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ABSTRACT
Most existing RCL−1 circuit reductions stamp inverse induc-
tance L−1 elements by a second-order nodal analysis (NA). The
NA formulation uses nodal voltage variables and describes in-
ductance by nodal susceptance. This leads to a singular ma-
trix stamping in general. We introduce a new circuit stamp-
ing for RCL−1 circuits using branch vector potentials. The new
circuit stamping results in a first-order circuit matrix that is
semi-positive definite and non-singular. We call this as vector-
potential based nodal analysis (VNA). It enables an accurate and
passive reduction. In addition, to preserve the structure of state
matrices such as sparsity and hierarchy, we represent the flat
VNA matrix in a bordered-block diagonal (BBD) form. This en-
ables us to build and simulate the macromodel efficiently. In ex-
periments performed on several test cases, our method achieves
up to 15X faster modeling building time, up to 33X faster sim-
ulation time, and as much as 67X smaller waveform error com-
pared to SAPOR, the best existing second order RCL−1 reduction
method.

Categories and Subject Descriptors: B.7.2[Hardware]: In-
tegrated circuits – Design aids

General Terms: Algorithms, Design

Keywords: Inductance and Interconnect Modeling, Model Or-
der Reduction

1. INTRODUCTION
Inductance is important in analysis of high-performance inter-

connects. The small scale of high-speed signal nets in on-chip
integration can be well handled using the existing model order
reduction [1]. However, for system on a chip or on a package,
there exist components with high complexity and strong mag-
netic coupling. To ensure signal and power integrity, complete
RLC models are required. A detailed 3D extraction using the
partial-element equivalent circuit (PEEC) model [2] introduces
densely coupled inductances. The extracted model is dense and
large. Sparsification and model order reduction (MOR) are hence
both needed to reduce a large scale RLC circuit.

Compared to the dense partial inductance matrix (L), L−1

matrix is easier to sparsify [3, 4], where L−1 elements are related
to the drop of the branch vector potential [4]. Existing model
order reduction techniques [1], however, stamp L in the MNA
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(modified nodal analysis) [5] matrix with the first-order admit-
tance. Because directly stamping L−1 in the MNA matrix leads
to an asymmetric circuit stamping, a reduction using PRIMA
does not preserve passivity [6]. To passively reduce the linear
circuit containing L−1, ENOR [7] stamps the nodal susceptance:
Γ = ElL

−1ET
l (El is the incident matrix for inductance). It re-

sults in a second-order NA (nodal analysis) matrix, which can
be passively reduced. SAPOR further improves the accuracy of
orthonormalization by using the second-order Arnoldi method [8].

With detailed discussion in Section 2, Γ and G matrices in NA
are recognized to be singular in general. Thus the transfer func-
tion of NA cannot be expanded at dc (s = 0). As a result, the
reduced state matrices can not be directly stamped in the cir-
cuit matrix together with active devices for transient simulation.
To avoid singularity, SuPreme [9] applies the double-inversion
to stamp L−1 in MNA. However, it introduces additional fac-
torization costs due to the double inversion. In this paper, we
introduce the branch vector potential as a new state variable and
obtain a first-order admittance that contains L−1 elements. The
new stamping is called vector-potential nodal analysis (VNA).
The state matrices in VNA are semi-positive definite and non-
singular, which can be passively reduced by congruence transfor-
mation with the block Arnoldi orthonormalization. Compared
to [9] with double inversions, our method is more efficient.

In addition, we propose a fast structure-preserving reduction
to build and simulate the reduced macromodel efficiently. Dif-
ferent from SPRIM [10], a structure-preserving reduction that
relates the structure of the high-order system to the first-order
system, our method aims at preserving the structure of state ma-
trices such as the sparsity and the hierarchy. In this paper, we
extend a two-level bordered-block diagonal (BBD) decomposition
developed in BSMOR [11], which can consider couplings between
blocks. Note that no inductance was considered in [11], and its
moment matching was not localized. In this paper, we show that
the moments can be matched locally by using only the diagonal
blocks in the BBD state matrices. The macromodel hence can be
efficiently constructed and simulated. Experimental results show
that compared to SAPOR, an existing second order RCL−1 re-
duction method, our approach is up to 15X and 33X faster to
build and analyze macromodels, respectively. In addition, our
method has 67X smaller waveform error.

