SMT(CLU): A Step toward Scalability in System
Verification™

Hossein M. Sheini
Electrical Engineering and Computer Science Dept.
University of Michigan, Ann Arbor, MI 48109
Email: hsheini@umich.edu

ABSTRACT

We describe a SAT-based decision method for the underly-
ing logic in many formal verification problems; i.e. the counter
arithmetic logic with lambda expressions and uninterpreted
functions (CLU). This logic is well suited for equivalence
checking of two versions of a hardware design or the input and
output of a compiler and has been recently utilized in several
model checkers. Our method follows the general Satisfiability
Modulo Theories or SMT(7) framework and combines a
DPLL-style SAT solver with two theory solvers; one specific
to equality and the other to separation inequality atoms within
CLU. By adopting a combined implication scheme, we co-
ordinate the efforts among theory solvers, and by efficiently
processing uninterpreted functions involved in conflicts, we
considerably improve the effectiveness of SAT learning and
backtracking routines. Finally, we empirically demonstrate the
effectiveness of our SMT(CLU) procedure and compare its
performance to recent solvers on a wide range of hardware
verification benchmarks.

[. INTRODUCTION

The problem of scalability or state-explosion has been
regarded as the most fundamental challenge in formal veri-
fication and specifically in model checking approaches. Since
the introduction of temporal logic model-checking into verifi-
cation of finite state systems [1], several improvements have
been achieved in addressing the scalability problem. Recent
advances in this field include techniques to exploit predicate
abstraction, parameterized designs, BDDs, propositional sat-
isfiability, and counter-example-guided abstraction refinement
(CEGAR). For instance in CEGAR [2], an upper approxima-
tion (abstraction) of the system model is obtained and initially
solved. When an error (counter-example) is found, CEGAR
checks whether the error is the result of the approximation
(the condition for the error to be spurious) or is actually
present in the original model. In the case of a spurious error,

*Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. ICCAD’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011...$5.00

Karem A. Sakallah
Electrical Engineering and Computer Science Dept.
University of Michigan, Ann Arbor, MI 48109
Email: karem@umich.edu

the abstracted model is refined in order to eliminate the
erroneous counter-example. This process continues until either
the specification is proved to be true in the abstract model
or a genuine error is detected. The scalability of the CEGAR
framework directly depends on 1) the efficiency of solving the
abstracted model and 2) the effectiveness of refinement. In the
latter case, recently developed techniques such as elimination
of redundant predicates [3], or word-level refinement [4] have
had some success in improving the scalability of the overall
abstraction/refinement approach. On the solving front, there
also has been considerable progress in both introduction of
new logics for efficient modeling of verification systems as
well as advances in solving procedures embedded in model
checkers and adaptable to those logics.

The first-order logic of counter arithmetic with lambda
expressions and uninterpreted functions (CLU) [5] has been
widely adopted to model several infinite state systems in ap-
plications such as microprocessor verification [6] or API-level
security (format-string) exploit detection [7]. In the meantime,
the recent improvements in the strength and versatility of
DPLL-style satisfiability procedures for propositional logic
(SAT) has extended the applications of SAT solvers to the
decision methods for more expressive logics. These methods,
known as Satisfiability Modulo Theories or SMT(7) [8], are
applied to CLU logic by either i) transforming the CLU
formula into an equi-satisfiable propositional formula, known
as the eager approach [9], or ii) integrating a theory solver
for systems of CLU atoms within a propositional SAT solver.
Two common integration strategies in the latter case are the
lazy approach [10] and the DPLL(T) approach [11]. In the
lazy approach, a propositional abstraction of the formula is
initially solved by a SAT solver and the theory consistency
of each SAT solution is checked by a theory solver. This
procedure terminates if the theory consistency of a SAT
solution is established or none of the solutions is proved
consistent. In the DPLL(7") approach, on the other hand, a
combined DPLL reasoning and learning procedure is applied
across theory atoms. In other words, in this approach, the
consistency of the theory atoms is checked as soon as they
are added to the model by the SAT solver. The theory solver
also has the capability to guide the SAT search by deducing
theory atoms as the search proceeds. This extends the role

844

of the involved theory solver from just a consistency checker
as in the lazy approach to a propagation engine for theory
relations, similar to SAT solver’s Boolean clause propagation
for logical relations. The DPLL(7) approach has been applied
to the logic of equalities with uninterpreted functions in [11],
the integer Unit-Two- Variable-Per-Inequality (UTVPI) logic in
[12] and the difference logic in [13].

In the present paper, we extend the DPLL(7) approach
to CLU logic and introduce novel methods to accommodate
the characteristics of CLU atomic formulas and facilitate their
integration into the SAT deduction and learning/backtracking
schemes. In our approach, we combine a DPLL-style SAT
solver [14] with two incremental algorithms (referred to as
checkers), one for equality and the other for separation-
inequality atoms. This is in contrast to the method of [11]
and [13] where only one theory solver is integrated within
SAT. We construct a hybrid implication graph that takes into
account both logical implications (those due to unit-clause-
propagation) and implications detected within each checker.

