
State Re-Encoding for Peak Current Minimization
Shih-Hsu Huang

Department of
Electronic Engineering,

Chung Yuan Christian University,
Chung Li, Taiwan, R.O.C.

shhuang@cycu.edu.tw

Chia-Ming Chang
Department of

Electronic Engineering,
Chung Yuan Christian University,

Chung Li, Taiwan, R.O.C.

changb@vlsi.el.cycu.edu.tw

Yow-Tyng Nieh
SOC Technology Center,

Industrial Technology
Research Institute,

Hsin Chu, Taiwan, R.O.C.

ytnieh@itri.org.tw

ABSTRACT
In a synchronous finite state machine (FSM), huge current peaks
are often observed at the moment of state transition. Previous low
power state encoding algorithms focus on the reduction of
switching activities of state registers (i.e., state bits). However,
even though the switching state registers are the same, different
combinations of switching directions still result in different peak
currents. Based on that observation, in this paper, we propose the
first approach to re-encode an FSM by considering the switching
directions of state registers in order to minimize the peak current
caused by the state transition. Experimental data consistently
show that the peak current is reduced with no penalty.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – Optimization.

General Terms
Design, Reliability.

Keywords
Finite state machine, Peak current, Sequential circuit synthesis.

1. INTRODUCTION
A sequential circuit can be thought of as a finite state machine
(FSM). In sequential circuit synthesis, state encoding is to assign
binary codes to the states in the FSM, and it has been recognized
that state encoding greatly influences all quality aspects of the
final implementation. Earlier attempts [1,2] at state encoding
focused on the minimization of circuit area. In recent years, low
power has become an important design issue. Since the power
consumption of a CMOS circuit is highly dependent on the
number of switching activities, it is natural that the objective of
low power state encoding is to minimize the expected number of
switching state registers (i.e., state bits) per state transition. Many
low power state encoding approaches [3-6] have been proposed to
assign binary codes with small Hamming distances to pairs of
states that have a high transition probability.
As the process shrinks into the deep sub-micron technology, the
power supply level fluctuation is exacerbated since the noise

margin is considerably reduced. Since huge current peaks may
lead to logic errors due to voltage drop or reliability problems due
to electromigration, there is a strong demand to reduce the peak
current. For a synchronous FSM, huge current peaks are often
observed at the moment of state transition (since all state registers
are clocked). Although previous studies [3-6] have aimed to
minimize average power consumption caused by the state
transition, no attention has been paid to the minimization of peak
current caused by it.
Our paper is the first attempt to the minimization of peak current
caused by the state transition. In fact, even though the same state
registers switch, different combinations of switching directions
still result in different peak currents. Based on that observation, in
this paper, we propose the first work to re-encode an FSM by
considering the switching directions of state registers. We use
integer linear programming (ILP) to formally formulate our
problem. We also present a polynomial time complexity algorithm
to solve the same problem heuristically.
Our approach can be easily integrated into the existing design
flow. The following three points are worthy to be addressed:
(1) For each state transition, the switching state registers in our

re-encoded FSM are exactly the same as those in the original
FSM. Therefore, compared with the original FSM, our re-
encoded FSM has no penalty on the circuit area, the critical
path delay, and the average power consumption.

(2) Our approach can be applied at different design stages. The
designer can use either the ECO (engineering change order)
process or the re-synthesis process to implement our re-
encoding solution.

(3) Although a sequential circuit can always be represented by
an FSM, data-dominated circuits (especially their data-paths)
are often not designed from the viewpoint of FSM. If it is
time-consuming to derive all states and all state transitions,
our approach can be applied to reduce the peak current of
functional simulation.

2. PRELIMINARIES
An FSM is conveniently described by a state transition graph,
where each node represents a state, and each directed edge Si→Sj,
associated with input and output values, represents a transition
from state Si to state Sj. Take the state transition graph shown in
Figure 1 as an example. In state S0, if the input value is 0, then the
output values are 01 and the FSM moves to state S3, whereas if
input value is 1, then the output values are 01 and the FSM moves
to state S6; and so on.
When implemented in hardware, an FSM is generally realized by
an architecture such as that shown in Figure 2. Here, each state
corresponds to a binary code represented by the state registers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICCAD'06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

33

The combinational logic computes the next state and output values
based on the current state and input values. The input and output
values are generally determined by external requirements, while
the state encoding is left to the designer.

