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ABSTRACT 
In a synchronous finite state machine (FSM), huge current peaks 
are often observed at the moment of state transition. Previous low 
power state encoding algorithms focus on the reduction of 
switching activities of state registers (i.e., state bits). However, 
even though the switching state registers are the same, different 
combinations of switching directions still result in different peak 
currents. Based on that observation, in this paper, we propose the 
first approach to re-encode an FSM by considering the switching 
directions of state registers in order to minimize the peak current 
caused by the state transition. Experimental data consistently 
show that the peak current is reduced with no penalty. 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – Optimization. 

General Terms 
Design, Reliability. 

Keywords 
Finite state machine, Peak current, Sequential circuit synthesis. 

1. INTRODUCTION 
A sequential circuit can be thought of as a finite state machine 
(FSM). In sequential circuit synthesis, state encoding is to assign 
binary codes to the states in the FSM, and it has been recognized 
that state encoding greatly influences all quality aspects of the 
final implementation. Earlier attempts [1,2] at state encoding 
focused on the minimization of circuit area. In recent years, low 
power has become an important design issue. Since the power 
consumption of a CMOS circuit is highly dependent on the 
number of switching activities, it is natural that the objective of 
low power state encoding is to minimize the expected number of 
switching state registers (i.e., state bits) per state transition. Many 
low power state encoding approaches [3-6] have been proposed to 
assign binary codes with small Hamming distances to pairs of 
states that have a high transition probability. 
As the process shrinks into the deep sub-micron technology, the 
power supply level fluctuation is exacerbated since the noise 

margin is considerably reduced. Since huge current peaks may 
lead to logic errors due to voltage drop or reliability problems due 
to electromigration, there is a strong demand to reduce the peak 
current. For a synchronous FSM, huge current peaks are often 
observed at the moment of state transition (since all state registers 
are clocked). Although previous studies [3-6] have aimed to 
minimize average power consumption caused by the state 
transition, no attention has been paid to the minimization of peak 
current caused by it. 
Our paper is the first attempt to the minimization of peak current 
caused by the state transition. In fact, even though the same state 
registers switch, different combinations of switching directions 
still result in different peak currents. Based on that observation, in 
this paper, we propose the first work to re-encode an FSM by 
considering the switching directions of state registers. We use 
integer linear programming (ILP) to formally formulate our 
problem. We also present a polynomial time complexity algorithm 
to solve the same problem heuristically.  
Our approach can be easily integrated into the existing design 
flow. The following three points are worthy to be addressed: 
(1) For each state transition, the switching state registers in our 

re-encoded FSM are exactly the same as those in the original 
FSM. Therefore, compared with the original FSM, our re-
encoded FSM has no penalty on the circuit area, the critical 
path delay, and the average power consumption. 

(2) Our approach can be applied at different design stages. The 
designer can use either the ECO (engineering change order) 
process or the re-synthesis process to implement our re-
encoding solution. 

(3) Although a sequential circuit can always be represented by 
an FSM, data-dominated circuits (especially their data-paths) 
are often not designed from the viewpoint of FSM. If it is 
time-consuming to derive all states and all state transitions, 
our approach can be applied to reduce the peak current of 
functional simulation.  

2. PRELIMINARIES 
An FSM is conveniently described by a state transition graph, 
where each node represents a state, and each directed edge Si→Sj, 
associated with input and output values, represents a transition 
from state Si to state Sj. Take the state transition graph shown in 
Figure 1 as an example. In state S0, if the input value is 0, then the 
output values are 01 and the FSM moves to state S3, whereas if 
input value is 1, then the output values are 01 and the FSM moves 
to state S6; and so on. 
When implemented in hardware, an FSM is generally realized by 
an architecture such as that shown in Figure 2. Here, each state 
corresponds to a binary code represented by the state registers. 
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The combinational logic computes the next state and output values 
based on the current state and input values. The input and output 
values are generally determined by external requirements, while 
the state encoding is left to the designer. 

