning actions will now be used to form the ABB clusters. 

4.2 Gate clustering 
The previous phase assumed that each gate has complete freedom 
for its body bias value under all possible Leff distribution scenarios. 
This freedom does not exist in practice since it is not possible for 
every gate to have its own separate body bias. Gates hence must be 
clustered, degrading the power/performance tradeoff and losing 
optimality. Once some gates are grouped into a cluster, they are 
constrained to have the same body bias. In order to meet timing, 

the body bias of each cluster is dictated by the timing critical gates 
in that cluster, implying that some gates may end up having more 
FBB (and hence more leakage) than in the ideal case. It is thus 
important to cluster the appropriate gates together that tend to have 
similar body bias tuning assignments on a large number of dies to 
minimize the non-optimality (thereby accommodating the subtlety 
in the optimization of post-silicon tunable circuits as described in 
Section 1 Paragraph 3). Information contained in the distributions 
such as those shown in Figure 5 is useful for this purpose. 

In Figure 5, we can see that some distributions are very similar to 
others. Properties of these PDFs such as the mean, standard 
deviation and correlations can be used to guide clustering. Table 1 
summarizes the properties of the probability distributions in Figure 
5. Table 1a reports the mean and standard deviations of the body 
bias PDFs while Table 1b is the correlation matrix for these PDFs. 

From this table, we find that Gates 2, 5, 6 and 7 are strongly 
correlated and also have similar PDF shapes (mean and sigma). It 
is therefore intuitive that these gates are good candidates to cluster 
together. Similarly Gates 3 and 4 could be clustered together. On 
the other hand, Gates 1 and 7 are poor choices to cluster as their 
means are very different and their correlation is also low. 

When generalizing these ideas to larger circuits, we clearly need to 
develop a systematic procedure for clustering gates. To accomplish 
this we first create an ‘adjacency graph’ for the circuit. The 
adjacency graph for c17 is shown in Figure 6a. Every vertex 
corresponds to a gate and every pair of vertices is connected by an 
edge in this graph. Some edges are shown in Figure 6a. Next, we 
assign a weight to every edge where the weight is given by an 
affinity function defined in Eq. 4. In this equation, ‘i’ and ‘j’ can be 
any two vertices. 

( ) ( ) ( ) (4)   1k1kMkjiw ji3ji2ij1 σσµµ −−+−−+=,  

Mij is the correlation coefficient between the body bias PDFs of 
Gates i and j. µi, µj, σi and σj are the respective means and standard 
deviations. k1, k2 and k3 are weight factors assigned to the 
correlation coefficient, the difference between means, and the 
difference between standard deviations for Gates i and j. 

 
Figure 5. Gate body voltage distributions for 500 QP runs.

 

 
    (a)                   (b) 

Figure 6. (a) Adjacency graph, (b) Sample partitioning.

Table 1. Properties of the body bias PDFs. 
(a) Mean, Sigma    (b) Correlation matrix 

µ σ
1 -0.30 0.01
2 0.16 0.16
3 -0.06 0.11
4 -0.20 0.11
5 0.25 0.18
6 0.43 0.13
7 0.38 0.14

Bias (V)
Gate

Gate 1 2 3 4 5 6 7
1 1.00 0.47 0.58 0.50 0.35 0.13 0.21
2 0.47 1.00 0.98 0.94 0.99 0.75 0.88
3 0.58 0.98 1.00 0.94 0.96 0.70 0.83
4 0.50 0.94 0.94 1.00 0.91 0.48 0.67
5 0.35 0.99 0.96 0.91 1.00 0.80 0.92
6 0.13 0.75 0.70 0.48 0.80 1.00 0.97
7 0.21 0.88 0.83 0.67 0.92 0.97 1.00
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We can see from Eq. 4 that gates that have body bias PDFs that are 
more ‘like’ each other (i.e., highly correlated body bias PDFs and 
similar body bias means and standard deviations) have higher 
affinities and heavy edges between them. Since we seek to cluster 
similar gates, the problem of clustering reduces to the min-cut 
partitioning of the adjacency graph. The following greedy 
clustering algorithm ‘GREEDY_CLUSTER( )’ which produces ‘N’ 
clusters on completion is used to accomplish this. 