Figure 1: An example of state

transition graph.
Figure 2: General architecture for
FSM hardware implementation.

In a CMOS circuit, power is primarily consumed for charging and
discharging activities. Since each state is encoded by the state
registers, the power consumption of state transition is proportional
to the number of switching state registers; i.e., the power
consumption of state transition Si→Sj is proportional to the
Hamming distance between the binary code of state Si and the
binary code of state Sj. To reduce the average power consumption,
binary codes with smaller Hamming distances should be assigned
to pairs of states that have a higher transition probability.

3. MOTIVATIONAL EXAMPLES
In an FSM, a state register often drives many fan-outs with long
wire length. Thus, for a state register, its output capacitance is
often much larger than its internal capacitances. In other words,
for a state register, power is primarily consumed for charging and
discharging the output capacitance.
In fact, the switching directions of state register determine
whether the output capacitance is charged or discharged. We
analyze the following two switching directions.
(1) If the value of state register switches from logic level 0 to

logic level 1, the output capacitance is charged. Thus there is
a current that flows from the power line VDD to the output
capacitance.

(2) If the value of state register switches from logic level 1 to
logic level 0, the output capacitance is discharged. Thus there
is a current that flows from the output capacitance to the
ground line VSS.

Accordingly, we make the following hypothesis. If the value of
state register switches from logic level 0 to logic level 1, the peak
current occurs in the power line VDD; on the other hand, if the
value of state register switches from logic level 1 to logic level 0,
the peak current occurs in the ground line VSS.
To verify this hypothesis, we perform an experiment in which D-
type flip-flop DFFX2 in TSMC 0.18 µm standard cell library is
used as the state register. We assume that the clock transition time
is 0.100 ns and the output capacitance is 0.300 pf. Figure 3 gives
the HSPICE simulation results. The notation V(CLK) denotes the
voltage of clock pin CLK. The notation V(Q) denotes the voltage
of output pin Q. Note that the value of output pin Q corresponds
to the value of state register. The notation I(VDD) denotes the
current that flows from the power line VDD. The notation I(VSS)

denotes the current that flows to the ground line VSS. As shown in
Figure 3, the HSPICE simulation results are consistent with our
analysis:
(1) If the value of the state register (i.e., the value of output pin

Q) switches from logic level 0 to logic level 1, the maximum
current of I(VDD) is 692 µA, while the maximum current of
I(VSS) is 348 µA. Therefore, if the value of state register
switches from logic level 0 to logic level 1, the peak current
occurs in the power line VDD.

(2) If the value of the state register switches from logic level 1 to
logic level 0, the maximum current of I(VDD) is 303 µA,
while the maximum current of I(VSS) is 829 µA. Therefore, if
the value of state register switches from logic level 1 to logic
level 0, the peak current occurs in the ground line VSS.

Figure 3: Simulation waveforms of D-type flip-flop.

4. MOTIVATION
Previous low power state encoding algorithms do not consider the
switching directions of state registers. However, even though the
same state registers switch, different combinations of switching
directions still result in different peak currents.
We consider the following two encoding solutions for a state
transition Si→Sj.
(1) If the binary codes of state Si and state Sj are 000 and 111,

respectively, the number of switching state registers is 3.
(2) If the binary codes of state Si and state Sj are 001 and 110,

respectively, the number of switching state registers is also 3.
Since the numbers of switching state registers are the same, the
two encoding solutions are expected to have the same power
consumption. Therefore, in previous low power state algorithms,
the two encoding solutions are supposed to have exactly the same
quality for this state transition.
However, in fact, for a state transition Si→Sj, the two encoding
solutions correspond to different peak currents. We analyze their
peak currents as below.