 
Figure 1: An example of state 

transition graph. 
Figure 2: General architecture for 
FSM hardware implementation. 

In a CMOS circuit, power is primarily consumed for charging and 
discharging activities. Since each state is encoded by the state 
registers, the power consumption of state transition is proportional 
to the number of switching state registers; i.e., the power 
consumption of state transition Si→Sj is proportional to the 
Hamming distance between the binary code of state Si and the 
binary code of state Sj. To reduce the average power consumption, 
binary codes with smaller Hamming distances should be assigned 
to pairs of states that have a higher transition probability. 

3. MOTIVATIONAL EXAMPLES 
In an FSM, a state register often drives many fan-outs with long 
wire length. Thus, for a state register, its output capacitance is 
often much larger than its internal capacitances. In other words, 
for a state register, power is primarily consumed for charging and 
discharging the output capacitance. 
In fact, the switching directions of state register determine 
whether the output capacitance is charged or discharged. We 
analyze the following two switching directions. 
(1) If the value of state register switches from logic level 0 to 

logic level 1, the output capacitance is charged. Thus there is 
a current that flows from the power line VDD to the output 
capacitance.  

(2) If the value of state register switches from logic level 1 to 
logic level 0, the output capacitance is discharged. Thus there 
is a current that flows from the output capacitance to the 
ground line VSS. 

Accordingly, we make the following hypothesis. If the value of 
state register switches from logic level 0 to logic level 1, the peak 
current occurs in the power line VDD; on the other hand, if the 
value of state register switches from logic level 1 to logic level 0, 
the peak current occurs in the ground line VSS. 
To verify this hypothesis, we perform an experiment in which D-
type flip-flop DFFX2 in TSMC 0.18 µm standard cell library is 
used as the state register. We assume that the clock transition time 
is 0.100 ns and the output capacitance is 0.300 pf. Figure 3 gives 
the HSPICE simulation results. The notation V(CLK) denotes the 
voltage of clock pin CLK. The notation V(Q) denotes the voltage 
of output pin Q. Note that the value of output pin Q corresponds 
to the value of state register. The notation I(VDD) denotes the 
current that flows from the power line VDD. The notation I(VSS) 

denotes the current that flows to the ground line VSS. As shown in 
Figure 3, the HSPICE simulation results are consistent with our 
analysis: 
(1) If the value of the state register (i.e., the value of output pin 

Q) switches from logic level 0 to logic level 1, the maximum 
current of I(VDD) is 692 µA, while the maximum current of 
I(VSS) is 348 µA. Therefore, if the value of state register 
switches from logic level 0 to logic level 1, the peak current 
occurs in the power line VDD. 

(2) If the value of the state register switches from logic level 1 to 
logic level 0, the maximum current of I(VDD) is 303 µA, 
while the maximum current of I(VSS) is 829 µA. Therefore, if 
the value of state register switches from logic level 1 to logic 
level 0, the peak current occurs in the ground line VSS. 

 
Figure 3: Simulation waveforms of D-type flip-flop. 

4. MOTIVATION 
Previous low power state encoding algorithms do not consider the 
switching directions of state registers. However, even though the 
same state registers switch, different combinations of switching 
directions still result in different peak currents. 
We consider the following two encoding solutions for a state 
transition Si→Sj.  
(1) If the binary codes of state Si and state Sj are 000 and 111, 

respectively, the number of switching state registers is 3. 
(2) If the binary codes of state Si and state Sj are 001 and 110, 

respectively, the number of switching state registers is also 3. 
Since the numbers of switching state registers are the same, the 
two encoding solutions are expected to have the same power 
consumption. Therefore, in previous low power state algorithms, 
the two encoding solutions are supposed to have exactly the same 
quality for this state transition. 
However, in fact, for a state transition Si→Sj, the two encoding 
solutions correspond to different peak currents. We analyze their 
peak currents as below. 
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(1) If the binary codes of state Si and state Sj are 000 and 111, 
respectively, all the three state registers switch from logic 
level 0 to logic level 1. Therefore, the output capacitances of 
all the three state registers are charged. 

