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ABSTRACT 
Battery-powered wireless sensors are severely constrained by 
the amount of the available energy. A method for computing 
the energy budget per sensing task can be a valuable design 
aid for sensor network optimizations. This work presents 
such a method that computes the upper and lower bounds 
on the task energy budget for a sensor node that must re- 
main operational over a specified lifetime, with a known 
task schedule. These bounds take into account nonlinear 
changes in the battery voltage, capacity loss at high dis- 
charge rates, charge recovery, and capacity fade over time. 
We also propose efficient approximations replacing expen- 
sive calculations of the battery voltage while computing the 
energy budget bounds. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Performance attributes; 
J.6 [Computer-Aided Engineering]: Computer-aided de- 
sign (CAD) 

General Terms 
Design, Performance 

Keywords 
Low-power design, battery voltage modeling, energy bounds 

1. INTRODUCTION 
Wireless sensor network systems, such as MIT’s pAMPS 

[7] and Intel/Berkeley’s Motes [6], have been deployed for a 
wide spectrum of applications from environmental monitor- 
ing to object localization and tracking. Since sensor nodes 
are usually powered by batteries, efficient use of the limited 
amount of the available energy is a critical concern [13]. It is 
important to know the energy consumption limit of a sensor 
during its active periods, so that it can remain operational 
over a required lifetime. 
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For example, assume that a sensor node must service a se- 
quence of N sensing tasks, and let t j  and d j  denote the start 
time and duration of task j ,  where j = 1 , 2 ,  ..., N .  The sen- 
sor must survive till the end of the last task, i.e., the required 
lifetime is ( t N  + dN). Let Ej denote the energy budget of 
task j. For each task, the sensor energy consumption during 
task execution should not exceed the budget; otherwise, the 
sensor’s survival is not guaranteed. If the sensor is regulated 
by a DC-DC converter with power efficiency qc, then 

where I, is the battery current, and V, is the battery 
voltage. Thus, computing the sensor energy budget is re- 
duced to computing the battery current and voltage. 

For the sake of simplicity, let I:, be constant in the time 
interval [t:,, t:, + d:,] corresponding to task 3, and let &(t*)  
denote the voltage value at time t* E [t,, t ,  +d,]. Then, the 
energy budget E3 is bounded as follows: 

qc . d,  . I:, . min{& (t’) I t‘ E [t:,, t, + d,]}  = E,- 5 E:, , (2)  
qc.d:,  .I:, .max{T/,(t*) I t* E [t:,,t:, +d:,]} =E;’ 2 E:,. 

Symbols E3- and E;’ in Equation (2) denote, respectively, 
the lower bound and the upper bound on the energy 
budget of task j .  

1.1 Battery Nonlinearities 
Figure 1 shows two measured voltage curves for an Itsy Li- 

Ion battery [4] discharged at the constant rates of 222 mA 
and 814 mA. Note that the battery voltage changes non- 
linearly over time, even in the simplest case of a constant- 
current discharge. Also, the total delivered charge, or the 
battery capacity, at 814 mA is less than the charge de- 
livered at 222 mA before reaching the 3.0-V cutoff. These 
two phenomena, nonlinear battery voltage changes over time 
and capacity loss at high discharge rates, must be taken into 
account during energy budget estimation. The latter effect 
may especially be important for sensors drawing relatively 
large currents from the battery during wireless data com- 
municat ion. 

When an active interval (discharge) is followed by an idle 
interval (rest), one can observe a so-called charge recovery 
effect: the battery voltage increases during that idle interval. 
In other words, the voltage does not decrease monotonically 
in general case. Sensors with low duty cycle and relatively 
high currents during active periods may benefit from charge 
recovery [8 ] .  

Another phenomenon to be considered is capacity fade 
over time - a Li-Ion battery delivers increasingly less ca- 
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Capacity = Battery Current x DischarQe Time mAh 

Figure 1: Battery voltage under constant load 
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Figure 2: Battery voltage under varying load 

pacity as it ages. For example, after 800 charge-discharge 
cycles at room temperature, a Sony 18650 battery was able 
to deliver only 70% of its original capacity [lo]. Capacity 
fade is particularly important in sensors with long lifetimes 
after deployment. 