34

(1) If the binary codes of state Si and state Sj are 000 and 111,
respectively, all the three state registers switch from logic
level 0 to logic level 1. Therefore, the output capacitances of
all the three state registers are charged.

(2) If the binary codes of state Si and state Sj are 001 and 110,
respectively, two state registers switch from logic level 0 to
logic level 1 and one state register switches from logic level
1 to logic level 0. Therefore, the output capacitances of two
state registers are charged and the output capacitance of one
state register is discharged.

The peak current of the first encoding solution is caused by the
simultaneous charging activities of three state registers, while the
peak current of the second encoding solution is caused by the
simultaneous charging activities of two state registers. Therefore,
the peak current of the second encoding solution is about 2/3 that
of the first encoding solution. Obviously, from the viewpoint of
peak current, the second encoding solution has better quality.

5. ILP APPROACH
In this section, we use ILP to formulate our problem: re-encoding
an FSM to minimize the peak current caused by the state
transition. Note that, for each state transition, the switching state
registers in our re-encoded FSM must be exactly the same as those
in the original FSM. Therefore, the peak current is minimized
with no penalty on average power consumption.
For brevity sake, we use the term “peak value” to denote the
maximum number of state registers that simultaneously switch in
the same direction. Our objective is to minimize the peak value,
and our ILP method guarantees obtaining the optimal solution.
Suppose that the given encoded FSM has s states, and the
corresponding hardware implementation has m state registers,
where 2m ≥ s. Without loss of generality, we assume that these m
state registers are R0, R1, …, and Rm-1, and the state register Rm-1
denotes the most significant bit of each binary code.
For each state transition Si→Sj in the given encoded FSM, we
define the two following functions: switching function hi→j and
direction function di→j. The switching function hi→j denotes the
switching activities of state registers. If the value of state register
Rk has a change when the state transition Si→Sj occurs, then
hi→j(k) = 1; otherwise, hi→j(k) = 0. The direction function di→j
denotes the switching directions of state registers. If the value of
state register Rk switches from logic level 0 to logic level 1 when
the state transition Si→Sj occurs, then di→j(k) = 1; otherwise,
di→j(k) = 0.
Our approach is to re-encode the given encoded FSM. For each
state register Rk, we define a binary variable xk to denote the
difference between our re-encoded FSM and the original given
encoded FSM. If the value of the binary variable xk is 0, then the
value of state register Rk remains unchanged. On the other hand, if
the value of the binary variable xk is 1, then the value of state
register Rk is complemented.
Let the integer variable peak represent the peak value. Then, this
problem can be thought of as the problem of minimizing the value
of the integer variable peak by assigning an appropriate binary
value (i.e., 0 or 1) to each binary variable xk, where k = 0, 1, …,
m-1. Note that each state transition Si→Sj imposes the following
two constraints on the value of the integer variable peak.
(1) If the state register Rk switches from logic level 0 to logic

level 1 in the original given encoded FSM and the value of
the binary variable xk is 0, then the state register Rk switches

from logic level 0 to logic level 1 in our re-encoded FSM. On
the other hand, if the state register Rk switches from logic
level 1 to logic level 0 in the original given encoded FSM
and the value of the binary variable xk is 1, then the state
register Rk also switches from logic level 0 to logic level 1 in
our re-encoded FSM. The number of state registers that
simultaneously switch from logic level 0 to logic level 1
gives a lower bound on the peak value. The constraint can be
formulated as below:

1 1

0 0

() ()) () ()) .
m m

i j i j k i j i j k
k k

h k d k x h k d k x peak
− −

→ → → →
= =

× ×(1− + ×(1− × ≤∑ ∑

(2) The number of state registers that simultaneously switch
from logic level 1 to logic level 0 gives a lower bound on the
peak value. This constraint can be formulated as below:

