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ABSTRACT
Recent successful techniques for the efficient simulation of large-
scale interconnect models rely on the sparsification of the inverse
of the inductance matrix L. While there are several techniques for
sparsifying L−1, the stability of these approximations for general
interconnect structures has not been established, i.e., the sparsi-
fied reluctance and inductance matrices are not guaranteed to be
positive-definite. In this paper, we present a novel technique for
reluctance sparsification for general interconnect structures that en-
joys several advantages: First, the resulting sparse approximation
is guaranteed to be positive definite. Second, the approximation is
optimal, in a certain well-defined sense. Third, owing to its com-
putational efficiency and numerical stability, the algorithm is appli-
cable for very large problem sizes. Finally our approach yields a
compact representation of both inductance and reluctance matrices
for general cases.

1. INTRODUCTION
With the aggressive scaling of VLSI technology, the problem of

accurate modeling of interconnects has become increasingly im-
portant. The Partial Element Equivalent Circuit (PEEC) model has
been widely used to analyze on-chip interconnects [10]. However
the inductance matrix L obtained from PEEC is large and dense,
direct simulation with which typically places unrealistic demands
on both simulation time and memory.

One approach towards addressing this issue is to reduce the num-
ber of inductance parameters by sparsifying either L or L−1. (We
will use L̂ and L̂−1 generically to denote the resulting approxima-
tions.) Devgan et al. [4], noting that the off-diagonal entries of
L−1 diminish much faster than those in L, proposed the sparsifica-
tion of L−1 by retaining only significant terms; the resulting L̂−1

can reduce the number of coupling terms and speed up simulation.
However, L−1 needs to be computed first, which is prohibitively
expensive. Several window-based techniques have been used to
approximate L̂−1 [5, 1, 2]. With such techniques, a small induc-
tance submatrix of wires strongly coupled to the wire of interest is
inverted, and the row (or column) of the inverse corresponding to
the wire of interest is used to construct significant entries in L̂−1.
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Beyond efficiency and accuracy, an important consideration is
that of stability: It is desirable to have a guarantee that the approx-
imate inductance L̂ is positive-definite. While above techniques
provide faster simulation, stability of the approximation is not guar-
anteed with all of the above methods. Although stability of the ap-
proximate L̂ can be proven in the special case when L is diagonally
dominant, it is easy to construct examples where this is not the case;
see for example [6].

One approach for obtaining stable approximants L̂ for the one-
dimensional case, i.e., parallel unsegmented wires in a single layer,
was presented in [7]. However, this approach suffers from two
main drawbacks: First, for large L matrices, the technique proposed
in [7] to obtain L̂ exhibits numerical instability. Second, the tech-
nique in [7] is not applicable to the more general and practical case
consisting of segmented parallel wires over multiple layers. We
will henceforth refer to this general case as the three-dimensional
(3-D) case: the segmentation in a single layer accounts for x- and
y-dimensions, and the multiple layers account for the z-dimension.

In this paper, we present a novel multi-band matching method for
the approximation of the inductance matrix in general interconnect
structures: The multi-band entries of the approximate inductance
matrix L̃ match those of L, while L̃−1 is a multi-band matrix. Our
proposed technique enjoys several advantages : (i) L̃−1 is sparse.
(ii) L̃ > 0. (iii) L̃ is optimal, in a certain well-defined sense. (iv) L̃
preserves the values of all significant couplings. (v) The technique
provides a compact representation for L̃ and is computationally ef-
ficient and numerically stable.

2. REVIEW OF EXISTING SPARSIFICATION
METHODS

We briefly review existing methods for the sparsification of L−1.
Perhaps the simplest technique is that of direct truncation [5], where
L is inverted, its small off-diagonal terms truncated to obtain L̄−1,
which is then inverted to get L̄. L̄ serves as an approximation to L
in the sense that the in-band entries of L̄−1 and L−1 are matched.
However, the band entries of L and L̄ can be significantly different,
resulting in a loss of simulation accuracy. Moreover, this technique
requires two large matrix inversions, which can be expensive.

