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ABSTRACT 
Reliable prediction of parametric yield for a specific design is 
difficult; a significant reason is the reliance of the yield estimation 
methods on the hard-to-measure distributional properties of the 
process data. Existing methods are inadequate when dealing with 
real-life distributions of process and environmental parameters, 
and limited availability of parameter data during early design. This 
paper proposes a robust technique for full-chip parametric yield 
estimation; the proposed work is based on the rigorous notions of 
non-parametric robust statistics which permits estimation based on 
the knowledge of the range and the limited number of moments 
(e.g. mean and variance) of the parameter distributions. Fully or 
partially specified process and environmental parameters can be 
described by robust representations, and used to estimate 
probabilistic bounds for leakage dissipation. The proposed 
approach is applied to estimating the chip-level parametric yield. 
The experimental results show that the robust estimation algorithm 
improves the total leakage estimate by 5-13% at the 99th percentile 
across distinct frequency bins, compared to using only the 
intervals of partially-specified parameters. 

1. INTRODUCTION 
The growth of standby, or leakage, power as device geometries 
scale down has been acknowledged as a major potential threat to 
scaling. At the 65nm node, leakage power may account for almost 
half of total power of the circuit [1]. The exponential dependence 
of leakage on some process parameters also causes a large spread 
in leakage current in the presence of process variations: a 30% 
variation in the effective channel length could potentially lead to 
20X variation in leakage current [2]. Given the magnitude of 
leakage variation, quantifying its impact on parametric yield is 
crucial for early chip design [3].  
The technique for joint timing- and power-limited parametric yield 
estimation of [3] relied on the fact that yield is limited both by 
leakage power consumption and chip frequency. Leakage power is 
inversely correlated with chip frequency; slow die have low 
leakage, while fast die have high leakage. The exponential 
dependence of leakage on process spread means that the total 
power will cross the cooling (power) limit well below the 
maximum possible chip frequency since chips operating at higher 
frequencies have exponentially higher leakage power 
consumption. A gate-level parametric yield estimation algorithm 
was proposed in [4]. In addition, several papers separately studied 
the statistical leakage estimation problem. In [5], a gate-level full-

chip leakage analysis algorithm taking into account spatial 
correlations of intra-chip process variations was proposed. In [2], a 
probabilistic approach was proposed to estimate subthreshold 
leakage distribution accounting for intra-chip and inter-chip 
variations of process parameters, temperature, and supply voltage. 
All the above techniques, however, rely on idealized assumptions 
about variability of process and environmental parameters. 
Practical application of statistical leakage and parametric yield 
analysis techniques is severely limited by fundamental features of 
a real-life industrial IC design process. First, process 
characterization data is often incomplete due to the limited number 
of measurements and characterization lots. As a result, there may 
be a large uncertainty in the statistic metrics (the mean and the 
variance of process parameters). Secondly, the physical 
mechanisms responsible for generating variability are often not 
understood well, especially for new technologies that exhibit 
physical behaviors not encountered. As a consequence, the typical 
assumption of a normal distribution may be incorrect. There are 
parameters that behave decidedly non-normally, such as via 
resistance, yet its precise distribution is difficult to model. This 
requires the use of non-Gaussian models for accurate estimation, 
which cannot be handled by existing analytical methods. 
This paper addresses the limitations of the existing methods by 
introducing a new mathematical formulation that enables robust 
prediction of timing- and power-limited parametric yield. Here, 
robustness is defined as the insensitivity of the produced estimates 
to the idealized modeling assumptions of earlier techniques. The 
fundamental theory behind the work is probabilistic interval 
analysis that extends the representation of a random variable to a 
family of distributions, i.e., bounds for cumulative distribution 
functions, and thus can work with a wider class of uncertainty 
models. This paradigm of handling partially-specified uncertainty 
has been applied to timing analysis [6], and effectively reduces the 
over-conservatism of the interval-based prediction. In contrast to 
pure interval analysis and affine methods, probabilistic interval 
analysis has the capabilities of preserving the notion of probability. 
In affine methods, the notion of probability has to be recovered 
heuristically [7]. 
The proposed algorithm is based on non-parametric robust 
statistics, which permits using statistic metrics (e.g. the mean and 
variance) to describe partially-specified environmental 
fluctuations in chips. Probabilistic arithmetic based on linear 
programming [8] is used to compute probabilistic bounds for 
functions of random variables. This strategy, along with realistic 
modeling of process variability, is able to assess the impact of 
process and environmental variations on leakage dissipation and 
estimate the guaranteed parametric yield.  The experimental 
results indicate that at the 99th percentile the proposed strategy 
improves the estimated total leakage current by 5-13% across the 