1 1

0 0

() ())) () () .
m m

i j i j k i j i j k
k k

h k d k x h k d k x peak
− −

→ → → →
= =

×(1− ×(1− + × × ≤∑ ∑

Therefore, if the given encoded FSM has n state transitions, our
ILP formulation has 2n constraints.
Take the state transition graph shown in Figure 1 as an example.
Suppose that the binary codes of state S0, S1, S2, S3, S4, S5, and S6
are 000, 010, 101, 011, 110, 100, and 111, respectively, and Table
1 tabulates the binary code of each state. Then, we analyze the
peak value of this given encoded FSM. For each state transition,
Table 2 describes the switching directions of state registers and
their corresponding currents. When the state transition S0→S3
occurs, two state register switch from logic level 0 to logic level 1
(i.e., the output capacitances of two state register are charged);
when the state transition S0→S6 occurs, three state registers
simultaneously switch from logic level 0 to logic level 1; and so
on. From Table 2, we find that the peak value of this given
encoded FSM is 3 and it is caused by the state transition S0→S6.

S0 S1 S2 S3 S4 S5 S6
000 010 101 011 110 100 111

Table 1: Original binary codes of states.

State Registers State
Transition R2 R1 R0

Corresponding Currents

S0→S3 0→0 0→1 0→1 2 charging
S0→S6 0→1 0→1 0→1 3 charging
S1→S0 0→0 1→0 0→0 1 discharging
S2→S0 1→0 0→0 1→0 2 discharging
S2→S5 1→1 0→0 1→0 1 discharging
S3→S0 0→0 1→0 1→0 2 discharging
S3→S1 0→0 1→1 1→0 1 discharging
S4→S2 1→1 1→0 0→1 1 charging, 1 discharging
S4→S5 1→1 1→0 0→0 1 discharging
S5→S3 1→0 0→1 0→1 2 charging, 1 discharging
S5→S6 1→1 0→1 0→1 2 charging
S6→S4 1→1 1→1 1→0 1 discharging
S6→S5 1→1 1→0 1→0 2 discharging

Table 2: Analysis of the given encoded FSM.

Table 3 tabulates the switching function and direction function of
this given encoded FSM. For example, for the state transition
S0→S3, we have h0→3(2) = 0, h0→3(1) = 1, h0→3(0) = 1, d0→3(2) = 0,
d0→3(1) = 1, and d0→3(0) = 1. According to Table 3, we have the
following ILP formulation:
minimize peak subject to
(1-x1)+(1-x0) ≤ peak; x1+x0 ≤ peak;
(1-x2)+(1-x1)+(1-x0) ≤ peak; x2+x1+x0 ≤ peak;
x1 ≤ peak; (1-x1) ≤ peak;

35

x2+x0 ≤ peak; (1-x2)+ (1-x0) ≤ peak;
x0 ≤ peak; (1-x0) ≤ peak;
x1+x0 ≤ peak; (1-x1)+(1-x0) ≤ peak;
x0 ≤ peak; (1-x0) ≤ peak;
x1+(1-x0) ≤ peak; (1-x1)+x0 ≤ peak;
x1 ≤ peak; (1-x1) ≤ peak;
x2+(1-x1)+(1-x0) ≤ peak; (1-x2) +x1+x0 ≤ peak;
(1-x1)+(1-x0) ≤ peak; x1+x0 ≤ peak;
x0 ≤ peak; (1-x0) ≤ peak;
x1+x0 ≤ peak; (1-x1)+(1-x0) ≤ peak.

After solving the ILP formulation, we have peak = 2 under the
condition that x2= 0, x1 = 0, and x0 = 1. Therefore, the values of
state registers R2 and R1 remain unchanged and the value of state
register R0 is complemented. As a result, we obtain the re-
encoding solution shown in Table 4. For each state transition,
Table 5 describes the switching directions of state registers and
their corresponding currents. Compared with the original given
encoded FSM, the peak value is reduced from 3 to 2. Therefore,
our approach reduces the peak value about 33.3%, i.e., (3-2)/3.

switching function hi→j(k) direction function di→j(k) State
Transition R2 R1 R0 R2 R1 R0

S0→S3 0 1 1 0 1 1
S0→S6 1 1 1 1 1 1
S1→S0 0 1 0 0 0 0
S2→S0 1 0 1 0 0 0
S2→S5 0 0 1 0 0 0
S3→S0 0 1 1 0 0 0
S3→S1 0 0 1 0 0 0
S4→S2 0 1 1 0 0 1
S4→S5 0 1 0 0 0 0
S5→S3 1 1 1 0 1 1
S5→S6 0 1 1 0 1 1
S6→S4 0 0 1 0 0 0
S6→S5 0 1 1 0 0 0

Table 3: Switching function and direction function.