We also propose a combined learning scheme that detects
implications due to uninterpreted functions/predicates that are
involved in the conflicts in order to learn their representative
consistency constraints. This method is specifically beneficial
to solve CLU formulas derived from system verification prob-
lems where the uninterpreted functions/predicates are vastly
used to abstract word-level values of data and implementa-
tion details of functional blocks. Our approach considerably
strengthens the conflict-induced learning procedure and re-
sults in a more efficient non-chronological backtracking of
the underlying SAT solver. Finally, we present a complete
experimental evaluation on the effectiveness of each of these
approaches on various benchmarks in hardware verification
and thoroughly analyze different aspects of our algorithm.
We also compare our solving algorithm to recent methods
including the eager approach of UCLID [9], [S] and several
SMT solving approaches [10], [13].

The remainder of the paper is organized as follows. In
Section II, the CLU logic is defined and several decision
methods applicable to CLU are described. In Section III, the
organization of our overall solver and our hybrid implication
scheme are explained. Our efficient learning scheme tuned
toward uninterpreted functions is described in Section IV. The
performance of our methods is analyzed in Section V and we
conclude in Section VI

II. PRELIMINARIES
A. Counter Arithmetic Logic

We consider the CLU formula after expanding lambda
applications [5] and after recursively applying successor and
predecessor functions both to be replaced by simple addition
with integer constants. In this context, two types of variables
are defined, Boolean variables, denoted by bool-var, and inte-
ger variables, denoted by inf-var. We denote integer constants
by c. A term, denoted by t, is inductively defined as follows:

tu=c|intvar | t+c| f(t,---,t) @)

where f represents an uninterpreted' function. Consequently,
an atom in this logic is either
1) A Boolean variable, bool-var, or an uninterpreted pred-
icate over terms, P(t1,- -, ty,); or
2) An equality of the form (¢; — ¢; = ¢), a disequality of
the form (¢; — t; # c) or a separation inequality of the
form (t; —t; < ¢) over terms, ¢; and ¢;.
The former type is denoted as Boolean and the latter as
integer atom. Interchangeably, we refer to atoms in the form
of (t; —t; = ¢), (t;, —t; # ¢) and (t; —t; < ¢) as an
equality, a disequality and an s-inequality respectively®. A
literal is an atom or its negation. Thus, a quantifier-free CLU
formula is constructed by combining C LU literals using logical
connectives (V, A,). Note that each uninterpreted function
(predicate) necessitates that a functional consistency constraint
of the following form is satisfied in any model of the formula
(where f is an uninterpreted function and ¢;’s are terms):

thl,...,flk,tgl,...,tgk :
(tin =tar Ao At = tag) ()
— f(tin, -, tiw) = f(tar, -+, tok)

As a running example in this paper, we use the following
CNF formula as part of a larger problem that represents a
common structure encountered in verification applications.

o = [f(z,21) # f(y, 22)] A [z1 = 22] A
[Pr = (z=z1)] A [P2 — (. =22)] A
[Pg — (l‘ = 1‘3)] AN [P4 — ($ = 134)] VAN (3)
[(y=21)V(y=22) V(y = 23) V (y = z4)]A
(s =21 1) V(21 # 22) V (y = 22 + 1)]

In this example, x;’s, y and z are int-vars and P;’s are bool-
vars and f is an uninterpreted function.

B. SAT-based Decision Methods for CLU

With the recent advances in SAT solvers, several SMT
approaches to solve verification problems involving integer
atoms and uninterpreted functions such as CLU formulas have
been developed. Below we describe the related SMT methods,
applicable to CLU, developed in the recent years:

a) Eager Approach: [9], [15], where the CLU formula
is translated to an equi-satisfiable propositional formula fol-
lowing either small domain instantiation or per-constraint
encoding approach [15]. The former method computes the
bounds on the int-vars and converts each to a bit-vector of
bool-vars. The latter method replaces all integer atoms with
fresh bool-vars and augments the resulted Boolean formula
with all possible transitivity constraints on the values of those
Boolean variables. This approach, aka EIJ method, requires
pre-solving the entire non-Boolean portion of the problem and
encoding it within the Boolean formula.

TAn uninterpreted function (and similarly an uninterpreted predicate) is a
function that we only know is consistent; two applications of the same function
on the same arguments yield the same value.

2Note that an equality (disequality) can be converted into a conjunction
(disjunction) of two s-inequalities.

845

b) Lazy (layered) Approach: [10], where the CLU for-
mula is initially abstracted into a Boolean formula by replacing
all its integer atoms with fresh Boolean variables. The Boolean
formula is then solved by a SAT solver and if satisfiable,
at the first layer the consistency of the conjunction of only
equalities/disequalities are checked. At the next (second) layer,
the s-inequalities are also added to this conjunction and the
consistency of the updated set of integer atoms is checked.
This process terminates if a satisfiable solution at the highest
layer is found or none of the solutions to the Boolean formula
are proved consistent. If a conflict is detected in a layer, this
conflict is used to prune the search in the abstract Boolean
formula and the process reiterates.