3σ± range of the inter-chip effective channel length variation. 
Thus, the proposed work utilizes the partial probabilistic 
descriptions to effectively improve the leakage estimate obtained 
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from using only the interval information of partially-specified 
environmental parameters. 
The paper is organized as follows. Section 2 describes the needs 
for robust estimation methodologies. In Section 3, the 
mathematical formulation of probabilistic interval methods is 
presented. The full-chip leakage modeling and yield estimation are 
described in Section 4.  In Section 5, the experimental results are 
presented. 

2. NEED FOR ROBUST ESTIMATION 
Fundamentally, robust methods enable the use of partial 
probabilistic information with an interval-based uncertainty 
representation. Traditional statistical leakage and yield estimation 
techniques have assumed that complete distribution information 
about the random parameters is available, and random variables 
belong to the classical single-mode parametric distributions (e.g. 
normal) generated by a unique stochastic process. In practice, 
these assumptions often do not hold. 
(i) Incomplete Probabilistic Information: For some sources of 
variability, the probabilistic information is either incomplete. For 
example, variability in supply voltage and on-chip temperature 
affects leakage super-linearly [2]. An accurate estimate could be 
produced by characterizing the distribution across the temporal 
and spatial domains. However, due to the computational difficulty 
of performing temporal input-dependent analysis, the uncertainty 
about supply voltage is typically represented by the range 
information [9].  
Incomplete probabilistic information can be used to improve the 
quality of estimates, in some cases. Although a complete 
characterization of power supply voltage or on-chip temperature 
distribution is virtually impossible, the mean and the variance can 
be easily estimated by a Monte Carlo sampling procedure. 
Besides, the variability of temperature can be estimated using 
logic-level temperature estimators [10]. Consequently, it is 
possible to estimate moments of environmental parameters, which 
permits assessing the impact of these factors on leakage. 
(ii) Limitations of Parametric Modeling Strategies: Working with 
idealized models often requires adopting unreasonable 
assumptions about the dependence on process parameters. In the 
literature, an empirical model of the following form was found to 
accurately model leakage dependence on the key process 
parameters that are subject to substantial variability [11]: 

 2 1
1 2 3 4 5exp[ ]sub o ox oxI I W a a L a L a T a T−= + + + +  (1) 

where L is the effective channel length, and Tox is the oxide 
thickness. Then, in order to fit the distribution of Isub to a log-
normal distribution, (1) is simplified into: 

 0 1 2exp[ ]sub nom oxI I W b b L b T= + ∆ + ∆  (2) 

Given that the inter-chip variation of L is significant, and because 
of the exponential effect that an approximation will have on the 
result, this transformation may not be acceptable. The cost of not 
performing such a transformation is that Isub is not characterized 
by a lognormal distribution, which poses difficulty for existing 
leakage analysis methods. We will solve this problem by adopting 
self-verifying robust methods of estimation. Besides, the current 
process technology is well-controlled; the outlier of parameters is 
unlikely to exist in fabricated chips. Therefore, truncated 
distributions are more appropriate to represent process variability 
because it avoids the erroneous estimation resulting from the 
infinite tails of Gaussian variables.  

(iii) Non-Gaussian, Mixture, and Multi-Modal Distributions: In 
some cases, the distributions of parameters exhibit non-Gaussian, 
mixture [12], or multi-modal behavior, i.e., the probability density 
function has multiple peaks. Algorithms based on parametric 
techniques are notoriously poor at handling these distributions; the 
distributions can only be approximated as parametric distributions 
(e.g. normal) for convenient manipulations. However, the robust 
estimation framework can naturally handle a variety of 
distributions including non-Gaussian, mixture, and multi-modal 
variables, as demonstrated in Section 3. 
An extreme case for the mixture distribution is when a fabless 
company works with two or more foundries in manufacturing a 
design. The design must be robust under distinct fab-specific 
parameter distributions. The formal statistical model to analyze 
this case is finite mixture distribution [12]. Suppose chips are 
fabricated by n (e.g. n=2) fabs. The probability density function 
(pdf) of effective channel length, f (L), can be computed by: 