S0 S1 S2 S3 S4 S5 S6
001 011 100 010 111 101 110

Table 4: Our re-encoding solution.

State Registers State
Transition R2 R1 R0

Corresponding Currents

S0→S3 0→0 0→1 1→0 1 charging, 1 discharging
S0→S6 0→1 0→1 1→0 2 charging, 1 discharging
S1→S0 0→0 1→0 1→1 1 discharging
S2→S0 1→0 0→0 0→1 1 charging, 1 discharging
S2→S5 1→1 0→0 0→1 1 charging
S3→S0 0→0 1→0 0→1 1 charging, 1 discharging
S3→S1 0→0 1→1 0→1 1 charging
S4→S2 1→1 1→0 1→0 2 discharging
S4→S5 1→1 1→0 1→1 1 discharging
S5→S3 1→0 0→1 1→0 1 charging, 2 discharging
S5→S6 1→1 0→1 1→0 1 charging, 1 discharging
S6→S4 1→1 1→1 0→1 1 charging
S6→S5 1→1 1→0 0→1 1 charging, 1 discharging

Table 5: Analysis of our re-encoded FSM.

6. HEURISTIC ALGOROTHM
Our heuristic algorithm is an iteration process of re-encoding. For
an encoded FSM e, we define the followings: the notation peake
represents the peak value of encoded FSM e, the notation peake,i→j
represents the peak value of the state transition Si→Sj, and the
notation num(e,a) represents the number of state transitions whose
peak values are a.
Figure 4 gives the pseudo code of our algorithm, where the input
is an encoded FSM org. The notation sol denotes our current
solution. The function comp(sol,Rk) provides the re-encoding
solution of encoded FSM sol by complementing the value of state
register Rk. We say that the cost of encoded FSM e1 is smaller
than the cost of encoded FSM e2, if and only if one of the
following two conditions is met:
(1) The value of peake1 is smaller than the value of peake2.
(2) Both the value of peake1 and the value of peake2 are equal to

a, and the value of num(e1,a) is smaller than the value of
num(e2,a).

A state register Rk is marked if its value in our current solution sol
is complemented with that in the input org. At the beginning of
our algorithm, all state registers are unmarked. We say that an
unmarked state register Rbest is the best-improvement state register,
if both the following two conditions are met:
(1) The cost of re-encoding solution comp(sol,Rbest) is smaller
than the cost of our current solution sol.
(2) There does not exist another unmarked state register Rk so that
the cost of re-encoding solution comp(sol,Rk) is smaller than the
cost of re-encoding solution comp(sol,Rbest).
In each loop of the while-do loop iteration, we attempt to find the
best-improvement state register Rbest among all unmarked state
registers. If the best-improvement state register Rbest exists, our
solution sol becomes comp(sol,Rbest), and the state register Rbest is
marked. If we cannot find the best-improvement state register,
then we break from the while-do loop iteration and return our
current solution sol.

Procedure Heuristic(org)
begin

sol =org;
all state registers are unmarked;
while (true) do
begin

attempt to find the best-improvement state register Rbest
among all unmarked state registers;
if (the best-improvement state register Rbest exists) then
begin

sol = comp(sol,Rbest);
mark the best-improvement state register Rbest;

end
else return(sol);

end
end.

Figure 4: Pseudo code of our heuristic algorithm.

The number of loops spent in the while-do loop iteration is at
most m, where m is the number of state registers. In each loop of
the while-do loop iteration, the time complexity of finding the
best-improvement state register Rbest is O(mn), where n is the
number of state transitions. Therefore, the time complexity of our
heuristic algorithm is O(m2n).