¢) DPLL(T) Approach: [13], where all equalities and
disequalities within the CLU formula are initially converted
to s-inequalities and a checker for deciding the satisfiability
of a conjunction of s-inequalities is utilized within the SAT
solver. If the SAT solver adds an s-inequality atom to the
solution, that atom is passed to the checker to establish
the satisfiability of the updated set of s-inequalities in the
solution. Consequently, all the integer atoms implied by the
updated set of s-inequalities are assigned within the SAT
solver accordingly. The advantages of this approach over the
layered and eager approaches can be summarized as follows:

o Compared to the eager approach, the DPLL(7) method
only checks the consistency of integer atoms when they
are absolutely required to establish the satisfiability of the
formula. This avoids “pre-solving” all integer atoms that
is both time and memory-consuming.

o Compared to the layered approach, by processing each
integer atom “on-demand” and propagating all its theory
implications, the DPLL(7) approach detects conflicts
among those atoms as they occur. This advantage is
emboldened when the majority of conflicts arise due to
combining integer atoms and not because of the Boolean
atoms or the logical structure of the problem. To detect
such conflicts, the layered approach requires solving the
abstract Boolean formula at each iteration.

Note that the uninterpreted functions are either eliminated
(i.e. reduced to a combination of equalities following Ack-
ermann [16] or “ITE” [5] techniques), as is required in the
eager approach or are solved by a specialized algorithm, i.e.
based on congruence-closure, in a separate layer in the layered
approach or on-demand in the DPLL(7") approach.

I1I. CHARACTERIZING CLU ATOMS IN DPLL(T)

We propose a novel method for tight adaptive integration
of efficient checkers for different CLU atoms within the
DPLL(7) framework. Our approach is specifically different
from previous DPLL(7)-based methods [11], [12], [13] which
use a s-inequality checker when the formula includes s-
inequalities, and use an equality checker only when no s-
inequalities appear in the formula. For instance, in BarceLog-
icTools [17], if s-inequalities exist in the problem, all function
symbols are first removed using the Ackermann technique [16]
and then a single s-inequality checker is used.

Fig. 1. The organization of algorithms in our SMT(CLU) system
FSAT

c ;

T 7
= g

o

g =
| & =
SAT 3 s
Solver =2 -1
¢ | E' D
= N
@] @
= chs

=
i Y

CL
b3
jutt]

A. Organization of the Solving Procedures

In our SMT(CLU) framework, a generic CNF SAT solver
“orchestrates” the search for a satisfiable set of Boolean
and integer atoms within the CLU formula. Integer checkers
also need to be employed to guarantee that the conjunction
of integer atoms within the satisfiable assignment set has a
solution in the integer domain at all times and at the same
time to propagate integer atoms in that domain. These checkers
report a conflict back to the SAT solver if an inconsistent
integer atom is activated.

In many cases the most efficient approach to solve a
conjunction of integer atoms all in a certain form is not
necessarily applicable to integer atoms in a more expressive
form. More specifically, while it is possible to solve systems of
equalities and s-inequalities using a Bellman-Ford algorithm
in O(m-n) time (where m is the number of constraints and n
is the number of variables), the most efficient method to solve
systems of only equalities/disequalities with successors and
uninterpreted functions is the congruence-closure algorithm
similar to that of [18] that runs in O(n - log(n)) time.

Based on this, we propose a hybrid architecture that
fragmentizes the CLU integer atoms into two types, equali-
ties/disequalities in the form of (z; ~ z; + ¢) where z; and
x; are int-vars and ~ € {=,#}; and s-inequalities in the form
of (z;—z; < ¢). Consequently, we apply a specific checker for
each type. As demonstrated in Figure 1, we additionally utilize
a hybrid implication system to guarantee that the infeasible and
feasible regions in the solution spaces of the two checkers do
not overlap at any time. Note that this approach is specifically
beneficial in cases that few variables are shared among the
two types of integer atoms, minimizing the communication
between the two checkers. Nonetheless, adopting our two
congruence-closure and transitive-closure algorithms for re-
spectively solving equalities and s-inequalities, makes this
communication very cheap.

We utilize a congruence-closure procedure to check the
consistency of a set of equalities and disequalities. In this
procedure, for each int-var both an equality and a disequality
class is maintained. Upon activating an equality between
two int-vars, the equality and disequality classes associated
with both variables are merged. Upon activating a disequality

846

between two int-vars, the variables in the equality class of
each int-var are added to the disequality class of the other.
Note that an offset value, ¢, is associated with each int-var in
these classes. In both cases, the checker returns a conflict if
the equality and disequality classes overlap. All occurrences
of uninterpreted functions are replaced with a fresh int-var,
referred to as a representative variable and their consistency
is maintained adopting the currifying approach of [18]. In
this method each representative variable is linked to the
arguments in its specific function occurrence through a look-
up table. In case all the equalities between the arguments of
two occurrences of an uninterpreted function are established,
the equality between the associated representative variables is
implied. Finally, the consistency of the set of s-inequalities is
checked adopting an algorithm that maintains a transitively-
closed set of s-inequalities at all times. The checker in this
case will return a conflict if this set contains an s-inequality
in the form of (0 < ¢) where ¢ < 0. Note that both these
algorithms can produce an explanation for any conflict within
their domain and can imply any unassigned integer atom that
is the consequence of their set of activated integer atoms.