(2) If the binary codes of state Si and state Sj are 001 and 110, 
respectively, two state registers switch from logic level 0 to 
logic level 1 and one state register switches from logic level 
1 to logic level 0. Therefore, the output capacitances of two 
state registers are charged and the output capacitance of one 
state register is discharged. 

The peak current of the first encoding solution is caused by the 
simultaneous charging activities of three state registers, while the 
peak current of the second encoding solution is caused by the 
simultaneous charging activities of two state registers. Therefore, 
the peak current of the second encoding solution is about 2/3 that 
of the first encoding solution. Obviously, from the viewpoint of 
peak current, the second encoding solution has better quality.  

5. ILP APPROACH 
In this section, we use ILP to formulate our problem: re-encoding 
an FSM to minimize the peak current caused by the state 
transition. Note that, for each state transition, the switching state 
registers in our re-encoded FSM must be exactly the same as those 
in the original FSM. Therefore, the peak current is minimized 
with no penalty on average power consumption.  
For brevity sake, we use the term “peak value” to denote the 
maximum number of state registers that simultaneously switch in 
the same direction. Our objective is to minimize the peak value, 
and our ILP method guarantees obtaining the optimal solution. 
Suppose that the given encoded FSM has s states, and the 
corresponding hardware implementation has m state registers, 
where 2m ≥ s. Without loss of generality, we assume that these m 
state registers are R0, R1, …, and Rm-1, and the state register Rm-1 
denotes the most significant bit of each binary code.  
For each state transition Si→Sj in the given encoded FSM, we 
define the two following functions: switching function hi→j and 
direction function di→j. The switching function hi→j denotes the 
switching activities of state registers. If the value of state register 
Rk has a change when the state transition Si→Sj occurs, then 
hi→j(k) = 1; otherwise, hi→j(k) = 0. The direction function di→j 
denotes the switching directions of state registers. If the value of 
state register Rk switches from logic level 0 to logic level 1 when 
the state transition Si→Sj occurs, then di→j(k) = 1; otherwise, 
di→j(k) = 0. 
Our approach is to re-encode the given encoded FSM. For each 
state register Rk, we define a binary variable xk to denote the 
difference between our re-encoded FSM and the original given 
encoded FSM. If the value of the binary variable xk is 0, then the 
value of state register Rk remains unchanged. On the other hand, if 
the value of the binary variable xk is 1, then the value of state 
register Rk is complemented. 
Let the integer variable peak represent the peak value. Then, this 
problem can be thought of as the problem of minimizing the value 
of the integer variable peak by assigning an appropriate binary 
value (i.e., 0 or 1) to each binary variable xk, where k = 0, 1, …, 
m-1. Note that each state transition Si→Sj imposes the following 
two constraints on the value of the integer variable peak.  
(1) If the state register Rk switches from logic level 0 to logic 

level 1 in the original given encoded FSM and the value of 
the binary variable xk is 0, then the state register Rk switches 

from logic level 0 to logic level 1 in our re-encoded FSM. On 
the other hand, if the state register Rk switches from logic 
level 1 to logic level 0 in the original given encoded FSM 
and the value of the binary variable xk is 1, then the state 
register Rk also switches from logic level 0 to logic level 1 in 
our re-encoded FSM. The number of state registers that 
simultaneously switch from logic level 0 to logic level 1 
gives a lower bound on the peak value. The constraint can be 
formulated as below: 
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0 0
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(2) The number of state registers that simultaneously switch 
from logic level 1 to logic level 0 gives a lower bound on the 
peak value. This constraint can be formulated as below: 