Window-based techniques provide an alternative that obviates
the need for expensive large matrix inversion [5, 1, 2]. The work
in [12] provides a good mathematical foundation for windowing
techniques: If A is a n× n banded matrix with bandwidth 2b + 1
and B = A−1, the significant entries of A can be computed by us-
ing only a subset of the matrix B. We take the intersection of rows
i−b to i +b and columns i−b to i +b of B to form a sub-matrix.
Then, the center row and center column of the inverse of the sub-
matrix are identical to the corresponding entries in the ith row and
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ith column of the A matrix:

A(i, i−b : i+b) = (B(i−b : i+b, i−b : i+b))−1(b+1, :), (1)

A(i−b : i+b, i) = (B(i−b : i+b, i−b : i+b))−1(:,b+1). (2)

Here, A(i : j,m : n) refers to the sub-matrix at the intersection of
rows i to j and columns m to n of A, A(:,m) refers to column m and
A(i, :) refers to row i.

In the window-based methods proposed in [5, 1, 2], the orig-
inal L matrix, instead of L̄, is used to calculate L̂−1. However, as
L−1 is not exactly banded, rows calculated by (1) are different from
columns calculated by formula (2), resulting in an asymmetric ap-
proximation of L. Moreover, stability is not guaranteed as L̂ and L̄
are not necessarily positive definite.

A new technique for the approximate sparsification of L−1 was
presented for the one-dimensional case in [7], where the inverse of
the inductance matrix is approximated by a banded matrix. The in-
band entries of L̂, constructed by this method, match those entries
in L, with L̂−1 being a banded matrix. The algorithm in [7] uses the
following elegant structure of inverses of banded matrices to com-
pute L̂ efficiently. A is a banded matrix with bandwidth of 2b+1 if
and only if B = [bi, j] = A−1 is given by two sequences of vectors
{u}n

i=1, {v}n
i=1, ui,vi ∈ Rb such that

B =




uT
1 uT

1 · · · uT
1

uT
1 uT

2 · · · uT
2

...
...

. . .
...

uT
1 uT

2 · · · uT
n


◦




v1 v2 · · · vn
v2 v2 · · · vn
...

...
. . .

...
vn vn · · · vn


 .

However, the inverse of the inductance matrix for 3-D intercon-
nect structures is no longer a banded matrix. Hence, the algorithm
in [7] applies only to the 1-D case. Moreover, the algorithm ex-
hibits poor numerical properties when large-sized inductance ma-
trices are considered. The contribution of this paper is to present
an algorithm that addresses both deficiencies: We present an effi-
cient, numerically stable multi-band matching method that applies
to 3-D interconnect structures, resulting in an approximate induc-
tance matrix that is guaranteed to be positive definite. Moreover,
the approximation is optimal in a sense that we will define in the
sequel.

3. BAND MATCHING METHOD: 2-D AND
3-D CASES

To illustrate the approximate multi-band nature of the reluctance
matrix in 3-D interconnect structures, consider an interconnect struc-
ture consisting of three layers with five wires in each layer, where
each wire is divided into four segments, as shown in Fig. 1(a).
(Our proposed technique can easily handle wires that are of arbi-
trary lengths, widths, and heights.) The wire segments are indexed
first in the y direction, then in the x direction, followed by the z
direction, as shown in Fig. 1(a). Truncating the small entries in the
inverse of the inductance matrix (obtained with above mentioned
ordering) [4] produces a sparse matrix with the pattern shown in
Fig. 1(b). This sparse matrix can be partitioned into 3× 3 blocks
with each block size being 20×20 (20 segments in one layer). Di-
agonal blocks characterize the interactions between wires in the
same layer and off-diagonal blocks represent the interactions be-
tween different layers. Each 20×20 block again can be partitioned
into 5×5 blocks (5 wires in one layer) with each block being 4×4
(4 segments for one wire). Here, the diagonal blocks represent the
couplings between different segments in the same wire and the off-
diagonal blocks represent the interactions between different wires

in the same layer. Division of wires into segments that are properly
aligned has been used in [8, 2].