The rest of this paper is organized as follows. In Section 2,
we detail the limitations of stamping L−1 in NA. In Section 3,
we show that circuits containing L−1 elements can be written
in a first-order form using VNA, which is non-singular and can
be reduced with preserved passivity. We call it VOR (Vector-
potential based model Order Reduction) method. In Section 4,
we further introduce a BBD-structure preserving model order re-
duction (BVOR) for large sized VNA circuits. We present exper-
iments in Section 5 and conclude in Section 6. Proofs of theorems
and more details can be found in a technical report [12]

2. BACKGROUND
Considering branch resistive (G), capacitive (C), inductive (L)

elements, the external excitation current I(s) as input, and the
probing voltage u(s) as output, the KCL and KVL equations in
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Figure 1: Two coupled wires with (a) inductances
and (b) susceptances (S = L−1). In addition, (c) is a
VNA-graph composed by nodal voltage and branch
vector-potential for the two-wire example, where b-
branch stands for capacitive branch, and a-branch
stands for inductive branch.
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Figure 2: Stamping the first-order admittance in
MNA matrix, where (a), (b) and (c) represent G, C
and B in Eqn. (3). G is non-singular.

the s-domain are

EiTb = 0, ET vn = vb, (1)

where E = [Eg Ec El Ei]T is the incident matrix, ib =

[ig ic il ii]
T and vb = [vg vc vl vi]

T are branch current
and voltage, respectively, and vn is nodal-voltage. The subscripts
(g, c, l, i) stand for the corresponding components for (G, C, L,
I). For example, the branch currents are determined by

ig = Gvg, ic = sCvc, vl = sLil, ii = −I(s). (2)

By defining nodal admittance matrices: G = EgGET
g and C =

EcCET
c , and only reserving the nodal-voltage vn (∈ Rnv , nv

is the number of nodal-voltage variables) and inductive branch-
current il (∈ Rni , ni is the number of inductive branch-current
variables) as the state variables, (1) and (2) can be represented
in the MNA matrix with the first-order admittance

(G + sC)x(s) = BI(s) u(s) = BT x(s). (3)

where

x(s) =

»
vn

il

–
,B =

»
Ei

0

–
,

and

G =

»
G El

−ET
l 0

–
, C =

»
C 0
0 L

–
(4)
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Figure 3: Stamping the second-order admittance in
NA matrix, where (a), (b) and (c) represent for G,
Γ, C and B in Eqn. (7). G and Γ are both singular
for 6 × 6 matrices. Note that S = L−1 in the table.

when stamping in L. Note that the input and output ports are
assumed to be identical. Fig. 2 presents the G, C and B for the
circuit example in Fig. 1. Note that G and C become

G =

»
G El

−L−1ET
l 0

–
, C =

»
C 0
0 I

–
(5)

when stamping in L−1. The difference between (4) and (5) is that
the state matrix G in (5) does not satisfy: G + GT � 0, i.e., it
is not symmetric and semi-positive definite. Therefore, directly
applying the congruence transformation by projecting (5) does
not preserve passivity [6].

With G and C matrices defined in (5), (3) can be written as

(G + sC)vn + Elil = EiI(s), sil = L−1ET
l vn. (6)

It is in fact the KCL’s law. Because in most applications only
nodal-voltage vn is of interest, the inductive branch-current il
can be eliminated as an intermediate variable. Therefore, (6)
can be further written in the NA matrix with the second-order
admittance

(sC + G + Γ/s)x(s) = EiI(s) u(s) = ET
i x(s), (7)

where
x(s) = vn, Γ = ElL

−1ET
l .