 ( ) ( ) ( )
1

|
n

i i
i

f L f L F p F
=

= ⋅∑  (3) 

where ( )ip F  is the probability that a chip is fabricated in fab i, 
and ( | )if L F  is the conditional pdf for fab i. The mean ( )µ and 

variance 2( )σ of the mixture distribution can be computed by: 

 ( ) ( )( )2 2 2 2

1 1
       

n n

i i i i i
i i
p F p Fµ µ σ µ σ µ

= =
= = + −∑ ∑  (4) 

where iµ and 2
iσ are the mean and variance of L from fab i.  

Figure 1 shows the mixture of the effective channel length 
distributions due to statistically distinct populations, assuming 
each foundry contributes half of the manufactured chips. 
Approximating the mixture distribution as a normal distribution 
causes inaccurate modeling of channel length variations, thus 
overestimates the subthreshold leakage of a transistor by 13% and 
48%, at the 95th and 99th percentile, respectively.  This example 
points out the limitation of the analytical approaches based on 
parametric techniques and idealized assumptions about variability. 
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Figure 1.  Approximating uncertainty as a Gaussian variable 
may lead to a large error in leakage estimation (a) channel 
length distribution (b) subthreshold leakage distribution. 
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3. FUNDAMENTAL PHILOSOPHY OF 
ROBUST COMPUTATION OF RANDOM 
VARIABLES 
In this section a formal description of robust estimation procedure 
is given. Its purpose is to enable reliable and assumption-free 
generation of distributions of functions of random variables. The 
adopted framework can be seen as a probabilistic interval method. 
It supplements the estimates of interval and affine methods with 
the partial probabilistic information enabling a new type of 
analysis. The framework requires the development of two distinct 
sets of mathematical tools for robust representation of random 
variables, and robust operations with random variables.  

3.1 Robust Representation of Random 
Variables 
In a robust estimation framework, an appropriate representation of 
uncertainty is needed. Conceptually, the most general 
representation of a fully specified random variable is its 
cumulative distribution function (cdf) [13]. For a partially-
specified random variable, the most general representation is a set 
of cumulative distribution functions, or a p-box [14].  

Definition: F and F are non-decreasing functions from ℜ into 
[0, 1], and ( ) ( ),F x F x x≤ ∈ℜ . A p-box, denoted by [ , ]F F , is 
defined as a set of imprecisely known cumulative distribution 
functions, ( ) ( )= ≤F x P X x , where ( ) ( ) ( )F x F x F x≤ ≤ . 
A p-box represents upper and lower bounds for the cumulative 
distribution function of a random variable. It is a basic notion for 
the robust computation, and can be used to robustly describe a 
random variable. Because the p-box representation is parametric-
free, it can be used to describe a variety of distributions including 
the non-Gaussian, multi-modal, and mixture distributions 
described in Section 2. For instance, given the cumulative 
distribution function of a random variable, ( )F x , we can sample it 
at a series of non-decreasing values, xi, where 

( )0 0F x = and ( ) 1nF x = , 0 i n≤ ≤ . Then a p-box can be 
constructed as: 

1

1

0

( ) ( )
( ) ( )                 ,  0.. 1.              
( ) ( ) ( )       or      

i

i i i

n

F x F x
F x F x x x x i n

F x F x F x x x x x

+

+

=
= ≤ < = −

= = ≥ <

 

Thus, the p-box representation enables our framework to 
incorporate true distributions of process variability, instead of 
resorting to the normal assumption of parameters. 
Another useful description of uncertainty is in terms of intervals 
with partial probabilistic information. In addition to the bounds, 
often limited information, such as the mean or the variance, is 
available. In this situation, it seems wasteful not to use this 
information. From Section 2, these statistic metrics of 
environmental parameters can be estimated during the early design 
phase; therefore, these parameters are modeled as probabilistic 
intervals in our framework. Besides, probabilistic intervals can be 
used to describe partially-specified process parameters if statistic 
metrics and range are available. 
The probabilistic interval description needs to be converted into a 
p-box representation for further manipulations. This is done using 
a sophisticated generalization of the one-sided Chebyshev 
inequality [13] and Cantelli inequality [15] which enables 
computing bounds of the cumulative probability [14]. The upper 
bound for the cumulative probability of a random variable X is: 