1 1

0 0
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Therefore, if the given encoded FSM has n state transitions, our 
ILP formulation has 2n constraints.  
Take the state transition graph shown in Figure 1 as an example. 
Suppose that the binary codes of state S0, S1, S2, S3, S4, S5, and S6 
are 000, 010, 101, 011, 110, 100, and 111, respectively, and Table 
1 tabulates the binary code of each state. Then, we analyze the 
peak value of this given encoded FSM. For each state transition, 
Table 2 describes the switching directions of state registers and 
their corresponding currents. When the state transition S0→S3 
occurs, two state register switch from logic level 0 to logic level 1 
(i.e., the output capacitances of two state register are charged); 
when the state transition S0→S6 occurs, three state registers 
simultaneously switch from logic level 0 to logic level 1; and so 
on. From Table 2, we find that the peak value of this given 
encoded FSM is 3 and it is caused by the state transition S0→S6. 

S0 S1 S2 S3 S4 S5 S6 
000 010 101 011 110 100 111 

Table 1: Original binary codes of states. 

State Registers State 
Transition R2 R1 R0 

Corresponding Currents 

S0→S3 0→0 0→1 0→1 2 charging 
S0→S6 0→1 0→1 0→1 3 charging 
S1→S0 0→0 1→0 0→0 1 discharging 
S2→S0 1→0 0→0 1→0 2 discharging 
S2→S5 1→1 0→0 1→0 1 discharging 
S3→S0 0→0 1→0 1→0 2 discharging 
S3→S1 0→0 1→1 1→0 1 discharging 
S4→S2 1→1 1→0 0→1 1 charging, 1 discharging 
S4→S5 1→1 1→0 0→0 1 discharging 
S5→S3 1→0 0→1 0→1 2 charging, 1 discharging 
S5→S6 1→1 0→1 0→1 2 charging 
S6→S4 1→1 1→1 1→0 1 discharging 
S6→S5 1→1 1→0 1→0 2 discharging 

Table 2: Analysis of the given encoded FSM. 

Table 3 tabulates the switching function and direction function of 
this given encoded FSM. For example, for the state transition 
S0→S3, we have h0→3(2) = 0, h0→3(1) = 1, h0→3(0) = 1, d0→3(2) = 0, 
d0→3(1) = 1, and d0→3(0) = 1. According to Table 3, we have the 
following ILP formulation: 
minimize peak subject to 
(1-x1)+(1-x0) ≤ peak;               x1+x0 ≤ peak; 
(1-x2)+(1-x1)+(1-x0) ≤ peak;    x2+x1+x0 ≤ peak; 
x1 ≤ peak;                                (1-x1) ≤ peak; 
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x2+x0 ≤ peak;                          (1-x2)+ (1-x0) ≤ peak; 
x0 ≤ peak;                                (1-x0) ≤ peak; 
x1+x0 ≤ peak;                          (1-x1)+(1-x0) ≤ peak; 
x0 ≤ peak;                                (1-x0) ≤ peak; 
x1+(1-x0) ≤ peak;                     (1-x1)+x0 ≤ peak; 
x1 ≤ peak;                                (1-x1) ≤ peak; 
x2+(1-x1)+(1-x0) ≤ peak;          (1-x2) +x1+x0 ≤ peak; 
(1-x1)+(1-x0) ≤ peak;               x1+x0 ≤ peak; 
x0 ≤ peak;                                (1-x0) ≤ peak; 
x1+x0 ≤ peak;                          (1-x1)+(1-x0) ≤ peak. 

