
Temperature-Aware Leakage Minimization Technique for
Real-Time Systems ∗

Lin Yuan1, Sean Leventhal2 and Gang Qu2

1Synopsys Inc., Mountain View, CA 94043
2ECE Department and UMIACS, University of Maryland, College Park, MD 20742

yuanl@synopsys.com, {sleventhal,gangqu}@eng.umd.edu

Abstract
In this paper, we study the interdependency between leak-
age energy and chip temperature in real-time systems. We
observe that the temperature variation on chip has a large
impact on the system’s leakage energy. By incorporating the
temperature information, we propose an online temperature-
aware leakage minimization algorithm for real-time systems.
The basic idea is to run tasks when the system is cool and
the workload is high, and put the system into sleep when it is
hot and the workload is light. This online algorithm has low
run-time complexity and improve the leakage energy saving
by 34% on average in both real life and artificial benchmarks
over traditional DVS approaches. Finally, our algorithm can
be combined with existing dynamic voltage scaling methods
to further improve the total energy efficiency.

1. INTRODUCTION
As technology scales down to the deep sub-micron (DSM)

domain, the rapid increase of power density and leakage
power in VLSI circuits have posed the immediate challenge
of energy efficiency for real-time system designs, where en-
ergy source is often limited. Dynamic voltage scaling (DVS)
technique is among the most effective in reducing dynamic
energy in the system. To obtain the maximal dynamic en-
ergy reduction, DVS method aggressively slows down the
execution of the task such that the task completes exactly
at its deadline [1]. However, this comes with a longer exe-
cution time, which means more leakage energy will be con-
sumed during the period. Due to the steep increase in leak-
age, several modified DVS techniques have been proposed to
trade the dynamic energy reduction for more leakage saving
in order to obtain the minimal total energy [4, 14]. In these
techniques, a critical supply voltage/speed is defined in the
DVS design space, such that if the supply voltage is scaled
down below the critical voltage, the reduction in dynamic
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energy will be surpassed by the increase in leakage energy
resulting more total energy. They propose to operate the
system at a voltage higher than the critical one and put
the system into sleep state when the task completes ear-
lier than the deadline. Based on such critical voltage/speed,
[4] propose a scheduling algorithm that schedules the tasks
running back-to-back and leaves a long idle duration for the
system to shutdown. None of these approaches consider the
temperature influence in the leakage power. They assume a
constant temperature. However, temperature in the system
goes up rapidly with the increased power consumption.

High temperature not only affects the performance and
reliability of the chip, but also the leakage current. For ex-
ample, a 10oC rise in temperature at 35oC will result in
currents going up by 126% due to the leakage [16]. This
is because that leakage currents in MOS transistors have
an exponential dependency on temperature based on the
Berkeley BSIM3 model [15]. Unfortunately, most leakage
reduction techniques do not consider this impact, resulting
in poor estimation of total leakage power [16]. This inter-
dependency between leakage and temperature also implies
that if the system is not designed properly, chip temperature
and leakage power will interact in a positive feedback loop
and lead to thermal runaway.

To avoid the thermal runaway situation, dynamic temper-
ature management (DTM) techniques have been proposed
to control peak temperature in microprocessors and large
server systems [7, 8]. A trigger mechanism is designed in
[7], where an on-chip sensor is used to measure the temper-
ature; whenever the temperature exceeds a pre-determined
threshold, a throttling technique is used to reduce the pro-
cessor speed. Skadron et al. presented a microarchitectural-
level thermal model that considers both the temporal and
local thermal effects on chip [9]. A feedback control theory
based approach was used to tune the system performance at
a finer granularity [8]. In addition to general purpose proces-
sors, Srinivasan et al.[11] proposed a thermal management
technique for multimedia applications. The runtime tem-
perature is predicted based on the starting temperature of
each task. However, they did not consider leakage power,
which is a significant and temperature sensitive. A system-
level leakage reduction technique is proposed in [3], where
leakage current is described as a function of temperature.

The DTM techniques are very effective in controlling the
peak temperature for general purpose processors; however,
they often slow down the system for temperature reduc-
tion without considering the urgency of the executing tasks.
Therefore, DTM techniques cannot be directly applied to
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real-time systems because they do not guarantee that tasks
meet their deadlines, which is very critical for most real-
times systems. In addition, how to set the temperature
threshold values in DTM has a big impact on the energy con-
sumption in the system, whereas DTM selects such thresh-
olds for the solely purpose of controlling peak temperature,
and its solution may not be good from the energy point of
view.

The contributions of this paper are the following: we
study the temperature and leakage interdependencies in real-
time systems; we propose an online temperature-aware leak-
age minimization algorithm (TALK) that considers the ur-
gency of each task while adjusting the run/sleep mode in
the system; in addition, our algorithm also considers the
wakeup overhead in time and energy to achieve an accurate
energy reduction; finally, it requires little hardware support
and has low run-time complexity.