B. Hybrid Implication Scheme

Employment of two incremental checkers for equali-
ties/disequalities and s-inequalities within our SMT(CLU)
framework requires a hybrid interaction system between those
checkers. Specifically, in cases that the s-inequality checker
implies an equality, that equality might have to be propagated
within the equality checker. The equalities and disequalities
generated within the equality checker due to the mergers of
its internal equality classes also might have to be propagated
in the s-inequality checker. In order to apply only “necessary”
cross-checker implications, the overall solver maintains two
sets of int-vars, one representing those variables present in
the equalities/disequalities and the other those in s-inequalities
in the formula. An equality/disequality (and similarly an s-
inequality) is propagated in the s-inequality (equality) checker
only if each of its variables is shared with at least one s-
inequality (equality/disequality) in the formula.

To facilitate this process, in this paper, we propose to
construct a hybrid implication graph to be managed out-
side the checkers and utilized in the overall procedure. The
nodes in this graph could be either original or generated
Boolean/integer atoms; An edge (and subsequently a node)
is added to the graph whenever either the SAT solver’s unit-
clause-propagation implies an atom or the checkers imply an
integer atom (possibly not in the original formula). Addition-
ally, implying an equality atom of the form (z = y+ ¢) could
trigger adding two s-inequality atoms of the form (z —y < ¢)
and (y — x < —c¢) into the hybrid implication graph and vice
versa, i.e. implying the same two s-inequalities itself could
imply an equality atom (z = y + ¢). In case of adding a
dis-equality atom of the form (x # y + ¢) to the implication
graph, the s-inequality checker needs to decide to add either
(x —y < c¢)or (x—y > c), each denoted as a dis-equality
disjunct. If both disjuncts are inconsistent, the system reports

Fig. 2. Partial hybrid implication graph for example formula of (3) with
marked (shaded) nodes (atoms)

conflict

[theory-generated atom O original atom

a conflict, otherwise a consistent one is selected and added
to the implication graph. In the case that both disjuncts are
consistent, the procedure arbitrarily selects one, say (z —y <
¢), and marks all the implications originating from that node in
the hybrid implication graph. If further in the search, a conflict
involving a marked node is detected, the consistency of the
other disjunct, (y — 2 < —c¢), is checked and if consistent,
the marked nodes are removed and the implication graph is
updated as if the other disjunct was selected.

Figure 2 demonstrates a part of the implication graph under
an arbitrary assignment in our running example of (3). In this
example, assume that all int-vars are present in all types of
integer atoms and the original atoms (y = 1), (21 # 22) and
(y = xo+1) are assigned to true in consecutive decision levels.
Upon assigning (z1 # x2), it should be converted to either
(x1 — 29 < =1) or (z2 — 21 < —1) (dis-equality disjuncts)
to be added to the hybrid implication graph. As it is shown in
Figure 2, since both disjuncts are consistent, selecting (1 —
29 < —1) requires marking all the nodes it implies. Activating
(y = xo + 1) triggers a conflict. Since at this point the other
disjunct (3 —x1 < —1) is still consistent, the procedure does
not report a conflict and simply removes marked nodes and
updates the hybrid implication graph with (zo — 21 < —1)
and generates its subsequent implications accordingly.

IV. LEARNING FUNCTIONAL CONSISTENCY CONSTRAINTS

In the general DPLL(7) approach [11], [13], [12] as well
as different versions of the lazy approach [19], [10], conflict-
induced learning is carried out by the CNF SAT solver follow-
ing its generic implication graph analysis [20]. In such cases,
the SAT solver has no information on the nature of the atoms
and only analyzes the implications ending in the conflict. In
the end it generates a learned clause at the unique implication
point (UIP) of the implication graph. In this context the
implications due to the functional consistency constraint of (2)
are simply viewed as another form of deduction in the hybrid
implication graph besides those due to unit-clause-propagation
and theory checker procedures.

It is also important to note that the most efficient approach
to process the uninterpreted functions in congruence-closure
solvers [18] is to utilize a look-up table which checks the

847

functional consistencies “on-demand”, i.e. when all the pair-
wise equalities between the arguments of two occurrences of
an uninterpreted function are established and not vice versa.
In other words, if for instance in our running example of
(3), we activate (f(z,21) # f(y,22)), we would not imply
(x # y) V (21 # 22). In such cases, the system only checks
the consistency of f when it has established both (z = y) and
(21 = z2). This approach considerably affects the efficiency
of the overall solver since in the majority of cases not all the
equalities between the arguments establish at the same time.

Figure 3a illustrates an assignment sequence to equality
atoms following the generic DPLL(7) approach. At conflicts
1, 2 and 3 the procedure learns the following clause for ’s
equal to 4, 3 and 2 respectively:

(@ =z)A\(y =)N (f(z,21) # [y, 22))\ (21 = 22)] (4)

Note that as discussed earlier even though the atoms
(f(z,21) # f(y,22)) and (21 = z2) are added to the model
at the root decision level, the “on-demand” process does not
imply (z # y) accordingly, at the same decision level.