Γ is the nodal susceptance similar to G and C. In addition, the
time-domain response by NA is obtained by

(G +
C

h
+ Γ · h)vn(t + h) =

C

h
vn(t) − Elil(t) − EiI(t + h) (8)

at time instant t with step h.
Fig.3 shows the stamping of Γ for the example of two wires in

Fig. 1. In this form, G, C and Γ are all symmetric and positive
definite. SAPOR [8] can passively reduce (7) by constructing
orthonormalized columns to span a second-order Krylov subspace.

Yet, there exist limitations related to the second-order NA
stamping for L−1 elements. It is primarily due to the singularity.
Here the singularity means: (i) the circuit matrix is indefinite at
some frequency point or time instant; and (ii) the circuit ma-
trix is rank-deficient, i.e., there exists linear dependence between
columns or rows. Correspondingly, we have the following obser-
vations:

Observation 1. Nodal admittance is indefinite at dc.

Due to the stamping of Γ, it is obvious that at dc (s → 0, or
h → ∞), the nodal admittance in (7) and (8) becomes indefinite
(approaching to infinity).
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Observation 2. A PEEC-based extraction results in an in-
terconnect model with π-topology, where R and L are serially
connected [2] for one piece of interconnect. Assuming that there
exists dc-path for the interconnect network, then stamping R and
L separately into G and Γ by NA results in a singular stamping.

Observation 2 can be understood as follows. If there are NR

resistors and NL inductors serially connected, then the number of
nodal-voltage variables is NR +NL +1. In other words, G matrix
has only NL stamped resistors but has total NR + NL + 1 nodal-
voltage variables. Therefore, G is rank-deficient, i.e., singular.
The same reason can explain why Γ is singular. These singulari-
ties are clearly shown in Fig.3. Here we assume that there exists
dc-path for interconnect network. It can be always satisfied when
connecting interconnect network with input sources or active de-
vices (See source resistors in Fig.1 (a)). But the singularity in
NA remains even when connected externally [12].

A non-singular circuit matrix is needed by an accurate model
order reduction and a SPICE-like time-domain simulation. Be-
cause Γ is singular, the second-order admittance K = s2

0C+s0G+
Γ becomes indefinite (approaching to infinity) at dc (s0 = 0). As
a result, the moment generation matrix in SAPOR [8] has large
numerical error around dc as well, and hence the reduced model
expanded at dc is inaccurate (See Fig.6 later on). Therefore,
SAPOR needs to choose a non-zero expansion point s0 to ensure
that A is not singular. s0 often uses a large value due to the
magnitude difference between G, C and Γ matrices. This leads
to an inaccurate matching at the low-frequency region (See Fig.6
later on). More importantly, a reduction with nonzero s0 expan-

sion results in circuit matrices eG, eC and eΓ that do not have real
values. As a result, it is inconvenient to stamp them in a circuit
matrix together with active devices for time-domain simulation.

In contrast, MNA [5] uses inductive-branch current il to de-
scribe inductance (See (4)). It combines the singular G together
with El (describing branch inductors). The resulting G is non-
singular. For example, if we assume there is an inductive-branch
current ik between voltage node vi and vj , the combined matrix
G below has nonzero entries at node vi and vj , i.e.,

G =

2
666666666664

vi vj ik
.
.
.

.

.

.
.
.
.

· · · 0 · · · · · · 1 · · ·
.
.
.

.

.

.
.
.
.

· · · · · · 0 · · · −1 · · ·
.
.
.

.

.

.
.
.
.

3
777777777775

. (9)

Therefore, the combined G is non-singular even when there is no
conductance stamped at vi and vj . Ensuring the non-singularity
of G is critical for simulation. Because in both model reduction
and time-domain simulation, G needs to be factorized accurately.

Moreover, L is stamped together with C in MNA, and the re-
sulting sC becomes a zero matrix 0 at dc (s = 0). Hence, the
MNA is definite at dc, different from NA which is indefinite (Ob-
servation 1). In summary, the singularity is only related to how
we construct the circuit matrix. Only MNA can correctly de-
scribe inductances without a singular stamping. However, MNA
is not symmetric and positive definite when stamping inverse-
inductance. This will be solved below.