36

7. APPLICATIONS AND EXTENSIONS
In this section, we study the applications and extensions of our
approach. We address the following three points.
First, our approach can be applied at different design stages. Here
we illustrate two methods to implement our re-encoding solution:
(1) One method is to apply the ECO process to implement our

re-encoding solution based on the gate-level netlist of the
original encoding solution. For each state register whose
value is complemented with the original encoding solution, a
pair of inverters is added around it.

(2) The other method is to apply the re-synthesis process to
implement our re-encoding solution. To control the peak
current of each state register, we can set constraints on the
output of each state register during the re-synthesis process
(e.g., the constraints on the maximum output capacitance
value and the maximum fan-out number).

Second, since it may be time-consuming to derive the state
transition graph of a data-dominated circuit, we propose a
simulation-based methodology as below. First, by analyzing the
switching directions of registers at each clock cycle of functional
simulation, our approach can be used to reduce the peak current of
functional simulation. Then, the ECO process (i.e., inserting
inverter-pairs around appropriate registers) can be used to
implement our solution. Note that, this simulation-based
methodology is practical, since in the existing design flow, the
designer also uses the functional simulation to validate the logic
function and power consumption of a data-dominated circuit.
Third, our objective function is not restricted to minimize the
number of state registers that simultaneously switch in the same
direction. In fact, if we are given a gate-level netlist, we can have
the output capacitance value of each register. Then, it is also
reasonable to minimize the summation of output capacitance
values that simultaneously switch in the same direction.

8. EXPERIMENTAL RESULTS
We use fourteen circuits to test the effectiveness of our approach.
The fourteen circuits are classified into the following two groups:
(1) There are ten FSM designs adopted from MCNC FSM

benchmark suite. Initially, these ten FSM designs are
encoded by the POW3 algorithm proposed in [4].

(2) There are four data-dominated circuits. The data-dominated
circuits IND1, IND2, and IND3 are industrial designs used in
wide-band application, and the data-dominated circuit DSP is
a digital signal processor.

8.1 Peak Value Minimization
We use Extended LINGO Release 8.0 as the ILP solver. As an
alternative, we also use C++ programming language to implement
our heuristic algorithm. Our platform is a Window XP personal
computer with AMD K8-3GHz CPU and 1 Giga-Bytes RAM.
Table 6 tabulates the experimental results on the ten FSM designs.
The column States gives the number of states. The column Trans
gives the number of state transitions. The column Peak Value
denotes the peak value. The column Original gives the peak value
obtained by the original encoding solution. The column Ours
describes the peak values obtained by our ILP approach and our
heuristic algorithm, respectively. The column ILP denotes our ILP
approach. The column Heuristic denotes our heuristic approach.
We find that, in every FSM design, our ILP approach and our
heuristic approach achieve exactly the same peak value. The
column Improve gives the relative improvement of our re-

encoding solution over the original encoding solution, i.e., 100% -
Ours / Original.
Table 7 tabulates the experimental results on the four data-
dominated circuits. The column Gates gives the number of logic
gates. The column Regs gives the number of registers. The
column Original gives the peak value of the original circuit by
analyzing the waveforms of functional simulation. Since the
problem size is too large (i.e., the simulation patterns includes too
many clock cycles), the ILP formulation cannot be solved within 6
hours. On the other hand, in each circuit, the CPU time of our
heuristic algorithm is within 6 hours. Therefore, the column Ours
only gives the peak values obtained by our heuristic algorithm.

Peak Value
Ours

Circuit States Trans
Original

ILP Heuristic
Improve

BBSSE 16 56 4 3 3 25.0 %
EX1 20 138 4 3 3 25.0 %
S298 218 1096 8 7 7 12.5 %
S386 13 64 3 2 2 33.3 %
S510 47 77 5 3 3 40.0 %
S832 25 245 4 3 3 25.0 %

SAND 32 184 4 3 3 25.0 %
SSE 16 56 4 3 3 25.0 %

STYR 30 166 4 3 3 25.0 %
TBK 32 1569 5 4 4 20.0 %

Table 6: Experimental results on FSM designs.