GREEDY_CLUSTER() { 
1. Create an empty bin for each of the ‘N’ to-be-formed clusters. 
2. Let ( ) ( )[ ]jiwinmyxw ji, ,, ∀

∗∗ = . 

Put x* in bin 1; y* in bin 2. Flag x* and y* as covered. 
3. While empty bins remain, { 
  Choose an empty bin (say ‘X’), 

For every non-covered vertex ‘v’, 
Calculate Affinity(v) = ∑

∀ binempty -non in y

yvw ),( . 

Put v* in bin X, where v* has the minimum Affinity(v). 
Flag v* as covered. 

  } 
4. For each of the remaining non-covered vertices (say ‘v’), { 

   For each bin (say ‘X’), 
Calculate Affinity(v:X) =              
      

X in  verticesxvw
Xx

#),(∑
∈∀

. 

Put v in bin X*, where X* has the maximum Affinity(v:X). Flag v as 
covered. 
} 

5. Vertices in each of the ‘N’ bins form the ‘N’ desired clusters. 
} 

4.3 Post-silicon tuning 
Once the clusters have been formed, the design-time optimization 
is complete. The adaptive nature of ABB which allows the tuning 
of each individual die can be modeled using a QP similar to the one 
described in Section 3. The only difference here is that all gates in 
a cluster will be constrained to have the same bgate. In practice, this 
step would be done by high-speed automated testing equipment. 

 

5. RESULTS 
5.1 ABB clustering power and delay analysis 
5.1.1 Optimization with 1-4 clusters 
Table 2 summarizes the main results of the proposed approach for 
leakage power and delay on circuits from the ISCAS85 benchmark 
set and a DSP circuit (‘Viterbi’) with roughly 15000 gates. Tables 
2a and 2b report the mean, standard deviation and 95th percentile of 
power and delay. The delay target in this set of experiments is 10% 
faster than the original all high Vth design. 

Table 2. Power and delay comparisons between dual Vth and ABB with 1-4 clusters. 
(a) Power 

POWER
(µW) µ σ 95% µ σ 95% µ σ 95% µ σ 95% µ σ 95%
c17 0.2 0.2 0.5 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.1 0.2
c432 5.6 3.8 12.4 5.8 2.2 9.8 3.4 1.1 5.3 3.1 1.0 4.6 3.0 0.9 4.3
c499 26.7 20.1 63.7 25.5 10.7 42.9 16.1 6.3 26.5 14.8 5.6 24.4 14.6 5.4 23.6
c880 6.6 5.0 16.9 7.2 3.0 12.2 4.8 1.9 8.3 4.4 1.7 7.4 4.2 1.6 7.0
c1355 20.4 14.6 49.9 22.7 9.3 38.7 15.5 5.9 25.1 14.5 5.0 22.8 12.9 4.4 20.3
c1908 14.6 11.3 38.6 13.1 5.1 20.9 9.1 3.3 14.3 8.3 3.0 13.1 7.9 2.7 12.3
c2670 12.6 9.3 31.2 19.4 8.1 33.1 9.6 3.6 15.9 8.6 3.0 13.9 7.9 2.8 12.5
c3540 20.1 14.8 50.4 22.1 8.7 36.5 15.5 6.1 26.2 13.6 4.8 21.7 13.5 4.8 21.7
c5315 22.4 16.1 54.1 31.0 13.4 54.8 19.6 8.1 33.6 17.7 7.2 30.3 16.9 6.8 28.4
c6288 133.2 97.9 335.9 110.8 51.1 195.6 95.0 42.2 167.5 83.4 34.2 142.0 79.4 32.4 134.9
c7552 25.4 17.9 61.6 33.6 15.3 60.7 20.5 8.9 36.1 18.1 7.7 31.8 17.9 7.7 31.7
Viterbi 112.8 82.2 281.9 168.4 73.9 298.7 84.7 35.6 147.4 73.8 31.4 130.1 64.4 25.7 109.1