Building on this observation, in this paper, we propose
a learning and backtracking scheme specifically designed to
accommodate systems involving uninterpreted functions and
predicates, i.e. systems of CLU formulas (common structures
in abstract models). In our procedure, we locate all nodes
in the hybrid implication graph that have triggered the func-
tional consistency constraint of (2). We refer to these nodes
as “Functional Implication Points” or FIP’s. At each FIP,
we learn a new constraint representing that implication, i.e.
the implication due to the functional consistency constraint
associated with the pair of occurrences of the uninterpreted
function. If we denote the equality atoms associated with
each pair of arguments at index ¢ of two occurrences of an
n-ary uninterpreted function with E; and the equality atom
between representative variables associated with those function
occurrences with F', the FIP learned clause would be:

S[Ey AEy A+ ANE,|VF 5)

The original learning process continues until it reaches the first
UIP to learn a unit clause. Note that it is possible that several
FIP’s are detected between the conflict point and the UIP in
the implication graph analysis.

Following on the same example of Figure 3a, upon detecting
the first conflict, our algorithm locates the FIP, which in this
case is the (zr = y) node since it triggered a functional
consistency constraint resulting in the conflict. The original
implication graph analysis continues by replacing the atom at
the FIP, (z = y), with its implicants, (y = z4) and (z = x4).
However, a new clause is also learned representing the exact
implication involved at the FIP. In this case, that implication is
represented by the clause —[(z = y)A (21 = 22)|V (f(x, z1) =
f(y, z2)) which is also added to the formula. Following on
the implication graph up to its UIP yields learning —[(z4 =
Y) A (@ = za) A(f(2,21) # f(y,22)) A (21 = 22)] as the
original learned clause as well.

Fig. 3.

adding [y to model
[F]
[FI-Point

B conflict

90_; implying ¢

Assignment/implication graph for FIP and generic learning methods

(b)

1.conflict

fwa) = fy)

2] — 29

>

o) 7tf(y7z2)2.c0r1ﬂict

2] — Z9

3.conflict T=Y

unsat

(@)

Consequently in our example, in order to satisfy —[(z = y)A
(21 = 22)] V (f(x,21) = f(y,22)), the solver needs to back-
track to the root decision level where (f(z,21) # f(y, 22))
and (21 = z2) were added to the model and therefore to
imply (z # y) at that decision level. Continuing on the overall
solving process, the solver concludes the unsatisfiability of the
underlying assignments with no more conflicts, as shown in
Figure 3b. This saves the process, in this case, two conflict
detections and backtrackings. Note that avoiding conflicts in
such cases directly correlates with the efficiency of the solver
especially when a high number of implications/propagations
are involved at each decision level.

As was shown in this example, by learning a new clause
associated with the specific instance of the functional con-
sistency constraint at the FIP and consequently including the
literal at the FIP, (x = y), in the learned clause, the solver
concludes the inequality (x # y) as soon as it is established.
Unlike the generic method where all combinations of literals
yielding (z = y) were checked and rejected, each resulting
in a new learned clause in the form of (4), our method as
shown in Figure 3b, concludes the dis-equalities due to the
same functional consistency constraint on the fly resulting in
fewer conflicts. Note that we still adopt the efficient look-up
table procedure to apply the functional consistency constraints.

Theorem 1: At least one unit clause is learned if clauses at
the UIP and FIP’s are learned.

Proof: We assume wlog that only one FIP was encoun-
tered in the learning process and thus two clauses were learned

848

as follows:

Cy: ﬁ[Al/\AQ/\“'/\Ak} 6)
Crp: —[E1ANExN---ANE,VF (7
where Ay, Ao, -+, Ay represent the atoms at the UIP, Sp =

{E1, Es,- -, E,, F} represents the set of atoms at the FIP as-
sociated with the arguments of two occurrences of an uninter-
preted function and the equality atom (') over representative
variables associated with those occurrences. We consider that
FEh, Es, -, B, literals are assigned respectively at decision
levels 1,15, - -, 1, and we denote the conflict level by /. and
the backtrack level due to (6) by I, (< I.). Considering that the
FIP is identified to be between the conflict point and the UIP in
the implication graph, we know at least one of /;’s (1 < i < n)
is equal to [.. The set of those atoms in Sp that are assigned
at [, is denoted by S = {El,EQ,"',Em} (m > 1). The
highest decision level associated with atoms in (Sp — S%) is
denoted by [¢. The following cases could occur:

1) If m = 1, then both Cy and Cr are unit at [, and [y
respectively. Therefore at level min(ly,l¢) at least one
unit clause exists.

2) If m > 1, then C'r is not unit at any level below /. and
the only unit clause is Cy at decision level .

Therefore in all cases at least one unit clause is learned. W

Backtracking: Noting that each one of the learned clauses
in our procedure could be unit at a different decision level,
as shown in Theorem 1, in order to maintain the confor-
mity between the decision levels and the implications, our
system backtracks to the lowest decision level at which at
least one learned clause is unit. The completeness of our
overall SMT(CLU) is not affected by its FIP learning and
is essentially a corollary to the completeness of the generic
learning approach of SAT solvers [20] extended to DPLL(7).

Corollary 2: Our SMT(CLU) approach with learning a
clauses representing the UIP cut and clauses of the form of (5)
at the FIP’s followed by backtracking to the lowest decision
level where at least one clause is unit is complete.