Peak Value Circuit Gates Regs
Original Ours

(Heuristic)
Improve

IND1 15329 1452 561 438 22.0 %
IND2 16863 597 207 171 17.3 %
IND3 5825 428 192 160 16.7 %
DSP 176685 6314 2852 2548 10.7 %

Table 7: Experimental results on data-dominated circuits.

8.2 Implementation Results
The fourteen test circuits are targeted to TSMC 0.18 µm process
technology. The logic synthesis tool is Synopsys Design Compiler.
To measure the peak current, we use Synopsys PrimePower as the
gate-level power simulator. For each FSM design, in the power
simulation process, every combination of state value and input
values occurs at least one time. For each data-dominated circuit,
the patterns used in power simulation are exactly the same as
those used in functional simulation.
First, we apply the ECO process (i.e., inserting inverter-pairs
around appropriate registers) to implement the results of our
approach. Table 8 tabulates the ECO implementations of the ten
FSM designs. Table 9 tabulates the ECO implementations of the
four data-dominated circuits. For the convenience of readers, in
Table 8 and Table 9, we compare the ECO implementations with
the original circuits. The column ECO denotes the ECO
implementation of our result. The column Registers Peak Current
gives the peak current of registers. The column Whole-Circuit
Peak Current gives the whole-circuit peak current. Note that the
whole-circuit peak current happens at the moment of state
transition. However, since the current waveforms of
combinational logic have some overlaps with the current
waveforms of registers, the whole-circuit peak current is larger
than the peak current of registers. The column Circuit Area gives

37

the circuit area. The column Over denotes the relative increase
(i.e., overhead) in the circuit area, i.e., ECO / Original - 100%.
Next, we apply the re-synthesis process to implement the results
of our approach. Note that the re-synthesis process is only
applicable to FSM designs. Therefore, we do not have the re-
synthesis implementations of data-dominated circuits. For the ten
FSM designs, Table 10 tabulates the comparisons of the re-
synthesis implementations of our result with the original circuit.
The column Re-Syn denotes the re-synthesis implementation.

9. CONCLUSIONS
Our paper is the first work for the minimization of peak current
caused by the state transition. We show that the peak current of a
switching state register is related to the switching direction. Based
on the observation, we propose an approach to re-encode an FSM
by considering the switching directions of state registers. Note
that our approach can be applied at different design stages.
Experimental data show that our approach works well in practice.

ACKNOWLEDGEMENTS
This work was supported in part by the National Science Council
of R.O.C. under grant number NSC 95-2221-E-033-076.

REFERENCES
[1] T. Villa and A. Sangiovanni-Vincentelli, “NOVA: State

Assignment of Finite State Machines for Optimal Two-Level
Logic Implementation,” IEEE Trans. on Computer-Aided
Design, vol. 9, no. 9, pp. 905—924, 1990.

[2] B.N.V.M. Gupta, H. Narayanan, and M.P. Desai, “A State
Assignment Scheme Targeting Performance and Area,” Proc. of
IEEE International Conference on VLSI Design, pp. 378—383,
1999.

[3] E. Olson and S.M. Kang, “State Assignment for Low-Power
FSM synthesis using Genetic Local Search,” Proc. of IEEE
Custom Integrated Circuits Conference, pp. 140—143, 1994.

[4] L. Benini and G.D. Micheli, “State Assignment of Low Power
Dissipation,” IEEE Journal of Solid State Circuits, vol. 30, no.
3, pp. 258—268, 1995.

[5] W. Noth and R. Kolla, “Spanning Tree Based State Encoding
for Low Power,” Proc. of IEEE/ACM Design, Automation, and
Test in Eurpoe, pp. 168—174, 1999.

[6] F. Gao and J.P. Hayes, “ILP-Based Optimization of Sequential
Circuits for Low Power,” Proc. of IEEE International
Symposium on Low Power Electronics and Design, pp. 140—
145, 2003.