Computations of the energy budget bounds using Equa- 
tion (2)  require a model that can predict battery voltage 
changes over time while taking into account high-rate losses, 
charge recovery, and capacity fading. Such a model has been 
proposed in [9], and it will be used in this work. The model 
is reasonably accurate, as indicated by Figures 1-2 showing 
voltage predictions for constant-current and varying-current 
examples. The model is described in Section 3, and its pa- 
rameters are given in Section 7. 

1.2 Objectives and Contributions 
Given the battery model and the task schedule, our first 

objective is to obtain the lower bound E3T 5 Ej for each 
task j = 1 , 2 ,  ..., N .  These lower bounds must guarantee 

INPUT: 
Set of task start times St = { t j  1 j = 1,2, ..., N } ,  
Set of task durations Sd = { d j  1 j = 1,2, ..., N } ,  
Model M for computing 4 ,  
Battery cutoff voltage Vcut, 
DC-DC converter efficiency qc. 

Set of battery currents SI = (13 1 j = 1,2, ..., N } ,  
Set of energy budgets S E  = {Ej  1 j = 1,2, ..., N } .  

OBJECTIVE: 
rnax Cy=l Ej .  

CONSTRAINT: 

OUTPUT: 

min{\/;((t*) 1 t* E [ t j , t j  + d j ] }  2 Gut, t'j = 1,2, ..., N .  

Figure 3: Energy budgeting problem. 

sensor's survival till ( t N  + d ~ ) ,  i.e., till the end of the last 
task N .  We take the lower bound EJp as a pessimistic esti- 
mate of the energy budget Ej for task j. Note that a greater 
energy budget for task j implies that more work can be com- 
pleted during the time interval [ t j ,  t j  + d j ] .  It is desirable 
to maximize the energy budgets for all tasks in the sensor's 
schedule. 

Our second objective is to obtain the upper bound E;' > 
Ej for comparison purposes. Ideally, the distance between 
the lower and upper bounds should be small, indicating that 
our estimate of the energy budget (the lower bound) is not 
overly pessimistic. 

This paper presents a method for computing the energy 
budget bounds [E3-, ET] for each task j. The proposed 
method uses the battery voltage estimates provided by the 
analytical model reported in [9]. This model is computation- 
ally intensive ~ to improve its time and space complexity we 
also propose alternative approximations for more efficient 
battery voltage calculations. Thus, our contributions are 
two-fold: (1) the method for energy budget estimation, and 
(2)  the efficient approximations for battery voltage calcula- 
tions. 

To the best of our knowledge, this is the first work where 
battery voltage nonlinearities are taken into account during 
energy budgeting. Related research [3, 1, 5 ,  2,  121 considered 
charge recovery and high-rate losses, but not capacity fading 
or battery voltage changes over time. A general overview of 
battery models and their applications can be found in [ l l ] .  

2. ENERGY BUDGETING PROBLEM 
The problem of computing the energy budget can be for- 

mulated as shown in Figure 3. Given the task schedule (i.e., 
St and S d ) ,  we must first compute task currents SI such that 
the battery voltage always remains above the cutoff value. 
Then, we can use Equation (2)  to bound the energy budget 
for each task. By taking the lower bounds as the pessimistic 
energy budget estimates S E ,  we ensure that all tasks will be 
serviced. There may be many possible combinations of bat- 
tery currents SI resulting in many possible energy budgets 
S E .  The objective is to select a solution that maximizes the 
total sum of budgets over all tasks. Once the energy bud- 
gets of all tasks are known, a smart sensor can adjust its 
configuration to meet those budgets on a task-by-task basis. 

I n  this  work  w e  consider  a special case assuming  that  
the  current  i s  the  s a m e  f o r  all tasks ,  i .e.,  Ij  = I ,  Q j  = 
1, 2, ..., N .  This restriction considerably reduces the prob- 
lem complexity. An example of this special case is a periodic 
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lime 

Figure 4: Example of a task schedule 

task schedule shown in Figure 5 (Tuctiue and T i d l e ,  however, 
need not be the same for all tasks). 

3. BATTERY MODEL 
Given a sequence of N battery currents as shown in Fig- 

ure 4, model M computes the battery voltage at time t* E 
[ t j ,  t j  f d j ]  as follows [ 9 ] :  

V,(t*) = Vo - rIj- (3) 

where the F-factors are given by 

and 

(4) 

(5) 

The functional S-series in Equations (5)-(4) are defined in 
Table 1. There are nine battery parameters of interest: Vi, 
r ,  4, an, a p ,  P n ,  P,, yn ,  and ”ip -their  detailed description 
can be found in [ 9 ] .  Briefly, cy quantifies battery capacity, p 
quantifies high-rate losses, and y quantifies capacity fading. 