-12 21 28 51 35 56 38 59

4 Clusters

Avg. % Improv. vs. Dual Vth

Dual Vth 1 Cluster 2 Clusters 3 Clusters

 
(b) Delay 

DELAY
(ns) µ σ 95% µ σ 95% µ σ 95% µ σ 95% µ σ 95%
c17 0.06 0.00 0.07 0.07 0.00 0.07 0.07 0.00 0.07 0.07 0.00 0.07 0.07 0.00 0.07

c432 0.66 0.03 0.72 0.67 0.00 0.68 0.68 0.00 0.68 0.68 0.00 0.68 0.68 0.00 0.68
c499 0.57 0.03 0.62 0.56 0.01 0.57 0.57 0.01 0.58 0.57 0.01 0.58 0.57 0.01 0.58
c880 0.69 0.03 0.74 0.69 0.00 0.69 0.69 0.00 0.70 0.69 0.01 0.70 0.69 0.00 0.70

c1355 0.73 0.04 0.80 0.74 0.01 0.74 0.74 0.01 0.75 0.74 0.01 0.75 0.74 0.01 0.75
c1908 0.99 0.05 1.08 1.00 0.01 1.02 1.01 0.01 1.02 1.01 0.01 1.02 1.01 0.01 1.02
c2670 0.68 0.04 0.73 0.67 0.00 0.68 0.67 0.00 0.68 0.67 0.00 0.68 0.67 0.00 0.68
c3540 1.08 0.06 1.18 1.08 0.01 1.09 1.08 0.01 1.09 1.08 0.01 1.09 1.08 0.01 1.09
c5315 1.00 0.05 1.08 0.99 0.01 1.02 0.99 0.01 1.02 0.99 0.01 1.02 0.99 0.01 1.02
c6288 2.95 0.15 3.18 3.00 0.14 3.39 2.99 0.06 3.12 2.99 0.06 3.11 2.99 0.07 3.13
c7552 1.20 0.06 1.30 1.20 0.02 1.23 1.20 0.02 1.23 1.20 0.02 1.24 1.20 0.02 1.24
Viterbi 3.70 0.21 4.05 3.69 0.05 3.79 3.70 0.05 3.79 3.70 0.04 3.79 3.70 0.05 3.80

0 5 0 5 0 5 0 5

4 Clusters

Avg. % Improv. vs. Dual Vth

Dual Vth 1 Cluster 2 Clusters 3 Clusters
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Comparing the one cluster ABB design and the dual Vth design in 
Table 2a, we find that the mean power with the ABB design is in 
fact 12% worse (on average) than dual Vth. This is expected since 
non-critical gates are also supplied with the same forward bias now 
as required by the timing critical gates, leading to a large penalty in 
power. Thus, simply applying a single tunable body bias across the 
entire design is not viable, necessitating careful clustering. 

Moving to only two clusters, Table 2 shows that the resulting 
power/performance of the ABB designs significantly outperforms 
that of the dual Vth design. In particular, considering the dual Vth 
design and the ABB design with the optimized 2 clusters we find 
that the ABB designs reduce power by 38−63% (95th percentile) 
and 12-42% (mean) while tightening delay spread (σ) by 7X 
(average). These improvements grow when more clusters are 
allowed in the ABB designs. 

5.1.2 Optimization with additional body biases 
Delay does not change significantly as the number of clusters in the 
ABB design is increased. This is expected since the quadratic 
program solver can always find a solution of body bias values that 
can make the circuit meet timing irrespective of the clustering. The 
major impact of fewer clusters is that dissimilar gates must be 
grouped together, leading to higher power levels (due to the same 
reason described for the one cluster ABB design). Figure 7 
quantifies this effect by showing the results of average power for 
the Viterbi circuit as the number of allowed body bias clusters is 
varied from 1 to 10. We find that power shows further 
improvements as more and more tunable clusters are provided. As 
the number of clusters increases from 1 to 2, power reduces by a 
factor of 2X. On adding two more clusters, power goes down 
further by factors of 1.2X. Diminishing additional power reduction 
is found beyond 4 clusters with only a 1.04X improvement 
between 4 and 10 clusters. 