The inverse of the inductance matrix can be understood in terms
of current induced by the magnetic vector potential drop along a
set of conductor segments [5]. Since the magnetic field generated
by each neighbor cancels part of the field induced on the aggressor
line, and shields the field induced on the aggressor line from influ-
encing farther wires, the (i, j) entries in L−1 are small when wires
i and j are not neighbors. This is the so-called shielding effect be-
tween neighbors. All the sparsification techniques assume perfect
shielding by neighboring wires so that when wire i and j are not
neighbors, the (i, j) entry in the inverse of inductance matrix is as-
sumed to be zero. In general, the bands of significant entries can
be wider if more nearby wires are required to capture the shielding
effect more accurately.
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Figure 1: (a) 3-D interconnects. (b) Sparsity pattern for the
inverse of the inductance matrix when shielding is perfect.

For convenience, we term the sparse matrices such as the one
shown in Fig. 1(b) as multi-band matrices, and their nonzero en-
tries as multi-band entries. In practice however, shielding is never
perfect. Thus arises the problem of approximating the inductance
matrix L with L̃ whose inverse is a multi-band matrix, i.e. when
every wire is assumed to be perfectly shielded by its neighbor-
ing wires, an assumption central to most sparsification techiques.
Moreover, in our proposed method, we require that the mutual in-
ductance values between neighboring wires remain the same. In
other words, we require the multi-band entries of L̃ to match those
of L.

The solution that we describe relies on the elegant structure of
the inverse of block-tridiagonal matrices which provides a compact
parametrization for matrices with block-tridiagonal inverses.

LEMMA 3.1 ([9]). Suppose that the inverse of a symmetric
nm× nm matrix A is block-tridiagonal, with m×m blocks. Then,
there exist two sequences of m×m matrices Ui and Vi such that for
j ≥ i, [A]i j = UiVj. Thus, A can be written as

A =




U1V1 U1V2 · · · U1Vn

V T
2 UT

1 U2V2 · · · U2Vn
...

...
. . .

...
V T

n UT
1 V T

n UT
2 · · · UnVn


 . (3)

The sequences Ui and Vi can be computed from the tridiagonal
blocks of A as follows. With Ai j denoting the (i, j) m×m block-
matrix of A,

U1 = I, V1 = A11,

Vi = U−1
i−1Ai−1,i, Ui = AiiV

−1
i , for i = 1, . . . ,n.

(4)

Using the sequences {Ui} and {Vi}, the matrix A can be com-
pactly described by (2n−1)m2 independent parameters (U1 can be
chosen as any positive definite matrix), matching the number of
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independent parameters in A−1. If A−1 is block-banded, the for-
mula (4) still applies, but Ui and Vi become rectangular matrices.
However treating block-banded matrices as block-tridiagonal ma-
trices with a larger size for each block results in more efficient com-
putation. Therefore, we will henceforth focus on block-tridiagonal
matrices.

Lemma 3.1 can be readily used to solve the band matching prob-
lem for block tridiagonal case. Given a block matrix L, the fol-
lowing algorithm generates a matrix L̃ which has the same block
tridiagonal entries as L, with L̃−1 being block tridiagonal matrix.

BLOCK-TRIDIAGONAL BAND MATCHING ALGORITHM

Algorithm L̃ = BTBM(L);
1. Via (4), generate the matrix sequences Ui and Vi, using
only the block-tridiagonal entries of L.
2. Set the block-tridiagonal entries of L̃ equal to those of L.
3. Generate the remaining entries of L̃ from Ui and Vi us-
ing (3).

Note that if only a representation of L̃ rather than all of its entries
is sought, only Step 1 of the algorithm is needed.

3.1 An Iterative Approach
The band-matching problem for 3-D interconnect structures re-

quires multi-band matching, not simple block tridiagonal matching.
To illustrate this, consider a simple 2-D problem of 3 layers with 5
wires in each layer without segmentation. The cross-sectional view
and the numbering of the wires are shown in Fig. 2(a). Truncating
the small entries in the inverse of the inductance matrix results in
a sparse matrix with the sparsity pattern shown in Fig. 2(b). This
implies that the shieldings from two directions are perfect at the
same time. Hence, the problem now is to find an approximation to
L whose inverse has the desired sparsity pattern as Fig. 2(b).
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Figure 2: (a) Cross-sectional view of a 2-D example. (b) The
desired multi-band structure for L̃−1.