After solving the ILP formulation, we have peak = 2 under the 
condition that x2= 0, x1 = 0, and x0 = 1. Therefore, the values of 
state registers R2 and R1 remain unchanged and the value of state 
register R0 is complemented. As a result, we obtain the re-
encoding solution shown in Table 4. For each state transition, 
Table 5 describes the switching directions of state registers and 
their corresponding currents. Compared with the original given 
encoded FSM, the peak value is reduced from 3 to 2. Therefore, 
our approach reduces the peak value about 33.3%, i.e., (3-2)/3. 

switching function hi→j(k) direction function di→j(k) State 
Transition R2 R1 R0 R2 R1 R0 

S0→S3 0 1 1 0 1 1 
S0→S6 1 1 1 1 1 1 
S1→S0 0 1 0 0 0 0 
S2→S0 1 0 1 0 0 0 
S2→S5 0 0 1 0 0 0 
S3→S0 0 1 1 0 0 0 
S3→S1 0 0 1 0 0 0 
S4→S2 0 1 1 0 0 1 
S4→S5 0 1 0 0 0 0 
S5→S3 1 1 1 0 1 1 
S5→S6 0 1 1 0 1 1 
S6→S4 0 0 1 0 0 0 
S6→S5 0 1 1 0 0 0 

Table 3: Switching function and direction function. 

S0 S1 S2 S3 S4 S5 S6 
001 011 100 010 111 101 110 

Table 4: Our re-encoding solution. 

State Registers State 
Transition R2 R1 R0 

Corresponding Currents 

S0→S3 0→0 0→1 1→0 1 charging, 1 discharging 
S0→S6 0→1 0→1 1→0 2 charging, 1 discharging 
S1→S0 0→0 1→0 1→1 1 discharging 
S2→S0 1→0 0→0 0→1 1 charging, 1 discharging 
S2→S5 1→1 0→0 0→1 1 charging 
S3→S0 0→0 1→0 0→1 1 charging, 1 discharging 
S3→S1 0→0 1→1 0→1 1 charging 
S4→S2 1→1 1→0 1→0 2 discharging 
S4→S5 1→1 1→0 1→1 1 discharging 
S5→S3 1→0 0→1 1→0 1 charging, 2 discharging 
S5→S6 1→1 0→1 1→0 1 charging, 1 discharging 
S6→S4 1→1 1→1 0→1 1 charging 
S6→S5 1→1 1→0 0→1 1 charging, 1 discharging 

Table 5: Analysis of our re-encoded FSM. 

6. HEURISTIC ALGOROTHM 
Our heuristic algorithm is an iteration process of re-encoding. For 
an encoded FSM e, we define the followings: the notation peake 
represents the peak value of encoded FSM e, the notation peake,i→j 
represents the peak value of the state transition Si→Sj, and the 
notation num(e,a) represents the number of state transitions whose 
peak values are a.  
Figure 4 gives the pseudo code of our algorithm, where the input 
is an encoded FSM org. The notation sol denotes our current 
solution. The function comp(sol,Rk) provides the re-encoding 
solution of encoded FSM sol by complementing the value of state 
register Rk. We say that the cost of encoded FSM e1 is smaller 
than the cost of encoded FSM e2, if and only if one of the 
following two conditions is met: 
(1) The value of peake1 is smaller than the value of peake2. 
(2) Both the value of peake1 and the value of peake2 are equal to 

a, and the value of num(e1,a) is smaller than the value of 
num(e2,a). 

A state register Rk is marked if its value in our current solution sol 
is complemented with that in the input org. At the beginning of 
our algorithm, all state registers are unmarked. We say that an 
unmarked state register Rbest is the best-improvement state register, 
if both the following two conditions are met:  
(1) The cost of re-encoding solution comp(sol,Rbest) is smaller 
than the cost of our current solution sol. 
(2) There does not exist another unmarked state register Rk so that 
the cost of re-encoding solution comp(sol,Rk) is smaller than the 
cost of re-encoding solution comp(sol,Rbest). 
In each loop of the while-do loop iteration, we attempt to find the 
best-improvement state register Rbest among all unmarked state 
registers. If the best-improvement state register Rbest exists, our 
solution sol becomes comp(sol,Rbest), and the state register Rbest is 
marked. If we cannot find the best-improvement state register, 
then we break from the while-do loop iteration and return our 
current solution sol. 