Peak Value
(bits)

Registers Peak Current
(µA)

Whole-Circuit Peak Current
(µA)

Circuit Area
(µm2)

Circuit

Original Ours Improve Original ECO Improve Original ECO Improve Original ECO Over
BBSSE 4 3 25.0 % 2261 1412 37.5 % 2930 2088 28.7 % 1317 1337 1.5 %

EX1 4 3 25.0 % 1938 1785 7.9 % 3336 3127 6.3 % 2574 2601 1.0 %
S298 8 7 12.5 % 7167 6213 13.3 % 11883 11248 5.3 % 19705 19748 0.2 %
S386 3 2 33.3 % 739 497 32.7 % 1002 835 16.7 % 1423 1440 1.2 %
S510 5 3 40.0 % 2214 1508 31.9 % 2765 2226 19.5 % 2025 2059 1.7 %
S832 4 3 25.0 % 3203 2306 28.0 % 3931 3255 17.2 % 2840 2867 1.0 %

SAND 4 3 25.0 % 947 737 22.2 % 1389 1245 10.4 % 4297 4317 0.5 %
SSE 4 3 25.0 % 2161 1204 44.3 % 2530 1523 39.8 % 1317 1337 1.5 %

STYR 4 3 25.0 % 2947 2398 18.6 % 4389 3845 12.4 % 4038 4071 0.8 %
TBK 5 4 20.0 % 1119 1050 6.2 % 4177 4128 1.2 % 3276 3309 1.0 %

Table 8: ECO implementations of FSM designs.

Peak Value
(registers)

Registers Peak Current
(mA)

Whole-Circuit Peak Current
(mA)

Circuit Area
(µm2)

Circuit

Original Ours Improve Original ECO Improve Original ECO Improve Original ECO Over
IND1 561 438 22.0 % 143.2 112.4 21.5 % 214.0 187.2 12.5 % 304092 306137 0.7 %
IND2 207 171 17.4 % 51.2 41.4 19.1 % 96.4 81.1 15.9 % 125704 126302 0.5 %
IND3 192 160 16.7 % 36.3 28.7 20.9 % 53.6 43.9 18.1 % 65057 65558 0.8 %
DSP 2852 2548 10.7 % 439.4 398.0 9.4 % 695.3 661.3 4.9 % 2179926 2184783 0.2 %

Table 9: ECO implementations of data-dominated circuits.

Peak Value
(bits)

Registers Peak Current
(µA)

Whole-Circuit Peak Current
(µA)

Circuit Area
(µm2)

Circuit

Original Ours Improve Original Re-Syn Improve Original Re-Syn Improve Original Re-Syn Over
BBSSE 4 3 25.0 % 2261 1519 32.8 % 2930 2115 26.5 % 1317 1237 -6.1 %

EX1 4 3 25.0 % 1938 1098 43.3 % 3336 2555 23.4 % 2574 2621 1.8 %
S298 8 7 12.5 % 7167 5648 21.2 % 11883 11229 5.5 % 19705 19655 -0.3 %
S386 3 2 33.3 % 739 588 20.4 % 1002 883 11.9 % 1423 1423 0 %
S510 5 3 40.0 % 2214 2076 6.2 % 2765 2644 4.4 % 2025 2029 0.2 %
S832 4 3 25.0 % 3203 2835 11.5 % 3931 3716 5.5 % 2840 2983 1.5 %

SAND 4 3 25.0 % 947 730 22.9 % 1389 1163 16.3 % 4297 4454 3.7 %
SSE 4 3 25.0 % 2161 1549 28.3 % 2530 1854 26.7 % 1317 1237 -6.1 %

STYR 4 3 25.0 % 2947 2461 16.5 % 4389 4077 7.1 % 4038 4028 -0.2 %
TBK 5 4 20.0 % 1119 1097 2.0 % 4177 4150 0.6 % 3276 3379 3.1 %

Table 10: Re-synthesis implementations of FSM designs.

38

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