Let Φ denotes the set of sparse matrices with the desired multi-
band structure, as shown in Fig. 2(b). Let TΦ denote the projection
of a matrix onto Φ, i.e., for a given matrix M, TΦM ∈ Φ with the
multi-band entries of TΦM and M being the same. We can also
view TΦM as a matrix that keeps only the multi-band entries of M.
Then the band matching problem is: Find L̃ such that

1. TΦL = TΦL̃, 2. L̃−1 ∈ Φ (P).

Our approach towards solving (P) is via alternating between two
standard block-tridiagonal band matching problems. Each of these
problems can be readily solved using Algorithm BTBM.

For the sake of clarity, we use the 2-D example in Fig.2 to explain
the basic idea behind our algorithm for multi-band matching. The
same idea can be readily extended to the 3-D problem.

We begin by defining two auxiliary problems. The first problem,
(P1), is a block-tridiagonal band matching problem where perfect
shielding is assumed between horizontal layers, and the in-layer

shielding is ignored. This results in a block tridiagonal band match-
ing problem: Find L̃ such that

1. TΦ1 L = TΦ1 L̃, 2. L̃−1 ∈ Φ1, (P1)

where Φ1 consists of block tridiagonal matrices, as shown in Fig.
4(a). Three horizontal layers for this example are shown by the
dotted circle in Fig. 3(a).

To define the second auxiliary problem, (P2), we define “verti-
cal” layers by grouping wires as (1,6,11),(2,7,12), · · · ,(5,10,15),
as shown in Fig. 3(b). Assume that the vertical layers are perfectly
shielded and ignoring the shielding between wires in each vertical
layer, we obtain another block-tridiagonal band-matching problem
after an appropriate permutation of indices: Find L̃ such that

1. TΦ2(P
T L̃P) = TΦ2(P

T LP), 2. (PT L̃P)−1 ∈ Φ2, (P2)

where Φ2 consists of block tridiagonal matrices, as shown in Fig.
4(b). Note that we have reordered the indices of the matrix via a
permutation P.
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Figure 3: (a) Horizontal layers. (b) Vertical layers.
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Figure 4: Illustration of sets Φ1 and PΦ2PT for the 2-D exam-
ple. Their intersection matches the structure in Fig. 2(b).

We now make the following key observation: Φ = Φ1∩(PΦ2PT ).
(Fig. 5 illustrates this for the example under consideration.) This
motivates the following iterative multi-band matching algorithm to
solve (P) by alternating between solving (P1) and (P2):

MULTI-BAND MATCHING ALGORITHM

Algorithm L̃ = MBM(L);
Set L2 = PT LP;
repeat {

solve L1 = BTBM(PL2PT );
solve L2 = BTBM(PT L1P);

} until L1 −PL2PT is small
return L̃ = L1;

If L−1 is close to a multi-band matrix to begin with, it typically
takes only a few iterations for the algorithm to converge (see Sec-
tion 4 for numerical results). Moreover, note that the algorithm
alternates between solving two block-tridiagonal band matching
problems (P1) and (P2). The intersection of these matched entries,
i.e., the multi-band entries, are unchanged with iterations, so that
at every iteration, L1 and PL2PT match L in multi-band positions,
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Figure 5: (a) Sparsity pattern of matrices in Φ1 (b) Sparsity
pattern of matrices in PΦ2PT

with L−1
1 and L−1

2 belonging to Φ1 and Φ2 respectively. At conver-
gence, L−1

1 = P(L2)−1PT ∈ Φ1 ∩ (PΦ2PT ).
Each iteration of the MBM algorithm requires the execution of

only Step 1 of the BTBM algorithm. For example, suppose that the
Ui and Vi sequences that compactly represent the BTBM solution to
L1 = BTBM(PT L2P) have been generated. For the next iteration, L2
= BTBM(PL1PT ), only the block-tridiagonal entries of PL1PT are
needed; these and only these can be generated efficiently using the
matrices Ui and Vi that represent L1. This compact representation
can also be useful in reducing computation when using simulation
tools (see for example [12]) that use only a subset of the entries of
the inductance matrix.