3. VNA MATRIX

3.1 Stamping L−1 by Vector Potential Variable
We start with the differential Maxwell equations in terms of

the vector potential A [4]:

∇2A = −µJ,
∂A

∂t
= −E (10)

where J is current density, E is electrical field, and µ is perme-
ability constant. For each filament (a constant branch current),
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Figure 4: Stamp first-order admittance in VNA ma-
trix, where (a), (b) and (c) represent G, C and B in
Eqn.(14). G is non-singular.
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Figure 5: Stamping the first-oder admittance in a
bordered-block diagonal VNA matrix, where (a),
(b) and (c) represent G, C and B in Eqn.(19). G
is non-singular.

by defining a branch vector potential Al as the average volume
integral of A within the volume τ :

Al =
1

τ

Z
τ
Adτ,

(10) can be rewritten in the following circuit equations:

L−1Al = il,
∂Al

∂t
= Elvn (11)

with El and vn defined in (1). The detailed derivation can be
found in [4]. However, [4] only presented a SPICE-compatible
equivalent circuit, but did not discuss how to stamp the VPEC
in the circuit matrix. In this paper, we show that by using branch
vector potential Al as a new state variable to replace the il, L−1

element can be stamped into a circuit matrix that is non-singular
and can be passively reduced.

Note that (11) leads to

(L−1ET
l )vn = sL−1Al. (12)

In addition, according to KCL law, we have

(G + sC)vn + El(L
−1Al) = EiI(s). (13)

As a result, by introducing a new state variable

x =

»
vn

Al

–
,
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a first-order admittance can be obtained

Gx(s) + sCx(s) = BI(s) u(s) = BT x(s), (14)

where

G =

»
G (ElL

−1)
−(L−1ET

l ) 0

–
C =

»
C 0
0 L−1

–

B =

»
Ei

0

–
. (15)

Because

G + GT =

»
2G 0
0 0

–
, C + CT =

»
2C 0
0 2L−1

–
, (16)

G + GT and C + CT are symmetric and semi-positive definite in
VNA.

In addition, the G for interconnect is non-singular in VNA. Let
L−1

kk at branch ik be an element between node vi and vj . The

product of ElL
−1 is

2
666666666664

ik
.
.
.

vi · · · 1 · · ·
.
.
.

vj · · · −1 · · ·
.
.
.

3
777777777775

×

2
6666666664

ik
.
.
.

ik · · · L−1
kk · · ·

.

.

.

3
7777777775

=

2
6666666666664

ik
.
.
.

vi · · · L−1
kk · · ·

.

.

.

vj · · · −L−1
kk · · ·

.

.

.

3
7777777777775

, (17)

which still has nonzero entries at vi and vj . Therefore, stamping

ElL
−1 and its transpose together with G results in a non-singular

G similarly as MNA does, and Fig.4 presents G, C and B in VNA
for the two-wire example. In contrast, both [7] and [8] use the
NA form, which contains singular G and Γ.

3.2 Reducing L−1 in First-Order Form
After stamping, we can perform model order reduction similar

to PRIMA. Solving (14) results in a transfer function H(s) =
BT (G + sC)−1B. By expanding of H(s) at s0 (s = s0 + σ), it can
be easily verified that the result is contained in the block Krylov
subspace: {A,AR, · · · Aq−1R, ...}. with two moment generation
matrices: A = (G+s0C)−1C and R = (G+s0C)−1B. A projection
matrix Q that spans the qth block Krylov subspace

K(A,R, q) = {A,AR, · · ·Aq−1R} ⊆ Q

can be constructed from the block Arnoldi method [1]. Using Q
to project G, C and B matrices respectively, we obtain

Ĝ = QTGQ, Ĉ = QT CQ, B̂ = QTB. (18)

The resulting reduced transfer function is Ĥ(s) = B̂T (Ĝ+sĈ)−1B̂.
We call this reduction as VOR (nodal Vector-potential based

model Order Reduction) method. The reduced model Ĥ(s) has
the following properties [12].

Theorem 1. The first q block moments expanded at s0 are

identical for Ĥ(s) and H(s).

Theorem 2. When the input and output are symmetric, Ĥ(s)
projected by Q is passive.