( )
( ) ( )( )
( ) ( ) ( )
( )

2 2 2

2 2 2 2

0                                           

1 1            ( )                          

1 1   ( ) ( )    
1                                   

P X x x X

P X x x X x X

P X x m my s y X x X
P X x

µ σ µ σ µ

µ σ µ µ σ µ

≤ = <

≤ ≤ + − ≤ < + −

≤ ≤ − − + − + − ≤ < + −
≤ = 2       ( )                                X xµ σ µ+ − ≤

whereX and X denote lower and upper bounds, µ and 2σ denote 

the mean and variance, ( ) ( )y x X X X= − − , ( ) ( )m X X Xµ= − − , 

and 2 2 2( )s X Xσ= − . Similarly, the lower bound is given by: 

( )
( )
( )
( )

2

2 2 2 2

2 2 2

0                                          ( )

1 ( (1 ) )    ( ) ( )  

1 (1 ( ) )               ( )

1                                          

µ σ µ

µ σ µ µ σ µ

σ µ µ σ µ

≤ = < + −

≤ ≥ − + − − + − ≤ < + −

≤ ≥ + − + − ≤ <

≤ =

P X x x X

P X x m y s m y X x X

P X x x X x X

P X x X ≤ x

 
Figure 2 shows a p-box for the uncertainty of power supply, which 
in fact represents all distributions with the same mean, variance, 
and range. The p-box permits estimating the uncertainty at any 
confidence level. For example, in Figure 2 when the cumulative 
probability is 0.50, the right-side p-box falls at  -0.02V, which 
means at least 50% of the samples have ddV∆ less than or equal to 
-0.02V, i.e., 0 02 0 50( . V) .ddP V∆ ≤ − ≥ . Thus, we can easily 
estimate the percentage of the samples meeting a specific 
requirement using p-boxes. 
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Figure 2. The knowledge of range, mean and variance permits 
constructing a p-box for a variable. The mean and the 
variance values are -0.05V and (0.03V)2, respectively. 
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Figure 3. Transformation of a discretized p-box into a 
histogram representation. 
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The p-box representations described above are useful for 
describing process and environmental parameters. The robust 
estimation framework seeks to perform numerical operations on p-
box descriptions of variables, and provide guaranteed 
computational results (e.g. total leakage dissipation) that are also 
described by p-boxes. In order to implement computation with p-
boxes, an intermediate and numerically tractable representation is 
needed during robust computations. This is based on the notion of 
self-validating histograms [8]. 
Definition: A self-validating histogram of a random variable X is: 

 ,  ,i i i i
i

X X X X X = =  ∪  

( )i iP X X p∈ =  for all i, and 1i
i

p =∑ . 

where Xi is an interval associated with the probability pi. 

This histogram representation describes a random variable as a set 
of intervals associated with probabilities. As a two-valued 
histogram, in which lower and upper endpoints of the intervals are 
recorded, the histogram is self-validating because it is able to keep 
track of the accuracy (error) of the computed quantities. Before 
numerical computations of p-boxes, we need to transform p-boxes 
into histograms [16], which will be clear in Section 3.2. This 
transformation requires two phases: first, the p-box needs to be 
conservatively discretized as in Figure 2, which means that the 
discretized p-box forms an envelope of the original p-box. The 
discretization can be done with arbitrary granularity depending on 
the required accuracy. Then the discretized p-box is transformed 
into the two-valued histogram, as shown in Figure 3. Note that the 
intervals, Xi, may overlap, which provide great flexibility of 
describing random variables. 
Having transformed random variables into the self-validating 
histograms, we can then perform arithmetic operations. 

3.2 Robust Operations with Uncertain 
Variables 
Various arithmetic operations can be performed on variables 
described by self-validating histograms, establishing general 
probabilistic arithmetic [8][17], which permits computing the p-
box for functions of random variables. In this section, we 
demonstrate the arithmetic operations on single, and multiple 
random variables described by self-validating histograms. 
First we describe how to evaluate arbitrary functions of a random 
variable X, given the histogram representation. This computation 
can be done by creating a table including all intervals, as in Figure 
4. For each interval of X, we compute upper and lower bounds of 
the function ( )Z f X=  when [ , ]∈ i iX X X . The bounds are 

( ) ( )min [ , ] , max [ , ]i i i i i iZ f X X X Z f X X X= ∈ = ∈ , 

where iZ and iZ denotes the lower and upper bounds of the 

function, respectively,  when [ , ]i iX X X∈ . 