Procedure Heuristic(org) 
begin 

sol =org; 
all state registers are unmarked; 
while (true) do 
begin 

attempt to find the best-improvement state register Rbest  
among all unmarked state registers; 
if (the best-improvement state register Rbest exists) then 
begin 

sol = comp(sol,Rbest); 
mark the best-improvement state register Rbest; 

end 
else return(sol); 

end 
end. 

Figure 4: Pseudo code of our heuristic algorithm. 

The number of loops spent in the while-do loop iteration is at 
most m, where m is the number of state registers. In each loop of 
the while-do loop iteration, the time complexity of finding the 
best-improvement state register Rbest is O(mn), where n is the 
number of state transitions. Therefore, the time complexity of our 
heuristic algorithm is O(m2n). 
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7. APPLICATIONS AND EXTENSIONS 
In this section, we study the applications and extensions of our 
approach. We address the following three points. 
First, our approach can be applied at different design stages. Here 
we illustrate two methods to implement our re-encoding solution:  
(1) One method is to apply the ECO process to implement our 

re-encoding solution based on the gate-level netlist of the 
original encoding solution. For each state register whose 
value is complemented with the original encoding solution, a 
pair of inverters is added around it.  

(2) The other method is to apply the re-synthesis process to 
implement our re-encoding solution. To control the peak 
current of each state register, we can set constraints on the 
output of each state register during the re-synthesis process 
(e.g., the constraints on the maximum output capacitance 
value and the maximum fan-out number). 

Second, since it may be time-consuming to derive the state 
transition graph of a data-dominated circuit, we propose a 
simulation-based methodology as below. First, by analyzing the 
switching directions of registers at each clock cycle of functional 
simulation, our approach can be used to reduce the peak current of 
functional simulation. Then, the ECO process (i.e., inserting 
inverter-pairs around appropriate registers) can be used to 
implement our solution. Note that, this simulation-based 
methodology is practical, since in the existing design flow, the 
designer also uses the functional simulation to validate the logic 
function and power consumption of a data-dominated circuit.  
Third, our objective function is not restricted to minimize the 
number of state registers that simultaneously switch in the same 
direction. In fact, if we are given a gate-level netlist, we can have 
the output capacitance value of each register. Then, it is also 
reasonable to minimize the summation of output capacitance 
values that simultaneously switch in the same direction. 

8. EXPERIMENTAL RESULTS 
We use fourteen circuits to test the effectiveness of our approach. 
The fourteen circuits are classified into the following two groups: 
(1) There are ten FSM designs adopted from MCNC FSM 

benchmark suite. Initially, these ten FSM designs are 
encoded by the POW3 algorithm proposed in [4]. 

(2) There are four data-dominated circuits. The data-dominated 
circuits IND1, IND2, and IND3 are industrial designs used in 
wide-band application, and the data-dominated circuit DSP is 
a digital signal processor. 

8.1 Peak Value Minimization 
We use Extended LINGO Release 8.0 as the ILP solver. As an 
alternative, we also use C++ programming language to implement 
our heuristic algorithm. Our platform is a Window XP personal 
computer with AMD K8-3GHz CPU and 1 Giga-Bytes RAM. 
Table 6 tabulates the experimental results on the ten FSM designs. 
The column States gives the number of states. The column Trans 
gives the number of state transitions. The column Peak Value 
denotes the peak value. The column Original gives the peak value 
obtained by the original encoding solution. The column Ours 
describes the peak values obtained by our ILP approach and our 
heuristic algorithm, respectively. The column ILP denotes our ILP 
approach. The column Heuristic denotes our heuristic approach. 
We find that, in every FSM design, our ILP approach and our 
heuristic approach achieve exactly the same peak value. The 
column Improve gives the relative improvement of our re-

encoding solution over the original encoding solution, i.e., 100% - 
Ours / Original.  
Table 7 tabulates the experimental results on the four data-
dominated circuits. The column Gates gives the number of logic 
gates. The column Regs gives the number of registers. The 
column Original gives the peak value of the original circuit by 
analyzing the waveforms of functional simulation. Since the 
problem size is too large (i.e., the simulation patterns includes too 
many clock cycles), the ILP formulation cannot be solved within 6 
hours. On the other hand, in each circuit, the CPU time of our 
heuristic algorithm is within 6 hours. Therefore, the column Ours 
only gives the peak values obtained by our heuristic algorithm. 