If /3n,p 4 00 (no high-rate losses), then each S-series eval- 
uates to zero: 

4 ( t * ) I p n , p + O 0  = VO - rIj - ~ [ ( m  +yp) t*+ (6) 
- Y n f j  - e - y n t *  - Y n t k  - . - - Y n ( t k + d k )  

Y n  I .  an+Ij ‘  Y n  + c j , : : I k e  
“P-‘j .-fPt*?,’Ptj Y p ( t k  + d k )  - e Y p t k  In 

YP - C i = l I k e  Y P  

On the other hand, if yn,p 4 0 (no capacity fading), then 
the battery model is reduced to the following form: 

If there are no high-rate losses and no capacity fading 
(ideal battery), then: 

4. BATTERY VOLTAGE COMPUTATION 
Our battery model M is relatively complex to be used 

directly. One disadvantage is the presence of the S-series 
(infinite functional sums). Another disadvantage is that we 
must keep the history of all previous tasks in order to cal- 
culate I kF ,k  and I k F , k .  These two sums must 
be recomputed for each j = 1 , 2 ,  ..., N .  For any given task j, 
the sums may be recomputed several times, since a user may 
check several time instances t* E [ t j ,  t j + d j ] ,  reevaluating the 
S-series accordingly. Let X denote the time complexity of 
evaluation of the S-series, and let Y denote the maximum 
number of checked t* per task. Then, the resulting time 
complexity is O ( N 2 X Y ) .  The space complexity is O ( N ) ,  
since the entire load history must be stored. 

To speed up computa t ions  a n d  reduce storage requirements ,  
w e  propose al ternat ive  approximations tha t  avoid using the  
series and  the  ent ire  load his tory.  T h e s e  approximations 
are, in f a c t ,  the  lower  a n d  upper bounds, V -  a n d  V+,  for  
the  battery voltage computed by model  M .  

The bounding approximations for V, ( t*)  are as follows: 

y-(t*) = Vo - r I j -  (9) 

These approximations use the bounds for the F-factors, 
which are based on the respective bounds for the S-series 
(see Table l).’ For example, when computing Fzk we use 
Equation (4) with S,’,. 

In Table 1 one can see that the infinite sums (functional 
series) are replaced by M-term sums where necessary. Also, 
at most H previous tasks are considered, instead of the en- 
tire load history. Hence, the corresponding time and space 
complexities become O ( N H M Y )  and O ( H ) ,  respectively. 
The values of M and H are a user’s choice ~ greater 
values will yield better approximations, but will re- 
quire more computational time and space. 

5. BATTERY CURRENT COMPUTATION 
Once the battery voltage reaches the cutoff value V&t, 

the sensor is no longer operational. Recall that, for the 
sake of simplicity, we assumed that Ij = I ,  V j  = 1 , 2 ,  ..., N .  
Our objective is to maximize the value of I ,  which in turn 
maximizes the energy budget. To ensure that the sensor 
survives all tasks, we must guarantee that V,( t*)  2 V,,t for 
any t* E [ t j ,  t j  + d j ] ,  V j  = 1 , 2 ,  ..., N .  

Computation of V,(t*) using model M ,  given by Equa- 
tion (3), is expensive. Instead we will use the lower bound 
y-(t*) 5 x(t*) while computing the battery current. To 
ensure solution feasibility it is sufficient to guarantee that 

We perform the following three steps to find I that will 
v,-(t*) 2 Kut. 

be used for computing the task energy budgets. 

‘Derivations of the upper and lower bounds for Snk and S p k  
from Table 1 are omitted due to the lack of space. 
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Definitions: 

Assumptions: 

t k + H + d k + H  : l < k < . ' - H  
Tk = { t* : j - H < k < j  

Lower Bounds for Snj and Sni: 

Lower Bounds for Spj and S p k :  

Upper Bounds for snj and Snk:  

Table 1: Definitions and bounds for S-series. 
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Note that t* = t N  + dN. Equation (11) has only one un- 
known, current I - its value can be found numerically. 
Since Expression (11) is monotonic in I ,  we can use a fast 
binary search to find the unknown current value. 