It is apparent that ( [ , ]) ( [ , ])i i i iP X X X P Z Z Z∈ = ∈ . Thus, a 

histogram of ( )f X is constructed. The final step is to compute the 
p-box of ( )f X , i.e., the bounds for the cdf. The cumulative 
probability of the function at a specific value z, ( )P Z z≤ , is 
actually bounded by: 
 

X ( )=Z f X  
#  #  

[ , ]i iX X X∈  [ , ],  ( [ , ])∈ = ∈i i i i iZ Z Z p P Z Z Z  

#  #  

Figure 4. Probability table for a function of a random variable.  
 

( , )=Z f X Y  … [ , ]j jY Y Y∈  … 

#  %  #  $  
[ , ]i iX X X∈  … [ , ],  ( [ , ])ij ij ij ij ijZ Z Z p P Z Z Z∈ = ∈  "  

#  $  … %  

Figure 5. Probability table for a function of multiple random 
variables. 

 
( )
( )

≤ ≤ ∀ ≤

≤ ≥ ∀ ≤

∑
∑

  :

  :

i ii

i ii

P Z z p i Z z

P Z z p i Z z
 (5) 

That is, when computing the upper bound of ( )P Z z≤ , the 
intervals with the lower bound iZ  no larger than z need to be 

considered. In the histogram representation, the probability mass 
of an interval is specified, i.e., ( [ , ])i i ip P Z Z Z= ∈ ; however, how 

the probability mass is distributed within the interval is not 
constrained. When the probability mass ip of an interval entirely 
falls at the lower bound of the interval iZ , i.e., ( )i ip P Z Z= = , it 

results in the largest increase in the cdf, thus determines the upper 
bound of the cdf. Similarly, the lower bound of the cdf can be 
determined when the probability falls at the upper bound of the 
interval. As a result, we can use (5) to compute the p-box of ( )f X . 
Besides, the bounds for statistic metrics can be computed from the 
histogram representation. For instance, the bounds for the 
expected value of Z are given by: 
  ,  = =∑ ∑[ ] [ ]i i i ii i

E Z p Z E Z p Z  (6) 

where [ ]E Z and [ ]E Z denote the lower and upper bounds for [ ]E Z . 

For operations on multiple variables, the computation of p-boxes 
is an optimization problem because the distribution of the result 
depends on the correlation of variables. From [17], the operation 
of multiple random variables described by histograms requires 
solving a linear optimization problem. We briefly describe how to 
compute the bound for a function of two variables, X and Y, with 
unknown dependency. 
First a discrete two-dimensional table is constructed to include all 
combinations of intervals from X and Y. For each cell we compute 
the bounds of the function, ( ),f X Y . 

( ) ( )= ∈ ∈ = ∈ ∈min , , max ,ij i j ij i jZ f X X Y Y Z f X X Y Y . 

Then we assign a variable, p, as the probability mass for the cell. 

= ∈( [ , ])ij ij ijp P Z Z Z  

The constructed table is shown in Figure 5. Similar to (5), the 
cumulative probability of the function, ( )P Z z≤ , is bounded by: 

 
( )

( )

≤ ≤ ∀ ≤

≤ ≥ ∀ ≤

∑
∑

,

,

   , :

   , :

ij iji j

ij iji j

P Z z p i j Z z

P Z z p i j Z z
 (7) 
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Note that the sum of probabilities of cells in the same row 
(column) should be equal to the marginal probability of X (Y). 
Thus we have constraints for the variable, ijp . The p-box of the 
multivariate function can be then computed by solving the 
optimization problems below for distinct values of z. 
 (i) The upper bound of the cumulative probability: 

     ∀ ≤∑ ,
max , :ij iji j

p i j Z z . 

(ii) The lower bound of the cumulative probability: 

     ∀ ≤∑ ,
min , :ij iji j

p i j Z z . 

The constraints of the optimization problems are: 

0

( [ , ])     for all .

( [ , ])    for all .
  for all , .

ij j ji

ij i ij

ij

p P Y Y Y j

p P X X X i
p i j

= ∈

= ∈
≥

∑
∑ . 