2. PRELIMINARIES
System model: We study a real-time system where the
tasks have been scheduled to meet their deadlines. That is,
each task has been associated with a starting time, comple-
tion time, and worst-case execution time. The system has
two operation modes: an active mode and a sleep mode.
During the active mode, the tasks are being executed and
the system dissipates both dynamic and leakage power; dur-
ing the sleep mode, tasks are halted and and the system
only consumes a small amount of power. When the sys-
tem switches from sleep to active mode, additional time and
energy are incurred, called the “wakeup” overhead.
Thermal model: The temperature variation on chip is
modeled using the RC equivalence [8]. As the energy gener-
ated by the system is converted into heat, the system tem-
perature rises, and it will reach a state where the amount
of heat generated during a period of time becomes equal to
the amount of heat being removed by the heatsink. (We
assume a proper heat sink has been employed in the sys-
tem and the thermal runaway will not occur). During this
state, there will be almost no temperature variation and
this state is generally called the thermal equilibrium. We
denote the temperature at this state as K1. Similarly, when
the system cools down, it will also reach a temperature K2

where it is as cool as the heat sink and no more heat can
be removed. Normally, K2 is equivalent or very close to the
ambient temperature. We further define K3 as the product
of Rth and Cth, where Rth and Cth are the thermal resis-
tance and thermal capacitance respectively. The rise and
fall of temperature can be characterized using equations (1)
and (2) below:

Trise(t) = K1 − (K1 − Tcur)e
− t

K3 (1)

Tfall(t) = K2 + (Tcur − K2)e
− t

K3 (2)

where Trise(t) and Tfall(t) are functions of temperature over
time t during the heating and cooling process respectively;
Tcur is the transient temperature at the current time.
Energy model: We mainly consider the leakage energy
in the system as it is emerging to be the dominant one and
temperature dependent. Leakage power can be calculated
as:

Pleakage = Ng · Ileakage · Vdd (3)

where Ng is the number of equivalent transistors in the sys-
tem and Ileakage is the leakage current that can be modeled
as follows for 65nm technology [3]:

Ileakage = A · T 2 · e
αVdd+β

T + B · eγVdd+δ (4)

In this formula, A, B, α, β, γ, and δ are empirical constants
that can be found in [3]; T is the temperature. The first term
denotes the subthreshold leakage that increases as T goes
up. The second term is gate leakage, which is insensitive
to temperature and is projected to be controlled by high-
K material [5]. Therefore, we focus on the subthreshold
leakage.

3. TEMPERATURE-AWARE LEAKAGE MIN-
IMIZATION (TALK) ALGORITHM

3.1 Problem Formulation
We use a (D, W ) pair to denote the life-period (completion

time - starting time) and workload (worst-case execution
time) of a single scheduled task, which is to be operated at
voltage Vdd. We define x(t) ∈ {0, 1} to be ’1’ if at time t the
system is at the active mode or ’0’ if it is at the sleep mode.
Our goal is to determine the function x(t) in the interval
[0, D] such that the workload W can be completed and the
total leakage energy expressed below is minimized:∫ D

0

(Pactive · x(t) + Psleep · (1 − x(t))dt (5)

where Pactive and Psleep are the leakage power of the system
at the active and sleep mode respectively. Note that the sec-
ond term in equation (5) is a constant Psleep ·(D−W ) where
Psleep is the power consumption when then the system is at
the sleep mode. Hence we can formulate the temperature-
aware leakage minimization problem as following:

Determining x(t) such that
∫ D

0
x(t)dt ≥ W and

∫ D

0
Pleakage(t)·

x(t)dt is minimized.
This is a known nonlinear feedback control problem. A

fast and practical approach is to partition the interval [0, D]
into many sub-intervals [ti, ti+1) i = 0, 1, · · · , N − 1 and
0 = t0 < t1 < · · · < tN = D. When the sub-interval [ti, ti+1)
is small, we can approximate the leakage power during that
time period as invariant. Furthermore, we can integrate
the wakeup time twakeup and energy Ewakeup overhead by
defining wi = 1 if x(ti) > x(ti−1) and wi = 0 otherwise.
Thus, the original problem can be reduced to:

N−1∑
i=1

x(ti) · (ti+1 − ti − wi · twakeup) ≥ W (6)

N−1∑
i=1

(Pleakage(ti) · x(ti) · (ti+1 − ti) + wi · Ewakeup) (7)

3.2 Online TALK Algorithm
We proposed an offline TALK algorithm in [13]. In this

paper we will illustrates the online TALK algorithm in Fig-
ure 1. Motivated by the leakage dependency on temperature
in equation (4), the basic idea of this heuristic is to avoid
executing tasks at high temperature, where the leakage cur-
rent rises sharply. Whenever the workload becomes rela-
tively light, the algorithm postpones the execution and puts
the system into the sleep mode to lower the temperature for
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Input: D, W, ti, T (t0)
Output: x(ti)
1. at time t0
2. remaining workload Wr = W;
3. remaining time Dr = D;
4. for the starting time ti of each interval [ti, ti+1)
5. if (Wr ≥ Dr) return cannot complete;
6. if (Wr == Dr)
7. then x(tj) = 1, for i ≤ j ≤ N ; return;
8. if ( Wr

Dr−Wr
< Tcur−K2

K1−Tcur
)

9. then x(ti) = 0;
10. else x(ti) = 1;
11. Wr = Wr - (ti+1 − ti);
12. Dr = Dr - (ti+1 − ti);
13. if (Wr ≤ 0) x(tj) = 1, for i ≤ j ≤ N ; return;

Figure 1: Pseudo-code of the online temperature-
aware leakage minimization algorithm.

future tasks. On the other hand, when the workload is high,
it will examine the current temperature and the remaining
time, and finds the most energy efficient schedule to finish
the task before the deadline.