However, the reduction by VOR is constructed and projected
in a flat fashion, and hence the according macromodel is ineffi-
cient to construct and simulate. To improve efficiency, we further
introduce a block structured reduction below.

4. BBD STRUCTURED REDUCTION

4.1 Bordered-Block Diagonal Representation
The first step in BBD decomposition is to partition the VNA

circuit into several blocks by branch-tearing [11]. Note that branch-
tearing can consider couplings between different blocks.

A min-cut multilevel algorithm [13] is used to partition a VNA
graph into user-specified m blocks, each block with size nbi and
npi external ports. Since the number of inductive branches is
much larger than that of capacitive branches, we define the graph
composed by inductive branches as VNA graph. The resulting m
blocks with no coupling in between are at the bottom level of
BBD. The top-level is one global interconnection block that con-
nects all blocks by corresponding cut matrices. The interconnec-
tion block has size n0 and contains all coupling branches between
any pair of blocks at the bottom level.

Precisely, the resulting BBD system equation is

Y x = Bu (19)

where

Y =

2
666664

Y1 0 . . . 0 X10

0 Y2 . . . 0 X20

.

..
.
..

. . .
.
..

.

..
0 0 . . . Ym Xm0

−(X10)T −(X20)T . . . −(Xm0)T Z0

3
777775

B =

2
666664

B1 0 . . . 0 0
0 B2 . . . 0 0
...

...
. . .

...
...

0 0 . . . Bm 0
0 0 . . . 0 0

3
777775

and

x = [x1, x2, . . . , xm, i0]T , u = [u1, u2, . . . , um, 0]T .

For each block Yi, xi is the state variable, the first-order VNA
admittance is Gii + sCii (∈ Rnbi×nbi ), Bi is the excitation-

port incidence matrix (∈ Rnbi×npi ) for external current sources,
and Xi0 is the connection-port incidence matrix (cut matrix)
(∈ Rnbi×n0 ).

For the global interconnection block Z0 at the bottom, i0
is the state variable, (Zg)0 + s(Zc)0 (∈ Rn0×n0 ) is its branch
impedance matrix. It is diagonal and contains all coupling branch
impedances described by the set of cut matrices of Xi0. Because
of the branch-tearing, all external sources are counted at each
block by Bi, and there are no external sources in Z0. Note that
the off-diagonal block in the original flat VNA matrix can be
recovered by

Gij + sCij = −(Xi0)T (Z0)−1(Xj0). (20)

As Z0 is a diagonal matrix, inverting Z0 is efficient. Fig.1 (c)
presents a VNA-graph for the two-wire example. BBD represen-
tation introduces a sparse representation, but the overall system
size is increased by Z0. Below, we show that the reduction and
factorization in BBD form can be performed at the block level
with reduced computational cost and memory requirement.

4.2 BBD-Structured Reduction
We first construct a block diagonal projection matrix,

Q = diag[Q1, Q2, ..., Q0] (21)

where Qi ∈ Rnbi×q (1 ≤ i ≤ m).
Each projection block Qi is constructed from each diagonal

block in (19) independently, where

K(Aii,Rii, q) ⊆ Qi. (22)

Note that Q0 is an identity matrix I0 (∈ Rn0×n0 ), because there
are no excitation sources for block Z0 and Z0 contains only diag-
onal entries.
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Figure 6: Frequency and time domain waveform
comparison of full-MNA, SAPOR (order=80) and
VOR (order=80). The reduced models are ex-
panded close to dc (s0 = 10Hz) in (a) and (b).VOR
and original are visually identical. The reduced
model by SAPOR can not converge in time-domain
simulation.In addition, the reduced models are ex-
panded at s0 = 1GHz in (c) and (d). VOR is identical
to the exact MNA in both ranges,but SAPOR has
large error at low-frequency range.

Figure 7: BBD structure-preserving of state matri-
ces G and C before and after reduction, where NZ is
the number of non-zero entries.