Peak Value 
Ours 

Circuit States Trans 
Original  

ILP Heuristic 
Improve 

BBSSE 16 56 4 3 3 25.0 % 
EX1 20 138 4 3 3 25.0 % 
S298 218 1096 8 7 7 12.5 % 
S386 13 64 3 2 2 33.3 % 
S510 47 77 5 3 3 40.0 % 
S832 25 245 4 3 3 25.0 % 

SAND 32 184 4 3 3 25.0 % 
SSE 16 56 4 3 3 25.0 % 

STYR 30 166 4 3 3 25.0 % 
TBK 32 1569 5 4 4 20.0 % 

Table 6: Experimental results on FSM designs. 

Peak Value Circuit Gates Regs 
Original  Ours 

(Heuristic) 
Improve 

IND1 15329 1452 561 438 22.0 % 
IND2 16863 597 207 171 17.3 % 
IND3 5825 428 192 160 16.7 % 
DSP 176685 6314 2852 2548 10.7 % 

Table 7: Experimental results on data-dominated circuits. 

8.2 Implementation Results 
The fourteen test circuits are targeted to TSMC 0.18 µm process 
technology. The logic synthesis tool is Synopsys Design Compiler. 
To measure the peak current, we use Synopsys PrimePower as the 
gate-level power simulator. For each FSM design, in the power 
simulation process, every combination of state value and input 
values occurs at least one time. For each data-dominated circuit, 
the patterns used in power simulation are exactly the same as 
those used in functional simulation. 
First, we apply the ECO process (i.e., inserting inverter-pairs 
around appropriate registers) to implement the results of our 
approach. Table 8 tabulates the ECO implementations of the ten 
FSM designs. Table 9 tabulates the ECO implementations of the 
four data-dominated circuits. For the convenience of readers, in 
Table 8 and Table 9, we compare the ECO implementations with 
the original circuits. The column ECO denotes the ECO 
implementation of our result. The column Registers Peak Current 
gives the peak current of registers. The column Whole-Circuit 
Peak Current gives the whole-circuit peak current. Note that the 
whole-circuit peak current happens at the moment of state 
transition. However, since the current waveforms of 
combinational logic have some overlaps with the current 
waveforms of registers, the whole-circuit peak current is larger 
than the peak current of registers. The column Circuit Area gives 
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the circuit area. The column Over denotes the relative increase 
(i.e., overhead) in the circuit area, i.e., ECO / Original - 100%. 
Next, we apply the re-synthesis process to implement the results 
of our approach. Note that the re-synthesis process is only 
applicable to FSM designs. Therefore, we do not have the re-
synthesis implementations of data-dominated circuits. For the ten 
FSM designs, Table 10 tabulates the comparisons of the re-
synthesis implementations of our result with the original circuit. 
The column Re-Syn denotes the re-synthesis implementation. 