This slowed rate continues beyond 10 clusters leading to a total 
improvement of only 1.8X going from 10 clusters to 14539 clusters 
(i.e., number of clusters = number of gates, where each gate is 
allowed to optimally have its own independent body bias). 
Needless to say, it is completely impractical to realize the design 
with 14539 clusters, and we have included this paragraph only to 
highlight the potential promise of adding more clusters and show 
the effectiveness of our clustering algorithm. Our clustering 
algorithm provides a significant fraction of the improvements of 
this best case design with only 4 clusters instead of 14539. 

5.1.3 Importance of optimizing the formation of 
clusters at design time (pre-silicon) 
This paper focuses on correctly identifying gates to group together 
in an ABB scheme to limit overhead and maximize leakage 
savings. To quantify the importance of optimized clustering, we 
considered two possible alternative configurations of a design with 
two available body bias levels. In the first configuration (because 
of the lack in literature of a deterministic body biasing algorithm 
with scalable and well-controlled ABB overheads) we used clusters 
found using the dual Vth algorithm [11] and employ ABB to tune 
the design. In the second configuration, we used the clustering 
produced by our proposed approach. The corresponding results for 
the dual Vth clustering and our clustering are given in Table 3 for 
five representative circuits. The mean power using our method is 
18-43% lower than the straightforward approach using the dual Vth 
groups for similar delays, thus underlining the importance of 
proper selection of gates in biasing bins. 

We next examine the effectiveness of the proposed greedy 
clustering algorithm GREEDY_CLUSTER( ). Figure 8 is a scatter 
plot of the sigma and mean values of the body bias PDFs (in Volts) 
for each gate in c5315 with 3 clusters. Gates in different clusters 
are shown by different symbols and colors. From the figure, we 
find that the clustering algorithm is successful in clustering similar 
gates. 

5.1.4 Comparisons at relaxed timing constraint 
Results in Table 2 are for a stringent timing constraint, which was 
10% faster than the original high Vth design. In order to examine 
the efficacy at a relaxed timing target, we report simulation results 
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Figure 7. Power reduction with more clusters for Viterbi.

Table 3. Importance of considering tuning at design time. 
(a) Power 

POWER
(µW) µ σ 95% µ σ 95%
c432 4.7 1.5 7.3 3.4 1.1 5.3
c499 23.1 8.9 39.0 16.1 6.3 26.5
c880 5.7 2.0 9.4 4.8 1.9 8.3
c1355 18.8 6.3 29.2 15.5 5.9 25.1
c1908 11.4 4.0 18.1 9.1 3.3 14.3

Dual Vth Clustering Proposed Clustering

 
(b) Delay 

DELAY
(ns) µ σ 95% µ σ 95%
c432 0.67 0.00 0.68 0.68 0.00 0.68
c499 0.56 0.01 0.58 0.57 0.01 0.58
c880 0.69 0.00 0.70 0.69 0.00 0.70
c1355 0.74 0.01 0.74 0.74 0.01 0.75
c1908 1.01 0.01 1.02 1.01 0.01 1.02

Dual Vth Clustering Proposed Clustering
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Figure 8. Effectiveness of the proposed clustering algorithm.
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for five circuits in Table 4 where the timing constraint is 5% faster 
than the high Vth design. We find stronger improvements in power 
and delay (as compared to Table 2) in this case. 

5.1.5 Sensitivity of clustering to Leff distribution models 
Like several statistical approaches in literature, our work operates 
on models of the underlying silicon variation. It is pertinent to ask 
whether the clustering shows fidelity, given the inaccuracies such 
models may possess. We analyzed this and found our conclusions 
to hold; details have however been left out due to space limitations. 