Since the objective function and all constraints are linear functions 
of the cell probability, ijp , the optimization problem is a linear 
programming problem that can be solved efficiently. Besides, this 
probabilistic arithmetic can be extended to handle multiple 
variables by manipulating a multi-dimensional probability table. 
Consequently, we are able to compute the p-box of any arbitrary 
function of variables described by the histogram representations. 
A special case for operations on random variables is that variables 
are mutually independent. In this situation, the result of arithmetic 
operations can be evaluated without solving the optimization 
problem. For example, consider two independent random variables 
X and Y, the joint table is a two-dimensional grid, in which the 
probability of the entries is generated by  

 ( , ) ( ) ( )i j i jP X X Y Y P X X P Y Y∈ ∈ = ∈ ⋅ ∈ . (8) 

Once the associated probability of each cell is computed, we are 
able to construct the histogram of any function of probabilistic 
interval variables. With the histogram, the probability bound can 
be evaluated using (7). 

4. ROBUST PARAMETRIC YIELD 
ESTIMATION 
Reliably estimating parametric yield is extremely important for 
chip designers. The two-sided squeeze on yield means that yield 
estimation essentially requires reliable frequency and leakage 
prediction. We apply the robust estimation framework developed 
above to the problem of reliably evaluating the chip-level 
parametric yield. Since the input of the chip-level problem is 
relatively small, the computational cost is not a concern in this 
work. All factors that affect the robustness of yield prediction, 
described in Section 2, are included in the analysis. The variability 
of three process parameters is considered: effective channel length 
(L), threshold voltage (Vth), and oxide thickness (Tox). 
The subthreshold leakage and gate current models adopted here 
[1][3], describes it as an exponential function of the effective 
channel length, subthreshold voltage, and power supply voltage 
(Vdd). The dependency to on-chip temperature (T) is super-linear 
[2]; however, the leakage can be well approximated as an 
exponential function according to SPICE simulations. Therefore, 
similar to [1][3], the subthreshold leakage current of a unit-width 
transistor, is modeled as: 

 ( )2 22 , ,
,

l g l th l dd g g th ga L a L b L c V d V e T a L b L c V
sub sub nomI I e e∆ + ∆ + ∆ + ∆ + ∆ + ∆ ∆ + ∆ + ∆= ⋅ ⋅ (9) 

where ,sub nomI  is the nominal value of the subthreshold leakage 
current, ,( , )l th lL V∆ ∆ and ,( , )g th gL V∆ ∆ denote intra-chip and inter-
chip components of variation. This model can effectively describe 
the quadratic dependency of the exponent on L variability. 
The purpose of this work is to estimate the parametric yield for 
each frequency bin. Following [3], it is assumed that the inter-chip 
channel length variation ( )gL∆ largely determines the frequency, 
and thus can be assumed fixed for a specific bin. 
Now we are capable of computing the cumulative probability of 
Isub. In this framework, environmental fluctuations (Vdd and T) are 
represented by probabilistic intervals, described in Section 3.1. For 
the purpose of demonstration, process variability (L and Vth) is 
modeled as a truncated Gaussian variable; however, our robust 
estimation is able to handle various distributions because fully or 
partially specified uncertainty can be described by the p-box 
representations. 
Assuming variability due to distinct categories of parameters is 
independent, we can construct a multidimensional table for Isub 
using (8), and then compute the interval and the probability for 
each cell. Since Isub is a monotonic function of all the parameters 
of interest, its range can be efficiently computed by considering 
the combinations of endpoints for parameters within each cell. 
Finally, we obtain a histogram representation of Isub. The p-box 
representation can be then computed using (7). 
The total subthreshold leakage is computed by summing up the 
contribution of all transistors on the chip. 