Because QT Q = I, i.e., each column of Q is still linearly inde-
pendent and the total column-rank of Q (rank=2mq) is increased
by a factor of m compared to the column-rank of Q (rank=q).
The m-times increased column-rank means m-times more poles
can be approximated after projection.

Decompose the BBD admittance into the diagonal and off-
diagonal parts:

Y = (Yg + Yx) + s(Yc + Yx)

where the diagonal parts are

Yg = diag[G1, ...,Gm, (Zg)0], Yc = diag[C1, ...,Cm, (Zc)0]

and the off-diagonal part is

Yx =

2
666664

0 0 . . . X10

0
. . .

. . .
...

...
. . .

. . . Xm0

−XT
10 . . . −XT

m0 0

3
777775 .

We can obtain the order reduced state matrices by projecting Q:

eYg + eYx = QT (Yg + Yx)Q, eYc + eYx = QT (Yc + Yx)Q, eB = QT B

and hence define the transfer function

eH(s) = eBT [(eYg + eYx) + s(eYc + eYx)]−1 eB. (23)

We call this reduction as BVOR (BBD based VOR) method.
In addition, we define the moment generation matrices for the

original BBD as

A = [(Yg + Yx) + s0(Yc + Yx)]−1(Yc + Yx)

R = [(Yg + Yx) + s0(Yc + Yx)]−1B,

and those for its diagonal blocks as

A0 = (Yg + s0Yc)
−1Yc, R0 = (Yg + s0Yc)

−1B.

Accordingly, we have the following properties for reduced eH(s)
[12].

Theorem 3. The qth-block Krylov space of BBD system is
contained by the qth-block Krylov space spanned by the diagonal
block of the BBD system, i.e., K(A,R, q) ⊆ K(A0,R0, q). There-
fore, the first q expanded block moments at s0 are identical foreH(s) and H(s).

Theorem 4. When the input and output are symmetric, eH(s)
projected by Q is passive.

Moreover, because the structured projection preservers the BBD
structure, it enables a two-level domain-decomposition proposed
in [11] to solve each reduced block independently. Each reduced
block matrix is first solved individually with LU factorization and
substitution. The results from each reduced block are then fur-
ther used to solve the coupling block. The final xi of each reduced
block is updated with the result from the coupling current i0. As
shown by experiments in Section 5, because building and solv-
ing the sparse BBD system are both performed at block level,
the overall runtime is reduced although the system size becomes
larger than the original MNA. However, there is a trade-off of
sparsity and partition-time. When increasing the block number,
the resulting BBD form becomes sparser but the partition time
becomes larger to construct the cut matrix.
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Table 1: Runtime comparison of SAPOR, VOR and BVOR with similar accuracy.
ckt size block Original(MNA) SAPOR(NA) VOR(VNA) BVOR(BBD-VNA)

(before:after) # sim(s) build(s) sim(s) build(s) sim(s) build(s) sim(s)

bus8x20 325:40 4 99.3 2.02 11.90 1.41 9.32 0.36 4.32
bus32x20 1200:200 16 1.96e3 16.9 102.3 14.3 89.2 2.12 12.5
bus128x20 6000:500 64 8.73e4 92.7 1.05e3 59.6 905.2 6.01 31.6
bus256x20 12000:800 64 NA NA NA NA NA 67.5 158.8
clktree1 1215:200 4 2.09e3 18.7 104.1 15.7 91.2 1.88 11.2
clktree2 2100:300 8 6.02e3 23.4 553.3 14.2 429.2 3.06 22.7
clktree3 4500:400 16 1.83e4 101.9 640.0 58.2 569.2 6.15 25.2
clktree4 36000:800 16 NA NA NA NA NA 653.2 2.38e3
mesh1 800:80 8 524.1 10.0 31.2 5.12 16.76 1.12 7.48
mesh2 2000:200 16 5.42e3 19.1 105.5 15.7 55.8 2.01 12.2
mesh3 6000:400 32 1.08e5 96.3 649.9 51.2 575.3 7.29 25.2
mesh4 48000:1200 32 NA NA NA NA NA 1.07e3 16.9e3

5. NUMERICAL EXPERIMENTS
Numerical experiments are presented to demonstrate the accu-

racy and efficiency of the proposed V OR and BV OR methods.
They are compared with the exact MNA and SAPOR [8], the best
existing second-order NA based reduction. All methods are im-
plemented in MATLAB and C. Experiments are run on a Linux
workstation with Intel Pentium IV 2.66G CPU and 2G RAM. The
RCL−1 circuits are extracted for buses, clock-trees and meshes.
Model order reduction is first performed to obtain the reduced
state matrices that are stamped back for the frequency and time-
domain simulations. The Backward-Euler method is used to ob-
tain the time-domain transient waveform.