Proof: Since we also follow the original SAT learning
procedure, the same clause is learned in our approach as well.
Therefore the completeness of our FIP learning technique is
deduced from the completeness of the learning procedure of
DPLL(T). If the backtrack level is lower in our case compared
to the generic case, the completeness of the procedure is not
affected since each learning step eliminates a new portion
of the search space and provides an explanation for why a
solution cannot be found in that portion.]

It is important to note that the advantage of our techniques
over the learning schemes of generic DPLL(7) methods is
the ability to treat uninterpreted functions differently which
in many system verification applications using abstraction
methods is a major factor in making the process scalable.

V. EXPERIMENTAL RESULTS

We implemented our SMT(CLU) decision procedure within
our Ario SMT Solver. Ario utilizes MiniSAT [14] as its

propositional SAT solver. We adopted the congruence-closure
equality checker of [18] and the transitive-closure s-inequality
checker of [21], augmented with the deduction and learning
techniques of this paper. All experiments were conducted on
an AMD Opteron 2.2GHz (8GB RAM) machine.

To evaluate our hybrid implication scheme, we used the
Averest benchmark suite>. We compared two different tech-
niques to deal with integer atoms within the problem: one that
converts all equalities to conjunctions of two s-inequalities and
solves the problem using a single s-inequality checker, and
the combined approach of this paper that takes advantage of
two (equality and s-inequality) checkers. The results of these
experiments are presented in Table I. This table shows the
clear advantage of adopting an equality checker to solve the
equality constraints and combine it with a s-inequality checker
when both types of constraints are present in the problem. Note
that in these benchmarks, on average, 77.7% of int-vars were
shared among the two types of integer atoms.

TABLE I
COMPARING THE COMBINED EQUALITY/S-INEQUALITY CHECKING TO
SINGLE S-INEQUALITY CHECKING FOR ALL INTEGER ATOMS

. # of avg. # of avg. # of
benchmark suite instances eql%alities s—ine%]ualities speed-up
Binary Search 12 55 48 80.19%
Bubble Sort 52 627 976 32.32%
Fast Max 7 28 71 62.21%
Insertion Sort 34 486 651 44.60%
Linear Search 11 134 0 646.33%
Min Max 12 129 189 63.30%
Partition 19 126 144 47.56%
Selection Sort 47 537 832 38.01%
Sorting Network 49 531 220 54.87%

To evaluate our FIP learning scheme, we used two sets
of benchmarks from hardware verification domain each con-
taining a sizable number of uninterpreted functions in their
models. The description of these benchmark suites follows.

1) Pipelined-Machine-Verification —Problems: (PiMaV)
[22]. These benchmarks model Well-Founded Equivalence
Bisimulation (WEB) refinement to show pipelined machines
and their instruction set architecture have the same safety and
liveness properties up to stuttering.

2) Micro-processor Verification: [6], [9]. These bench-
marks collectively dubbed as “mProcessor”, include instances
of verifying DLX processors, directory-based cache-coherence
protocols with unbounded number of clients, memory units of
Elf pipelines against ISA models and out-of-order processors
with arithmetic instructions and unbounded resources.

We compared Ario against recent state-of-the-art solvers in-
cluding BarceLogicTools [17] based on DPLL(7) method and
adopting a congruence-closure algorithm for solving equality
formulas with uninterpreted functions [18], MathSAT v3.3.1

3Averest is a framework for the specification, verification, and im-
plementation of reactive systems. More information can be obtained at
http://averest.org/ and the benchmarks are available at the SMT
Library (http://combination.cs.uiowa.edu/smtlib/).

849

Fig. 4. Comparing (on logarithmic scale) Ario (X-axis) against UCLID,
MathSAT, Yices and BarceLogic solvers (Y-Axis) on Pipelined-Machine
Verification (PIMAV) and Micro-processor Verification benchmarks. (time-
out = 900 s). A dot above the diagonal line represents an instance that Ario
performed better and vice versa.

1000 - 1000 X
Kex X
kS R
100 4 £ %* 100 4 WK
X X X
2o M o Sy
q x X ¥
S L F X X
K
0.1 0.1
0.01 0.01
001 01 1 10 100 1000 001 01 1 10 100 1000
1000 1000 XXX
X
XX % ¥ X
100 100 %
¥ X
%) w* x
10 10
m
U X
= L WK
>~ 1 1 X
X
X X
0.1 % 0.1
X
0.01 ¥% 0.01 .
001 01 1 10 100 1000 001 0.1 110 100 1000
1000 - 1000 FECKXKKX K
ﬁa&
XX X X X
100 X s 100 x X %
X * x X X
z XX X
10 10 X
wn X x X
S RS X
< 1 X 11 x
= X %
0.1 —§ 014X
X
0.01 0.01
001 01 1 10 100 1000 001 01 1 10 100 1000
1000 1000
100 A 100 4 X
2 &)
on E° S X
S 10 10
8 # y
= 1 X 1 x
<
Mm
0.1 0.1
0.01 T T T T 0.01
00t 01 1 10 100 1000 001 01 110 100 1000
PiMaV mProcessor