2 22 , ,( )
, ,

l g l th l dd g g th ga L a L b L c V d V e T a L b L c V
sub total i sub nom

i

I W I e e∆ + ∆ + ∆ + ∆ + ∆ + ∆ ∆ + ∆ + ∆= ∑  

where iW denotes the equivalent device width accounting for 
complex gates and stack effects of leakage. Because all transistors 
share the inter-chip component of variation, we can assess the 
impact of the intra-chip variation first, which can be evaluated by 
estimating the mean of the intra-chip variation as in [3]: 
 

2
,

, ,
g g th ga L b L c V

sub total sub nom sub ii
I I e Wλ∆ + ∆ + ∆= ∑  (10) 

where ( )2 2 ,[ ]l g l th l dda L a L b L c V d V e T
sub E eλ ∆ + ∆ + ∆ + ∆ + ∆ + ∆= . The computation of 

the intra-chip factor λsub can be done by creating a 
multidimensional probability table and a histogram, which 
accounts for the uncertainty of ( ),, , ,l th l ddL V V T∆ ∆ ∆ ∆ . The lower 
(upper) bound for the mean of the histogram representation are 
computed using (6). Thus, we obtain the bounds of subλ . 
For a chip-level analysis, the impact of environmental parameters 
can be evaluated using the statistic metrics (e.g. mean and 
variance) across the entire chip. If the statistic metrics of 
individual blocks in the chip design are available, however, our 
robust estimation framework can utilize these block-specific 
descriptions, and provide accurate leakage estimates. For example, 
a chip design based on the voltage island paradigm [18] may have 
distinct profiles of environmental parameters for blocks. Suppose 
the block-level statistic metrics of environmental parameters are 
available, our robust estimation framework is able to 
evaluate sub ii

Wλ ∑  for each block, and sum up this term for all 
blocks on the chip. After evaluating the intra-chip factor and the 
equivalent width in (10), we can then construct a histogram 
for ,th gV∆ , compute the histogram of ,sub totalI , and obtain the p-box 
of the total subthreshold leakage current. 
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Similarly, we can compute bounds on the intra-chip gate leakage 
distribution over Tox and Vdd. The total gate leakage current is 
expressed as: 

 , ,
, ,

ox g ox l ddh T h T k V
gate total gate nom ii
I I e E e W∆ ∆ + ∆ =  ∑  (11) 

This model captures the dependency of gate leakage on Tox and Vdd, 
and insensitivity to the on-chip temperature [19]. 
The first step of parametric yield evaluation is to find the 
distribution of the total leakage current which is the sum of the 
gate and subthreshold leakage sources. The previous methods [3] 
have assumed independence of subthreshold and gate leakages. In 
our model, however, subthreshold and gate leakage currents are 
correlated due to the dependence on variability of Vdd. As a result, 
the probability of the sum cannot be computed by convolution of 
individual pdfs; this sum of leakage currents must be computed by 
the probabilistic arithmetic described in Section 3, which can 
handle random variables with arbitrary correlations. 
Finally, for every fixed value of the inter-chip channel length 
variation( )gL∆ , we use the abovementioned algorithm to compute 
the p-box of the total leakage current. Then we are able to 
compute the parametric yield for all frequency bins. 

1.0 1.1 1.2 1.3 1.4 1.5 1.6
0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

 Robust Vdd modeling

C
um

ul
at

iv
e 

Pr
ob

ab
ili

ty

Subthreshold Leakage Current (normalized)

 Vdd,min
 Vdd,avg
 Vdd,max

1.167 1.287 1.323 1.423

 
Figure 6. Total subthreshold leakage considering process 
variability (L and Vth) and Vdd uncertainty 0( )gL∆ = . The 
robust method improves the estimate based on the maximum 
Vdd by 7.0% at the 99th percentile. 
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Figure 7. Total gate leakage considering process variability 
(Tox) and Vdd uncertainty. The robust estimation strategy 
improves the estimate based on the maximum Vdd by 15.5% at 
the 99th percentile. 

5. EXPERIMENTAL RESULTS 
The robust nature of the proposed strategy allows us to compute 
bounds for the cumulative probability of the leakage current, 
instead of an approximated value. Since our primary objective is 
to estimate the guaranteed parametric yield, we focus on the lower 
bound of the cumulative probability, i.e., the upper bound of the 
leakage dissipation at any percentile. Thus, only the right-side p-
box is shown in all figures. In the experiments, coefficients of 
parameters in subthreshold and gate leakage modeling are 
obtained from SPICE simulations for devices of PTM 70nm 
technology [20][21]. The 3σ  values of L, Vth, and Tox parameters 
are 20%, 10%, and 8% of the nominal values, respectively, with 
50% of the variance contributed by the inter-chip component. The 
target chip is divided into 16 blocks with distinct ranges of 
environmental parameters; the maximum voltage drop is about 10-
12% of the nominal value, and the standard deviation is about 3%. 
The range of on-chip temperature spans about 20°, with the 
standard deviation about 3°. 
Figure 6 illustrates the importance of taking into account the 
uncertainty of supply voltage. We compute the lower bound for 
the cdf of the total subthreshold leakage current for zero inter-chip 
channel length variation ( 0)gL∆ = . To evaluate the impact of Vdd 
uncertainty, we also compute the cdf assuming Vdd is a fixed value. 
The minimum, maximum, and average Vdd values of blocks are 
used. The robust estimation strategy predicts that the total 
subthreshold leakage is 1.323X of the nominal value at the 99th 
percentile, which means that at least 99% of the samples have 
leakage current no larger than 1.323X of the nominal case, i.e., 