5.2 Runtime 
Runtime for our approach is reported in Table 5 and Figure 9. The 
reported time includes the time required for running the quadratic 
program to generate the body bias PDFs and the time required by 
the clustering algorithm. In reporting the results in this paper, the 
quadratic solver was invoked as many times as needed for results 
to converge. The acceptable runtime of our approach is a direct 
result of the speed with which the proposed quadratic formulation 
can be solved (Section 3). Figure 10 presents the dependence of our 
results on the number of times the QP solver is invoked. Here we 
compare the mean and 95th percentile power savings for the Viterbi 
design with two clusters (compared to the conventional dual Vth 
design) when the sample size is varied from 0.005n to 0.67n (where 
n is the number of gates in the circuit = 14539 for Viterbi). From 
this figure, power savings are found to be quite insensitive to the 
sample size for such large circuits. The quality of results with only 
2500 samples (= 16% of gate count) is similar to that for higher 
sample sizes indicating that the number of times the QP solver 
needs to be invoked increases very slowly with circuit size, 
bringing the runtime down to 2.4hrs. PDF generation can be further 
sped up by caching results from prior Leff distribution scenario runs 

or using sampling methods such as importance sampling which 
serve as excellent alternatives to standard Monte Carlo. Even 
without such speed up techniques, the complexity of our approach 
is found to be between linear and quadratic in n (Figure 9). 

5.3 Supporting physical design methodology 
Physical design related issues arise when implementing designs 
with ABB due to bias control signal routing, well spacing between 
adjacent cells having different bias, and bias generation overhead. 
The bias generation overhead in our scheme is well controlled 
since we have demonstrated good results with only 2-4 clusters. 

Since our clustering scheme is based on spatial correlations (which 
affect physically proximal cells similarly), clusters are inclined to 
be formed as contiguous regions naturally. However, it can 
certainly be the case that there are some instances where differently 
clustered gates (i.e., differently biased wells) are physically 
neighboring. Such gates need to be separated due to conditions 
imposed by triple-well layout rules and can lead to significant area 
and routing overheads. 

To overcome this problem, we ran Capo [1,8] in an extension of 
the Engineering Change Order (ECO) placement algorithm 
described in [8]. In this mode, Capo makes incremental changes to 
a given placement (which in this case is the initial placement used 
to form the correlation grid in Figure 3) and can build contiguous 
regions of similarly clustered cells. As examples, Figure 11a and 
11b show the resulting layouts after this step for the largest 
(Viterbi) circuit with 2 and 3 clusters (each cluster shown with a 
different color). Since Capo causes gates to move only by minimal 
distances, it was found that the layouts in Figure 11a and 11b have 
average and maximum gate displacements of about 1.7% and 12% 
(referenced to die length = 232µm) as compared to the original 
layout, respectively. Also, 96% of the gates do not leave their 
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Gate Runtime
Count (s)

c17 7 0.3
c432 166 6.8
c499 519 41.4
c880 390 24.0
c1355 558 52.1
c1908 432 33.7
c2670 964 130.1
c3540 962 191.9
c5315 1750 489.0
c6288 2502 1226.7
c7552 2102 628.1
Viterbi 14539 8640.1

Table 5. Runtime. 
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Figure 10. Power savings with varied sample size for Viterbi.

Table 4. Delay and power comparisons at relaxed target timing (5% faster than initial high Vth design). 
(a) Power 

POWER
(µW) µ σ 95% µ σ 95% µ σ 95% µ σ 95% µ σ 95%
c432 4.0 2.8 9.1 3.9 1.3 5.9 2.4 0.8 3.7 2.1 0.6 3.1 2.0 0.7 3.0
c499 17.5 12.7 43.9 17.3 6.8 28.9 11.1 4.1 18.4 9.6 3.4 15.6 9.5 3.3 15.7
c880 4.6 3.3 11.4 5.0 2.1 8.6 3.3 1.3 5.5 3.2 1.2 5.1 2.8 1.1 4.6
c1355 16.3 11.7 39.8 15.2 5.9 25.3 10.1 3.7 16.1 9.0 3.1 14.1 8.0 2.7 12.5
c1908 10.5 8.0 27.1 8.7 2.7 13.2 6.0 1.9 9.0 5.5 1.7 8.3 5.1 1.5 7.6