Step 2: As V N ( t N )  > VG( tN) ,  it is sufficient to test 
whether V i ( t N )  2 VCUt given the current value I found 
in Step 1. If the test fails, i.e., v i ( t N )  < Vat, we must 
decrease I so that 

S. N Vut = V,(tN) = Vo - T I -  (12) 
Tactive, Tidle, Total, Active, Duty 

min min h h Cvcle 

In other words, unless V i ( t ~ )  > V,,t, we must perform 
another binary search for a smaller battery current I using 
Expression (12). Note that t* = t N ,  and according to Equa- 
tions (4)-(5), F,N = F?,N = 0 (from Table l, S,N = S,N = 0 
if t* = t ~ ) .  

Step 3: In the previous two steps, we checked the con- 
traint V , ( t * )  > Vcut for t' = t N  and t* = t N  + dN. Strictly 
speaking, we should also check other times instances t* E 
(tN,tN + d ~ ) .  Based on our numerous observations, we 
conjecture that if the voltage is above the cutoff value at 
the time boundaries of a constant-current task, then it is 
above the cutoff value anywhere between those boundaries. 
In other words, if for some task j we have V, (t ,)  > V,,t and 
V, ( t j  + d j )  2 &,t, then checking whether V, ( t * )  2 &,t for 
t* E ( t j , t j  + d j )  is not necessary. However, this conjecture 
has not been proven formally. Consequently, this potentially 
redundant step i s  included in the algorithm. We first par- 
tition the time interval ( t N ,  t N  + d ~ )  into Y subintervals 
of equal length A. Then, for each y = 1 , 2 ,  ..., Y, we let 
t" = t N  + yA and check whether V i  ( t*)  2 VCUt. If the test 
fails, we decrease I so that V i ( t * )  = Vc,t. 

In general, considering only the last task j = N is not 
sufficient ~ recall that it is sometimes possible for recovery 
effects to mask constraint violations of the earlier tasks. To 
ensure solution feasibility, we repeat the above three steps 
for all tasks in reverse order, reducing the value of I as 
needed. In practice, however, it is very unlikely that task N 
survives, while one of the earlier tasks j = N - 1, N - 2,  ..., 1 
has failed. In other words, the original value of I found using 
Expression (11) will rarely be recomputed. 

Note that the current I computed based on Vj- = VC,t 
(i.e., using our approximations) will be less than the optimal 
Ima, computed based on V, = Vcut (i.e., using our model 
M directly). However, since our approximations require less 
computational time and space than M ,  the complexity of 
computing I will be lower than the complexity of computing 
I,,,. 

6. ENERGY BUDGET COMPUTATIONS 
Once current I is known, we compute the lower bound E,- 

and the upper bound E,' of the energy budget as follows: 

E,- = qc . d, . I .  min{Y-(t*) I t' E [t,, t ,  + d 3 ] } ,  

E;' = qc . d, '1. max{y+(t*) I t* E [t, , t ,  + 41). 
(13) 

Figure 5: Example of a sensor load. 

Table 2: Five scenarios under consideration. 

Again, instead of using our model M to compute V, di- 
rectly, we have used our approximations y- and y+ in or- 
der to speed up computations. This computational speedup 
comes at the expense of solution optimality, since we let 
Ej = E,:, and since Vj- 5 V, + I 5 I,,,. However, the 
use of Vjj- instead of Vj while computing the battery currents 
and energy budgets is optional, i.e., it is a user's choice to 
trade off solution optimality for computational complexity. 

If our conjecture (see Section 5, Step 3) is true, then the 
lower bound E3T can be computed using a simpler equation: 

Recall that we use the lower bound E,- as the energy 
budget, and compare it against the upper bound E;'. If 
the difference between these two bounds is small, then the 
energy budget is not overly pessimistic. Since the upper 
bound E,' is used only for comparison purposes, its accuracy 
is not critical. It can be computed using a simpler equation: 

E;' = qc . d j  . I .  max{y+(tj), y+(tj + d j ) } .  (15) 

7. EVALUATION RESULTS 
To illustrate the use of the proposed energy budgeting 

method we consider an example of a periodic sensor load 
shown in Figure 5. A sensor is activated N times: during 
each period it is active for Tactive minutes and idle for Tidle 
minutes. We study five sensing scenarios shown in Table 2,  
letting the sensor lifetime range from 5 hours to 5000 hours. 