1 323 0 99, , ,( . ) .sub total sub total nomP I I≤ ≥ . In contrast, the leakage 
estimates based on the maximum and minimum Vdd are 1.423X 
and 1.167X at the 99th percentile. Thus, the robust strategy 
improves the leakage estimate by 7.0%, compared to using the 
maximum Vdd. Similarly, the robust strategy improves the gate 
leakage dissipation by 15.5% at the 99th percentile, as illustrated in 
Figure 7. Consequently, the robust method can utilize the partial 
probabilistic descriptions to enhance pure interval analysis of 
environmental parameters. Additionally, Figure 6 illustrates that it 
is inappropriate to use the average value of power supply voltage 
because it predicts a lower estimate of leakage consumption, thus 
results in an over-optimistic prediction of parametric yield. 

We also compare our robust methodology with prior work on 
leakage analysis, e.g. [3]. Because the algorithm in [3] does not 
take into account supply voltage and on-chip temperature, these 
parameters are assumed to be fixed values. Now the maximum 
values of supply voltage and temperature are incorporated in the 
algorithm described in [3] because the objective is to provide a 
guaranteed parametric yield. Figure 8 shows the total leakage 
dissipation computed by both approaches for a frequency 
bin 0( )gL∆ = . Compared to [3], our estimation approach provides 
a lower leakage estimate at any percentile due to robust modeling 
of environmental parameters; the robust strategy improves the 
total leakage estimates by 11.0% and 9.5% at the 50th and 99th 
percentiles, respectively. Besides, the robust estimation method 
predicts a higher parametric yield for a given limit of leakage 
current. Figure 9 shows the equi-yield contours for total leakage 
dissipation computed by both approaches. The difference in the 
99th-percentile leakage consumption ranges from 5.3% to 13.4% 
within the 3σ± range of the inter-chip channel length variation, as 
shown in Table I. Note that the difference between the contours of 
the same yield becomes pronounced for chips with the negative 
inter-chip L variation. Therefore, for chips with large leakage 
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currents, the robust approach can provide a more accurate 
estimation of parametric yield. It helps designers save extra efforts 
to apply additional leakage reduction techniques, and validates the 
necessity of adopting a robust estimation approach. 

6. CONCLUSIONS 
In this work a robust estimation approach is proposed to compute 
the chip-level parametric yield. Based on robust representations 
and operations of random variables, the proposed strategy is able 
to manipulate a variety of distributions that cannot be handled by 
analytical techniques, and takes into account the correlation of 
variables. Given statistic metrics of environmental parameters, the 
robust estimation methodology is able to provide guaranteed 
bounds for parametric yield, thus improve the estimate obtained 
from using only the intervals of environmental parameters. 
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Figure 8. Total leakage current 0( )gL∆ = . The robust 
estimation strategy improves the estimate of the algorithm in 
[3] by 11.0% and 9.5% at the 50th and 99th percentile. 
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Figure 9. Equi-yield contours for the inter-chip L variation. 
The robust approach reduces the estimate of the analytical 
algorithm in [3] by 5.3-13.4% at the 99th percentile. 

Table I. Normalized total leakage at the 99th percentile. 

Inter-chip L variation ( )Lgσ  -3 -2 -1 0 1 2 3 
Algorithm in [3]  4.04 2.94 2.21 1.72 1.39 1.16 1.00
Robust modeling of Vdd and T 3.50 2.57 1.97 1.55 1.27 1.08 0.94
Reduction (%) 13.4 12.6 10.5 9.5 8.1 6.9 5.3 
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