The algorithm enjoys the following properties:

• At any iteration L̃ > 0 (see Appendix A for proof).
• The algorithm is guaranteed to converge (see Appendix B for

proof).
• The approximate L̃ given by the algorithm is optimal in the

following sense: Among all L̃ such that L̃−1 ∈ Φ, the algo-
rithm yields the one that minimizes

d(L, L̃) = 1
N {tr(LL̃−1)− log det(LL̃−1)}−1.

(This is the so called Kullback-Leibler distance in the infor-
mation theory; see Appendix B for proof.) Moreover, it can
be seen from the simulation results that the error obtained
from band matching approximation is smaller compared to
those obtained from other sparsification techniques.

4. EXPERIMENTAL RESULTS
We demonstrate the band matching method by using two cir-

cuits: structured wires in 3-D space and randomly generated wires
in 3-D space.

4.1 Experiment 1
First, we demonstrate the band matching method on a three-layer

bus structure with 32 signals on each layer. The wire length is 1mm,
the cross section 1×1µm, the wire separation 1µm, and the separa-
tion between layers 3µm. Wires are divided into 5 segments along
the length. The driver resistance is 30Ω and the load capacitance
is 50 f F . A 1V 20ps ramp is applied to the first signal of the mid-
dle layer, and the rest are quiet. Shields are inserted in several
wires randomly. We compare the simulation results obtained from
our band matching (BM) method with other models obtained from
a direct truncation (DT) method and the Wire Duplication (WD)
method. (WD is a window-based method. As other window-based
methods are similar, we have chosen the Wire Duplication method
to report our results.) All experiments were run on a Pentium III
1GHz processor.

The waveforms for the first and second signal of the middle layer
are shown in Figs. 6 and Figs. 7 respectively. For a fair comparison,
the width of the coupling window in horizontal direction is set to
be 5 for every method, and vertical couplings are also considered.

Table 1: Comparison of AER and PER.
wire AER PER

WD DT BM WD DT BM

1 0.251 0.400 0.183 0.017 0.011 0.007
2 0.443 0.251 0.183 0.235 0.174 0.110
3 0.426 0.260 0.178 0.245 0.011 0.007
4 0.412 0.282 0.175 0.264 0.213 0.125

33 0.013 0.008 0.005 0.018 0.012 0.008
34 0.353 0.229 0.149 0.019 0.013 0.008

All 0.486 0.409 0.158 0.272 0.193 0.112

We denote the voltage in ith wire obtained by the full L matrix by
Vi (i.e., the “true” voltage), and by V̂i the ith voltage obtained by
the approximation methods. We use the | · |1 norm to measure the
errors (the results are essentially unchanged when other norms such
as | · |2 are used). Define average error ratio (AER) and peak error
ratio (PER) for the ith wire as

AER = ∑t |V̂i −Vi|
∑t |Vi| , PER =

max(|V̂i −Vi|)
max(|Vi|) ,

average error ratio (AER) and peak error ratio (PER) for all wires
are defined as

AER for all wires = ∑i ∑t |V̂i −Vi|
∑i ∑t |Vi| ,

PER for all wires = maxi(Peak error in ith wire).

Table 2: Memory and run time usage for different methods.
Method Memory (MB) Run Time(s)

full L matrix 206.4 8.7×105

direct truncation 65.2 832
wire duplication 49.6 657

multi-band matching 49.8 661

Note that these definitions typically result in a PER that is smaller
than the corresponding AER. As can be seen from Table 1, the BM
method gives the smallest average error ratio and peak error ratio.
Table 2 provides the runtime and memory usage for different meth-
ods. Fig. 8 offers data on the run time and the number of iterations
for the band matching method for inductance matrices correspond-
ing to n layers with n wires in each layer, for various n.