For each scenario, we consider three battery variants shown 
in Table 3. For all three batteries, Vo = 3.76 V, T = 400 mR, 
and 4 = 0.125 V. For battery B1, we further let a,  = 15 
mAh, cy?, = 655 mAh, Pn = 2.50 l/min, and P?, = 0.50 
l/min. These values were used to predict measured battery 
voltages shown in Figures 1-2. Also, we let both 'y, and 
"i?, equal 0.000017 l/min. These values were obtained by 
fitting the cycling fade model from [9] to the experimental 
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B. N = 3000 Period = 100 m r  Duty Cycle = 0 01 
3 5  m I  an ~ p ,  Pn, P P  , "in , ?P > 

mAh mAh l/min l /min l /min l /min 
B1 15 
B2 15 
B3 15 

Table 3: Three batteries under consideration. 

655 2.50 0.50 0.000017 0.000017 
655 1.25 0.25 0.000034 0.000034 
655 00 00 0 0 

data from [lo] for a Sony battery at the room temperature 
(the maximum error was 3%). 

Battery B2 is derived from B1 by halving ,!3n,p and dou- 
bling yn ,p ,  which makes B2 more lossy than B1. Battery B3 
represents an ideal case. 

For our approximations we let M = H = 10. Also, we 
used Equations (14)-(15) while computing E,- and E;'. 

7.1 Performance of Voltage Approximations 
There are two contributors to the difference between the 

lower and the upper bounds of the energy budget. First is 
the task duration and current - a longer tasks with a higher 
current will result in a greater difference between V, (t,) and 
V, ( t ,  + d 3 ) ,  which leads to a greater difference between the 
energy budget bounds E;' and E3-. This first contributor is 
specific to the task characteristics, not voltage approxima- 
tions. Recall that battery B3 requires no approximations, 
yet the energy budget bounds do not match ~ the greater 
the task charge ( I .  Tactzve),  the greater the difference be- 
tween E;' and E3-. For example, scenarios S4 and S5 have 
the highest charge consumption per task (7.12 Coulombs), 
and consequently, the worst maximum difference of 0.42% 
among the cases involving battery B3. 

The second contributor is the quality of the proposed volt- 
age approximations that can be seen in ten cases involving 
batteries B1 and B2. In six of those cases, the bound dif- 
ference is under 5%, which implies that our approximations 
were somewhat accurate in comparison with model M given 
by Equation (3). In other words, if we were to use battery 
voltage model M directly, our exact results would match 
approximated solutions within 5%. The other four cases did 
not perform well - in two of them (S3-B2 and S5-B2) even 
the average error exceeded 5%. Such a poor performance 
is due to the overly pessimistic lower bound.' The use of 
our approximations is not justified in those cases, unless the 
complexity of model M is an important concern. 

7.2 Performance of Batteries 
The battery voltage is usually lower for later tasks, so the 

energy budget is reduced accordingly. For example, in case 
S3-B3 the budget of the first task is 3.27 J,  while the budget 
for the last task is 2.36 J, or 28% less. Smart sensors must 
budget their energy consumption accordingly, compensating 
for changes in the battery voltage. 

Cases S1-Bl and S1-B2 illustrate the effect of capacity 
fading over time. Compared to the 13.0-mA current for the 
ideal battery B3, the battery current is only 9.9 mA for B1 
(24% less) and 7.4 mA for B2 (43% less). The task energy 
budgets (lower bounds) for these three cases are shown in 
Figure 6. Note that scenario S1 corresponds to the longest 
sensor lifetime of 5000 h, and capacity fading can no longer 

'The output produced by model M was much closer to the 
upper bound than to the lower bound. 

w 2  25; 

1 5 t  1 
1 

500 io00 1500 2000 2500 3000 

Task 

Figure 6: Task Energy Budgets for Scenario SI. 

be ignored. Relatively short lifetimes of the other scenarios 
do not expose fading effects. 