9. CONCLUSIONS 
Our paper is the first work for the minimization of peak current 
caused by the state transition. We show that the peak current of a 
switching state register is related to the switching direction. Based 
on the observation, we propose an approach to re-encode an FSM 
by considering the switching directions of state registers. Note 
that our approach can be applied at different design stages. 
Experimental data show that our approach works well in practice.  
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Peak Value 
(bits) 

Registers Peak Current 
(µA) 

Whole-Circuit Peak Current 
(µA) 

Circuit Area 
(µm2) 

Circuit 

Original Ours Improve Original ECO Improve Original ECO Improve Original ECO Over 
BBSSE 4 3 25.0 % 2261 1412 37.5 % 2930 2088 28.7 % 1317 1337 1.5 % 

EX1 4 3 25.0 % 1938 1785 7.9 % 3336 3127 6.3 % 2574 2601 1.0 % 
S298 8 7 12.5 % 7167 6213 13.3 % 11883 11248 5.3 % 19705 19748 0.2 % 
S386 3 2 33.3 % 739 497 32.7 % 1002 835 16.7 % 1423 1440 1.2 % 
S510 5 3 40.0 % 2214 1508 31.9 % 2765 2226 19.5 % 2025 2059 1.7 % 
S832 4 3 25.0 % 3203 2306 28.0 % 3931 3255 17.2 % 2840 2867 1.0 % 

SAND 4 3 25.0 % 947 737 22.2 % 1389 1245 10.4 % 4297 4317 0.5 % 
SSE 4 3 25.0 % 2161 1204 44.3 % 2530 1523 39.8 % 1317 1337 1.5 % 

STYR 4 3 25.0 % 2947 2398 18.6 % 4389 3845 12.4 % 4038 4071 0.8 % 
TBK 5 4 20.0 % 1119 1050 6.2 % 4177 4128 1.2 % 3276 3309 1.0 % 

Table 8: ECO implementations of FSM designs. 
 

Peak Value 
(registers) 

Registers Peak Current 
(mA) 

Whole-Circuit Peak Current 
(mA) 

Circuit Area 
(µm2) 

Circuit 

Original Ours Improve Original ECO Improve Original ECO Improve Original ECO Over 
IND1 561 438 22.0 % 143.2 112.4 21.5 % 214.0 187.2 12.5 % 304092 306137 0.7 % 
IND2 207 171 17.4 % 51.2 41.4 19.1 % 96.4 81.1 15.9 % 125704 126302 0.5 % 
IND3 192 160 16.7 % 36.3 28.7 20.9 % 53.6 43.9 18.1 % 65057 65558 0.8 % 
DSP 2852 2548 10.7 % 439.4 398.0 9.4 % 695.3 661.3 4.9 % 2179926 2184783 0.2 % 

Table 9: ECO implementations of data-dominated circuits. 
 

Peak Value 
(bits) 

Registers Peak Current 
(µA) 

Whole-Circuit Peak Current 
(µA) 

Circuit Area 
(µm2) 

Circuit 

Original Ours Improve Original Re-Syn Improve Original Re-Syn Improve Original Re-Syn Over 
BBSSE 4 3 25.0 % 2261 1519 32.8 % 2930 2115 26.5 % 1317 1237 -6.1 % 

EX1 4 3 25.0 % 1938 1098 43.3 % 3336 2555 23.4 % 2574 2621 1.8 % 
S298 8 7 12.5 % 7167 5648 21.2 % 11883 11229 5.5 % 19705 19655 -0.3 % 
S386 3 2 33.3 % 739 588 20.4 % 1002 883 11.9 % 1423 1423 0 % 
S510 5 3 40.0 % 2214 2076 6.2 % 2765 2644 4.4 % 2025 2029 0.2 % 
S832 4 3 25.0 % 3203 2835 11.5 % 3931 3716 5.5 % 2840 2983 1.5 % 

SAND 4 3 25.0 % 947 730 22.9 % 1389 1163 16.3 % 4297 4454 3.7 % 
SSE 4 3 25.0 % 2161 1549 28.3 % 2530 1854 26.7 % 1317 1237 -6.1 % 

STYR 4 3 25.0 % 2947 2461 16.5 % 4389 4077 7.1 % 4038 4028 -0.2 % 
TBK 5 4 20.0 % 1119 1097 2.0 % 4177 4150 0.6 % 3276 3379 3.1 % 

Table 10: Re-synthesis implementations of FSM designs. 
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