4.2 Experiment 2
In Experiment 1, the regularity of the layout plays a role in the

inverse of the inductance matrix being close to multi-band. In this
experiment, we randomly generated 100 wires in 3-D space: The
length, width, and height for every wire, as well as their placement
are random, with no overlap allowed between any two wires. The
response to a 1V 20ps ramp, applied to a randomly chosen signal,
as well as the waveforms of its two neighboring signals in the hor-
izontal and vertical directions are shown in Fig. 9(a), Fig. 9(c),
Fig. 9(e). As shown in the figures, DT method yields significant
simulation errors, as a consequence of L−1 no longer being very
close to a multi-band matrix. However, both WD and BM meth-
ods yields much better simulation results, as they both preserve the
the multi-band entries in L matrix. Fig. 9(b), Fig. 9(d), Fig. 9(f)
present an enlarged picture for a closer comparison of WD and BM.
As mentioned earlier, the WD method produces an asymmetric ap-
proximation and without a stability guarantee. Both these issues
are resolved with our proposed BM method.
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Figure 6: Simulation results for signal 1 on the middle layer.
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Figure 7: Simulation results for signal 2 on the middle layer.
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Appendix A: Proof of stability
LEMMA 5.1. [6] Let the matrix A−1 be a q×q block tridiag-

onal matrix with each diagonal block pi × pi, i = 1, ...,q. Then the
determinant of A is

det A =
D(1 : p1 + p2) · · ·D(∑q−2

1 pi +1 : ∑q
1 pi)

D(p1 +1 : p2) · · ·D(∑q−2
1 pi +1 : ∑q−1

1 pi)
, (5)
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where D(i : j) is the determinant of A(i : j, i : j).

An important consequence of Lemma 5.1 is that the determinant
of a matrix with an inverse that is block tridiagonal depends only
on the entries in the tridiagonal blocks.

THEOREM 5.1. If L is positive definite, its band matching ap-
proximation L̃ obtained by the proposed iterative algorithm is also
positive definite.
Proof. We prove that the matrix we obtain in each iteration, denoted
as L̃i, is positive definite. We use the notation that for any n× n
matrix A, Am is the m×m principal sub-matrix of A (i.e., the m×m
submatrix that forms the top left-hand corner of A).

A necessary and sufficient condition for L̃i to be positive definite
is that det L̃i

m > 0 for m = 1, . . . ,n; see for example [11]. As L is
positive definite, Lm > 0, m = 1, · · · ,n.

Let x denote the size of diagonal blocks. In the first iteration, L̃1

is a BTBM solution for matrix L. Hence all the tridiagonal blocks
in L and L̃1 are the same. When m ≤ 2x, as L̃1(1 : 2x,1 : 2x) = L(1 :
2x,1 : 2x), we obtain,

det L̃1
m = det Lm > 0.

For the case m > 2x, all the determinants of L̃1
m, m = 1, · · · ,n can be

calculated from Lemma 5.1 as they can be described by Ui and Vi,
and their inverses are block tridiagonal matrices. Note that deter-
minant of L̃1

m depends only on the block tridiagonal entries of L̃1
m

from Lemma 5.1. As all the block tridiagonal entries of L̃1 match
the block tridiagonal entries of L, all the D(i : j) in (5) are posi-
tive (as L is positive definite). Therefore det L̃1

m > 0, for the case
m > 2x.

Finally, permutation matrices are orthogonal, hence, P−1 = PT ,
and det (PT L̃1P) = det L̃1. With this observation and the same line
of reasoning as above, it follows that the matrix L̃2 obtained after
the second iteration is positive definite as well. Extending this ar-
gument further leads to the conclusion that the matrices obtained at
the end of every iteration is positive definite, concluding the proof.
�

Appendix B: Proof of Optimality and conver-
gence
In Information Theory, the Kullback-Leibler (KL) distance is used
to measure the distance between probability distributions [3]. The
KL distance can also be used to define the distance between two
positive definite matrices: The KL distance from L1 to L2 is

d(L1,L2) =
1
N
{Tr(LL̃−1)− log det(LL̃−1)}−1.