Shorter sensing times usually lead to higher allowable dis- 
charge currents. For example, the sensing time of scenarios 
S1 and S2 is 50 h, while the sensing time of scenarios S4 
and S5 is only 0.5 h. This leads to a nearly 100-fold current 
difference. Due to high-rate losses, the latter scenarios need 
special consideration. Even though scenarios 54 and 55 have 
the same sensing time, S4 performs better than 55 because 
of the 11-fold difference in T z d l e  (9.9 min for S4 versus 0.9 
min for 55). Longer idle intervals allow for greater charge 
recovery that mitigates high-rate losses. In other words, ca- 
pacity loss due to high battery currents can be lessened by 
enforcing very low duty cycles. 

Not surprisingly, battery B2 performed worse than B1 
(less lossy), i.e., the energy budgets in cases involving B2 are 
worse than those involving B1. Also, note that the bound 
differences in cases S3-B2 and S5-B2 are worse than those in 
cases S3-Bl and S5-Bl. Ideal battery B3 is a clear winner in 
Table 4, as it has no losses and requires no approximations. 

7.3 General Recommendations 
Time and space savings due to the lower complexity of the 

approximations may be particularly important when energy 
budgeting is performed by a sensor itself, e.g., in response 
to the change in a sensing scenario or a battery. However, 
the accuracy loss may exceed the acceptable error margins, 
which may lead to overly pessimistic energy budgets. In such 
cases, which are identifiable by a large difference between 
the lower and upper bounds, a user should work directly 
with the battery voltage model M despite its complexity. 
The proposed methods for bounding voltages and energy 
budgets are likely to perform better for: 

batteries with larger 
0 batteries with smaller Y ~ , ~  (less capacity fading), 

scenarios with shorter Tactiver 
scenarios with longer Tidie. 

Last, we point out that the quality of energy budgeting 
depends on the quality of the battery model. Since no model 
perfectly matches reality, the computed energy budget val- 
ues should be used with reasonable caution. 

(less high-rate losses), 
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Case 

Scenario- Current 
Battery I ,  mA 
S1-B1 9.9 
S1-B2 7.4 
S1-B3 13.0 
S2-B1 12.7 
S2-B2 12.3 
S2-B3 13.0 
S3-B1 126.9 
S3-B2 115.3 
S3-B3 130.5 

E+-E:  I j = 1 , 2 ,  ..., N 
E T  

First Task Last Task 

Lower Bound Upper Bound Lower Bound Upper Bound Maximum Average 
% E,, J E:> J EN, J EL  J 

2.51 2.51 1.87 1.88 0.62 0.03 
1.88 1.88 1.38 1.39 0.89 0.04 
3.30 3.30 2.45 2.46 0.17 0.01 
3.22 3.22 2.33 2.36 1.45 0.04 
3.12 3.12 2.33 2.35 0.99 0.05 
3.30 3.30 2.45 2.46 0.17 0.01 
3.17 3.18 2.29 2.48 8.60 1.07 
2.88 2.90 2.08 2.29 14.92 7.28 
3.27 3.27 2.36 2.36 0.35 m 

S4-B1 
S4-B2 
S4-B3 

Table 4: Energy budget bounds for the first and last tasks and relative bound difference over all tasks. 

1142.5 25.29 25.89 20.57 20.98 2.33 0.76 
1105.1 24.41 25.13 19.89 20.56 3.82 1.24 
1186.1 26.63 26.74 21.35 21.38 0.42 0.08 

8. CONCLUSION 

S5-B1 
S5-B2 
S5-B3 

Battery-powered wireless sensors are severely constrained 
by the amount of the available energy. This paper described 
a method for computing the lower and upper bounds for the 
energy budget per task for sensors that must survive for a 
specified period of time. We assumed that the sensor’s task 
schedule was known and each task drew the same current 
from the battery. 

The proposed bounding method used an analytical model 
for predicting the battery voltage given the discharge cur- 
rent, while taking into account battery capacity loss at high 
discharge rates, charge recovery, and capacity fade over time. 
Since it is computationally expensive to use this model di- 
rectly, we also proposed alternative approximations for more 
efficient voltage calculations. 

We considered three variants of a Li-ion battery and five 
sensing scenarios, resulting in 15 different cases. The com- 
puted energy budget bounds were within 5% of each other 
in 11 cases. Our future effort will target better voltage ap- 
proximations and less restrictive assumptions, e.g., allowing 
for varying battery current across tasks. 

990.3 22.33 22.79 17.83 19.11 7.19 2.74 
609.1 14.32 14.58 10.96 12.88 17.50 8.33 
1186.1 26.63 26.74 21.35 21.38 0.42 0.08 
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