4 36 37 59 43 64 47 66Avg. % Improv. vs. Dual Vth

3 Clusters 4 ClustersDual Vth 1 Cluster 2 Clusters

 
(b) Delay 

DELAY
(ns) µ σ 95% µ σ 95% µ σ 95% µ σ 95% µ σ 95%
c432 0.70 0.03 0.76 0.71 0.00 0.71 0.71 0.00 0.72 0.71 0.00 0.72 0.71 0.00 0.72
c499 0.61 0.03 0.66 0.59 0.00 0.60 0.60 0.00 0.60 0.60 0.00 0.60 0.60 0.00 0.60
c880 0.74 0.04 0.80 0.73 0.00 0.73 0.73 0.00 0.73 0.73 0.00 0.73 0.73 0.00 0.74
c1355 0.78 0.04 0.85 0.77 0.00 0.78 0.78 0.00 0.78 0.78 0.00 0.78 0.78 0.00 0.78
c1908 1.05 0.06 1.14 1.06 0.00 1.06 1.06 0.00 1.06 1.06 0.00 1.06 1.06 0.00 1.07

1 8 0 8 0 8 0 8Avg. % Improv. vs. Dual Vth

3 Clusters 4 ClustersDual Vth 1 Cluster 2 Clusters
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correlation grid quadrant (Figure 3) while the remaining gates 
(originally near quadrant borders) move by only one grid square 
(i.e., to the neighboring quadrant). Thus the initial placement and 
final placement are very similar. To further study the impact of the 
slightly perturbed layout, we reran the tuning part of our approach 
(Section 4.3) for the designs with these final placements. Table 6 
presents these results showing that results change negligibly. 

We also studied the increase in area and wirelength. Half perimeter 
wirelength for the placements in Figures 11a and 11b are only 
2.3% and 3.1% higher than the original placements. From Figures 
11a and 11b, instances where neighboring gates belong to different 
body bias clusters and necessitate spacing are seen to have been 
greatly reduced by Capo. For well separation rules of 2-3µm in 
target 90nm processes and given the white space in each standard 
cell row, the area overhead is about 5.2-7.8%. These increases in 
wirelength and area are far outweighed by the improvements in 
power and delay demonstrated earlier. Note that our layout style 
will require some power grid rerouting for the bottommost metal 
layer. Finally, we believe that routing the bias control signals can 
be easily accomplished and is facilitated by this layout 
methodology as only a few contiguous regions need to be supplied 
with the bias voltages. 

This physical design methodology demonstrates that it is indeed 
possible to implement the proposed clustering technique with well 
controlled layout overheads. 

6. CONCLUSIONS 
This paper proposed the first method that considers process 
variability for body bias clustering to maximize yield using ABB. 
Our placement-aware work relies on the optimized clustering of 
gates to reduce the number of required on-die body biases to a 
small number (2-4). In comparison to the traditional technique of 
dual Vth assignment, we show that our physical design aware 
ABB approach can produce designs with 2-9X tighter delay 
distributions and power reductions of 38-71% while tightly 
controlling area, wirelength and bias routing overheads. We also 
demonstrated that adding more bias levels on the die provides 
rapidly diminishing returns on power reduction, suggesting that 
only a handful of biases are sufficient. 

The general spirit underlying the work is that post-silicon adaptive 
techniques require a fundamentally different optimization 
methodology which should be actively incorporated in the pre-
silicon design cycle to enable high parametric yields. 
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(a) Viterbi placement with 2 clusters 

 
(b) Viterbi placement with 3 clusters 

Figure 11. Resulting layouts after running Capo to generate 
physically contiguous clusters for the Viterbi benchmark. 

Table 6. Retuning with final placement. 
(a) Power 

POWER
(µW) µ σ 95% µ σ 95%

Viterbi (2 clusters) 84.7 35.6 147.4 83.8 35.5 145.5
Viterbi (3 clusters) 73.8 31.4 130.1 73.1 31.0 128.7

Original Placement Final Placement

(b) Delay 
DELAY

(ns) µ σ 95% µ σ 95%
Viterbi (2 clusters) 3.70 0.05 3.79 3.70 0.05 3.80
Viterbi (3 clusters) 3.70 0.04 3.79 3.70 0.05 3.80

Original Placement Final Placement
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