The first example is an 8-bit bus with 20 segments per bit,
similar to the example used by SAPOR [8]. We first expand first-
order admittance in VNA and the second-order admittance in NA
around dc. All reductions have an order of q = 80. The near-
end of the first bit is excited with a unit current impulse, and
the response at far-end is observed. Fig.6 (a) and (b) show the
frequency and time domain responses of the exact MNA, reduced
models by SAPOR and by VOR. Because state matrices in NA
are close to singular, SAPOR shows large numerical errors beyond
1GHz. In contrast, VOR has a similar accuracy as the exact MNA
for up to 50GHz. The reduced model by VOR is also as accurate
as MNA in time-domain transient simulation. However, the one
by SAPOR does not converge. In Fig.6 (c) and (d), we further
expand VNA and NA at a non-zero frequency point s0 = 1GHz.
SAPOR converges at high frequency range as VOR does, but it is
still inaccurate in low frequency range when compared to VOR.
The reduced model by BVOR has up to 67X smaller error than
that by SAPOR.

The second example is a 32-bit bus with 20 segments per bit,
where shielding is inserted for every 8 bits. The partitioning
results in 4 blocks, each with 180 resistors, 250 capacitors, and
around 25600 nodal susceptors. The near end of the first bit
in each block is excited with a unit current impulse. BVOR is
applied to reduce each block independently, but VOR, SPRIM
and SAPOR are applied to the entire circuit, all with order q =
20. Fig.7 (a) and (b) show the non-zero BBD pattern of the G
matrix in VNA before and after the reduction, and Fig.7 (c) and
(d) show those for the C matrix in VNA. Clearly, the reduced

state matrices preserve the BBD structure and are sparse. eG andeC have a 16.1% and 14.6% sparsification ratio, respectively.
Table 1 compares runtime for different typed RCL−1 circuits

with different size (number of state variables), where 10% of nodes
in each cirucit have unit impulse current sources. The runtime
here includes both the macromodel building and simulation time.
The reduction and simulation are preformed in the frequency-
domain. All reduced models have the same size and similar ac-
curacy. For a circuit with 60002 elements (bus128x20), BVOR
reduces the orthonormalization cost and hence is 10X (6.01s ver-
sus 59.6s) faster than VOR to build macromodels. BVOR is also
15X (6.01s versus 92.7s) faster to build than SAPOR for the same
circuit. The additional speedup is due to the fact that the first-
order VNA matrix used in VOR is sparser than the NA matrix
used in SAPOR. Moreover, for the same circuit (bus128x20) as
the BBD structure is preserved after the reduction, the two-level

analysis in BVOR further reduces the simulation by 33X and 29X
when compared to SAPOR and VOR, respectively.

6. CONCLUSIONS
Existing NA based second-order model reduction has singular

matrix stamping for RCL−1 circuits. This paper presented a
vector-potential based nodal analysis (VNA) to accurately stamp
L−1 element and to enable a passive and simpler first-order re-
duction. By further representing the flat VNA matrix into a
bordered-block diagonal (BBD) form, moment matching can be
achieved locally by only using diagonal blocks in the BBD ma-
trix. As a result, each block can be reduced independently and
hence orthonormalization cost is minimized. Moreover, the re-
duced model is sparse and can be efficiently analyzed in a two-
level fashion. In experiments performed on several test cases, our
method achieved up to 15X faster modeling building time, up to
33X faster simulation time, and as much as 67X smaller waveform
error compared to SAPOR.
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