[10] following the layered approach and Yices v0.1 [23]. We
also compared our method against UCLID [15] that follows
the eager approach and adopts a hybrid encoding technique
based on a combination of small-domain (finite instantiation)
and per-constraint encodings. The results of these comparisons
are demonstrated in Figure 4. Note that our SMT(CLU)
algorithm performed better than the methods of UCLID,
Yices and MathSAT in the majority of the benchmarks in
these two suites. In case of BarceLogic, it seems that both
solvers performed similar. Note that in these benchmarks, only
the FIP learning is being evaluated since the problems do
not include any s-inequalities. Comparing BarceLogic against

Fig. 5. Comparing (on linear scale) the FIP learning technique of Ario
(X-axis) against Ario with Ackermann reduction (ARIO-ACK) and simple
Ario with its FIP technique disabled (ARIO-SIM) (Y-Axis) on all benchmarks
collectively. A dot above the diagonal line represents an instance that Ario
performed better and vice versa.

50 - iy 50
X X
40 >§S< 2‘; * 40 4 X
M X X s
@) < X X = « X
< R @ i
o XK @) 5 Xox
E 20 E 20 4 XK%X
< x < xl X
10 10
X X
0 0
0 10 20 30 40 50 0 10 20 30 40 50
ARIO ARIO

Ario “without” FIP learning technique (of this paper) reveals
a 24.71% on average better run-times for BarceLogic on these
benchmarks. Therefore considering that both Ario and Barce-
Logic adopt the same congruence-closure algorithm within
the DPLL(7) framework (fundamentally similar approaches
for these problems), it can be concluded that in the majority
of cases, the performance difference is mainly due to their
implementations which is offset by adopting our FIP learning
technique, proving the effectiveness of this method. Note that
our FIP learning technique is less effective in mProcessor
benchmarks since in these instances, the majority of conflicts
originate from Boolean structure of the problems and not
the inconsistencies of the uninterpreted functions. This also
explains Ario time-outs when compared to Yices, MathSAT
and BarceLogic and can be seen in the last 9 rows of Table
II that correspond to this benchmark suite.

In order to further analyze the effectiveness of our FIP
learning technique, we disabled this algorithm within Ario,
yielding a new version of the solver, called Ario-SIM. We also
implemented the Ackermann reduction method [16] within
Ario that removes all occurrences of uninterpreted functions
in the formulas in advance (in the pre-processing phase),
yielding a simple formula in equality logic. We refer to the
latter version as Ario-ACK. Figure 5 illustrates the comparison
of Ario against these two versions on those benchmarks of
PiMaV and mProcessor suites that all methods could solve
within 50 seconds (in most of the harder instances, only
Ario could solve the problem). As it is shown in this figure,
in the majority of benchmarks, FIP learning considerably
improved the performance of the solver. Note that all these
benchmarks include a high number of uninterpreted functions
and predicates which makes them favorable to our FIP learning
technique.

Table II demonstrates the effectiveness of FIP learning in
the learning process on a representative set of our benchmarks.
As it is shown the number of additional clauses learned due to
FIP’s is very low compared to total number of learned clauses.
This further illustrates the fact that in many of these instances
few of the functional consistency constraints due to the un-

850

TABLE II
DATA ON THE PERFORMANCE OF FIP LEARNING

benchmark # of detected | increase in # of speed-up
FIP’s learned clauses

g10idw 58 0.46% 54.97%
gl0 23 0.87% 72.61%
g8bidw 29 0.64% 15.10%
29idw 34 0.66% 55.38%
cl10bid_i 232 1.11% 32.38%
c7nidw-i 168 1.66% 18.70%
c8b 81 4.14% 27.20%
c9b_i 59 2.83% 36.17%
f10i 280 1.65% 52.31%
f8idw 327 1.18% 48.64%
8stage-flush 120 3.08% 7.03%

9stage-flush 201 2.56% 29.41%
cxs-bp-ex-inp 64 3.29% 35.25%
cxs-bp-ex-safety 45 2.12% 39.98%
cxs-bp-ex 76 3.77% 39.55%
cxs-bp 68 4.73% 22.86%
cxs-safety 32 4.17% 10.17%
fxs-bp-ex-inp-safety 103 5.75% 8.67%

fxs-bp-ex-inp 70 3.78% 13.74%
fxs 62 5.05% 14.45%
cache.inv16 0 0.00% -2.72%
000.rf11 178 0.12% 25.60%
dixlc.rwmem 22 3.69% -5.77%
dixlc 19 4.18% 18.99%
elf.rf7 3 4.29% 6.90%

elf.rf8 7 3.68% 17.78%
000.1f10 96 0.46% 35.25%
000.tag10 0 0.00% -1.08%
00o.tagl2 0 0.00% -0.50%

interpreted functions/predicates actually get involved in the
conflicts (also the rationale for not propagating dis-equalities
among representative variables to imply dis-equalities among
their arguments). This is also the reason behind the poor
performance of Ario-ACK which requires pre-processing all
occurrences of uninterpreted functions/predicates. Addition-
ally, this table demonstrates the low overhead of FIP learning
since very few number of extra clauses are learned.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a hybrid SAT-based decision
method for CLU logic. In our approach, we introduced a
tight adaptive integration of both an equality and a separation-
inequality checker within the SAT solver. This was made
possible by adoption of our hybrid implication scheme. We
also proposed an efficient learning method specific to conflicts
involving uninterpreted functions. We exhaustively evaluated
the performance of these techniques on a wide range of
benchmarks in hardware verification.