d(L1,L2) ≥ 0, and vanishes if and only if L1 = L2.
We now state the result on the optimality of the multi-band match-

ing approximant.
THEOREM 5.2. Given a matrix L, the multi-band matching ap-

proximation L̃ is at the smallest KL distance from L.
Proof. Suppose La is any other matrix with the inverse having the
desired multi-band structure. We note that Tr(LL̃−1) = N, since
L and L̃ have the same multi-band entries and L̃−1 is a multi-band
matrix. Then,

N
(
d(L, L̃)+d(L̃,La)

)
= Tr(LL̃−1)− log |LL̃−1|−N

+Tr(L̃L−1
a )− log |L̃L−1

a |−N

= Tr(L̃L−1
a )− log |L|− log |L−1

a |−N

= Tr(LL−1
a )− log |LL−1

a |−N

= N (d(L,La)) .
(6)

Thus, d(L, L̃) + d(L̃,La) = d(L,La). As d(L̃,La) ≥ 0, d(L,La) ≥
d(L, L̃), or L̃ has the minimum KL distance from L. �

Note that Theorem 5.2 applies to the simpler block-tridiagonal
matching scenario: Let LΦ1 denote any matrix whose inverse be-
longs to Φ1. Let L1 denote the matrix which matches L along the
block tridiagonal. Then

d(L,L1)+d(L1,LΦ1) = d(L,LΦ1). (7)

In other words, the BTBM algorithm can be thought of as “project-
ing” L to Φ1 in the KL distance sense.

We next turn to the problem of convergence of the iterative algo-
rithm in Section 3.

THEOREM 5.3. Algorithm MBM converges.

Proof. For simplify we sketch the proof only for the 2-D case.
Suppose L is the original inductance matrix. Denote by Φi, i = 1,2
the set of matrices whose inverses belong to Φi i = 1,2, and by
PΦ2PT the set of matrices whose inverses belong to PΦ2PT .

Let k be the iteration index of the MBM algorithm, and let L(k)
1

and L(k)
2 respectively denote the solutions to problems (P1) and

(P2), during iteration k. Then, L(1)
1 = BTBM(L), and from The-

orem 5.2, L(1)
1 is the element in Φ1 with the smallest KL distance

from L. Next, L(1)
2 is the block tridiagonal match of PT L(1)

1 P, and
therefore is the element in Φ2 with the smallest KL distance from

PT L(1)
1 P. As permutation matrices are orthogonal, we have P−1 =

PT , and consequently we have d(PT L(1)
1 P,L(1)

2 ) = d(L(1)
1 ,PL(1)

2 PT ).

Hence, it follows that PL(1)
2 PT is the element in PΦ2PT with the

smallest KL distance from L(1)
1 . Subsequent iterations continue

along similar lines. Fig. 10 provides an illustration.

Let K be any matrix belonging to Φ1∩PΦ2PT . As d(L(1)
1 ,PL(1)

2 PT )

is the minimium distance from L(1)
1 to PΦ2PT , it follows from (7)

that d(L(1)
1 ,K) = d(L(1)

1 ,PL(1)
2 PT )+d(PL(1)

2 PT ,K). Therefore,

d(L(1)
1 ,K) ≥ d(PL(1)

2 PT ,K). Similarly, d(PL(1)
2 PT ,K) ≥ (L(2)

1 ,K).
Hence the series

{d(L(1)
1 ,K),d(PL(1)

2 PT ,K),d(L(2)
1 ,K),d(PL(2)

2 PT ,K), . . .}
is monotonically decreasing. Also, it is bounded below by zero,
and therefore converges to a unique limit, and consequently the
iterations obtained by the algorithm converge to a unique limit L̃ ∈
Φ1 ∩PΦ2PT with the smallest KL distance from L. As L̃ ∈ Φ1 ∩
PΦ2PT , L̃−1 ∈ Φ1 ∩PΦ2PT . �

1
(2)L

LK Lopt

P PT

1

2

1
(1)L

LP (2)
1

PT

Φ

Φ

Figure 10: Illustrating the convergence of the iterative algo-
rithm.
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