Our experiments clearly demonstrated the effectiveness of
application-based techniques (such as our approach applied
to CLU formulas) to provide promising frameworks to solve
the scalability problem in system verification. Obviously, such
algorithms if utilized in larger settings such as CEGAR and
when combined with advanced refinement techniques could
bring us closer to verifying systems in industrial scales. Our
contributions in this paper should be regarded as a modest

contribution along this road.

ACKNOWLEDGEMENT

This work was funded in part by the National Science
Foundation under ITR grant No. 0205288.

REFERENCES

[1] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchro-
nization skeletons using branching-time temporal logic,” in Logic of
Programs, Workshop. London, UK: Springer-Verlag, 1982, pp. 52-71.

[2] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Conference on
Computer Aided Verification, 2000, pp. 154—169.

[3] E. M. Clarke, O. Grumberg, M. Talupur, and D. Wang, “Making
predicate abstraction efficient: How to eliminate redundant predicates.”
in Conference on Computer Aided Verification, 2003, pp. 126-140.

[4] Z.S. Andraus, M. H. Liffiton, and K. A. Sakallah, “Refinement strategies
for verification methods based on datapath abstraction,” in ASP-DAC
'06: Asia South Pacific design automation, 2006, pp. 19-24.

[5] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, “Modeling and verifying
systems using a logic of counter arithmetic with lambda expressions
and uninterpreted functions,” in Proceedings of the 14th International
Conference on Computer Aided Verification, 2002, pp. 78-92.

[6] S. K. Lahiri, S. A. Seshia, and R. E. Bryant, “Modeling and verification
of out-of-order microprocessors in UCLID,” in FMCAD, 2002, pp. 142—
159.

[71 V. Ganapathy, S. A. Seshia, S. Jha, T. W. Reps, and R. E. Bryant,
“Automatic discovery of API-level exploits,” in ICSE, May 2005, pp.
312-321.

[8] C. Tinelli, “A DPLL-based calculus for ground satisfiability modulo
theories,” in Proceedings of the 8th European Conference on Logics in
Artificial Intelligence, 2002, pp. 308-319.

[9] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, “Deciding CLU logic

formulas via Boolean and pseudo-Boolean encodings,” in Proc. Intl.

Workshop on Constraints in Formal Verification, 2002.

M. Bozzano, R. Bruttomesso, A. Cimatti, T. Junttila, P. van Rossum,

S. Schulz, and R. Sebastiani, “An incremental and layered procedure

for the satisfiability of linear arithmetic logic.” in TACAS, 2005, pp.

317-333.

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli,

“DPLL(T): Fast decision procedures,” in CAV, 2004, pp. 175-188.

H. M. Sheini and K. A. Sakallah, “A SAT-based decision procedure for

mixed logical/integer linear problems.” in CPAIOR, 2005, pp. 320-335.

R. Nieuwenhuis and A. Oliveras, “DPLL(T) with exhaustive theory

propagation and its application to difference logic.” in Conference on

Computer Aided Verification, 2005, pp. 321-334.

N. Eén and N. Sorensson, “An extensible SAT-solver.” in SAT, 2003,

pp. 502-518.

S. A. Seshia, S. K. Lahiri, and R. E. Bryant, “A hybrid SAT-based

decision procedure for separation logic with uninterpreted functions,” in

DAC. New York, NY, USA: ACM Press, 2003, pp. 425-430.

W. Ackermann, “Solvable cases of the decision problem,” in Studies in

Logic and the Foundations of Mathematics. North-Holland, 1954.

R. Nieuwenhuis and A. Oliveras, “Decision procedures for SAT, SAT

modulo theories and beyond. the BarcelogicTools.” in Conf. Logic for

Programming, Artificial Intelligecne and Reasoning, 2005, pp. 23-46.

, “Proof-Producing Congruence Closure,” in Proceedings of the

16th Int’l Conf. on Term Rewriting and Applications, 2005, pp. 453—

468.

C. W. Barrett and S. Berezin, “CVCLite: A new implementation of the

cooperating validity checker category b.” in CAV, 2004, pp. 515-518.

P. Marques-Silva and K. A. Sakallah, “GRASP: A search algorithm for

propositional satisfiability,” IEEE Trans. Comput., vol. 48, no. 5, pp.

506-521, 1999.

J. Jaffar, M. J. Maher, P. J. Stuckey, and R. H. C. Yap, “Beyond

finite domains,” in Workshop on Principles and Practice of Constraint

Programming, 1994, pp. 86-94.

P. Manolios and S. K. Srinivasan, “A parameterized benchmark suite of

hard pipelined-machine-verification problems.” in CHARME, 2005, pp.

363-366.

[23] L. de Moura, “Yices,”

http://fm.csl.sri.com/yices/

[10]

(11]
[12]

[13]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

2005.

[Online]. Available:

851

	MAIN MENU
	Go to Previous Document
	CD-ROM Help
	Search CD-ROM
	Search Results
	Print