To measure how demanding a task is at a decision point
ti, we calculate the ratio η of the remaining workload Wr

to the remaining idle time Dr − Wr, that is, η = Wr
Dr−Wr

.
This also measures the heating time of the system over the
cooling time of the system before the deadline D. We fur-
ther calculate the ratio θ between the time for the system
temperature to rise one degree and the time to go down one
degree at the current temperature Tcur = T (xi). It indicates
the direction (rise or fall), in which the temperature change
is more significant.

From equations (1) and (2), we have

θ = |dTfall/dt

dTrise/dt
| =

Tcur − K2

K1 − Tcur
(8)

If η < θ (step 8), the system goes to sleep mode because
small η implies not heavy workload and large θ suggests high
benefit in cooling the system down. Note that θ is small at
low temperature Tcur. This encourages the system to stay
at the active mode (step 10) unless the relative workload
η is even lower. On the other hand, at high temperature,
the large value of θ will put the system into the sleep mode
(step 9) as long as the relative workload is not extremely
demanding (that is, very large η).

Finally, we mention that this online TALK algorithm re-
quires little hardware and has very low run-time complexity
from the following analysis. Steps 11 and 12 update the re-
maining workload and remaining time with a couple of sub-
traction; current temperature information can be obtained
either from on-chip temperature sensor or by estimation [7,
9]; the condition statement in step 8 requires a couple of
subtraction and two division. In fact, we track the values
of Dr and Wr for the convenience of explanation. We can
instead track Dr − Wr and Wr to save several subtraction.

4. SIMULATION RESULTS

4.1 Simulation Setup
We simulate the TALK algorithms on two types of sys-

tems: one with a processor running at a single supply volt-
age 1.0V, which is the basic model for many small embedded

applications; the other with a DVS-enabled processor that
can run at voltages from 0.5V to 1.0V in a step of 0.05V.
The fixed frequency in the first system is 500MHz; the high-
est and the lowest frequency in the second system ranges
from 200MHz to 500MHz under different supply voltages.
The processor in the system is based on the Transmeta pro-
cessor model [4]. It has a wakeup energy overhead 483µJ
and delay overhead 5ms. The power dissipation at the sleep
mode is 50µW . The thermal model is from [9]. The ambi-
ent temperature is assumed to be 300K; for different supply
voltages the maximal temperature at the thermal equilib-
rium is between 363K and 388K.

Eleven benchmarks are use to evaluate our TALK algo-
rithm. The first benchmark is an MPEG4 media encoding
[10]; the second to the fourth benchmarks are taken from
the Hartstone suite [2]; the fifth and sixth benchmarks are
obtained from the ADSL standard’s initialization sequences
[12]; the rest five benchmarks are generated artificially to
represent different system utilization ratios.

4.2 Leakage Reduction in a Single-Voltage Sys-
tem

In a single-voltage system, we compare TALK with a sim-
ple algorithm that runs a task up front and switches to the
sleep mode upon task completion, which we refer to as the
naive approach. We report the leakage energy saving of
TALK algorithms in Table 1.

Table 1: Leakage saving of the temperature aware
algorithms with different interval size.

leakage int 100ms int 50ms int 20msBenchmark D(s) W(s)
naive TALK #w TALK #w TALK #w

MPEG4 60 50 1213.2 10% 413 12% 727 14% 2344
CH2 1 0.3 5.4 25% 3 32% 6 35% 15
CO 1 0.15 2.2 16% 2 23% 3 30% 8

airflow 2 0.2 3.2 19% 2 31% 4 39% 8
ADSL1 0.576 0.285 5.1 20% 3 22% 6 25% 15
ADSL2 2.048 0.864 19.0 33% 9 37% 18 39% 43
Bmk1 1 0.4 7.8 26% 4 32% 8 34% 20
Bmk2 1 0.5 10.2 27% 6 28% 11 31% 26
Bmk3 1 0.6 12.6 24% 4 26% 11 27% 29
Bmk4 1 0.7 15.0 19% 5 21% 12 21% 34
Bmk5 1 0.8 17.5 12% 4 15% 11 15% 37

Average 21% 4.2 25% 9 28% 23.5

The first column lists all the benchmarks; the second and
third column show the deadline and workload for each appli-
cation. We assume the execution time of a task is equal to
the workload. The leakage energy consumption in systems
running with the naive algorithm is shown in the fourth col-
umn. In the rest part of this table, we demonstrate the leak-
age savings of TALK algorithms and the number of times
the processor wakes up (the #w columns), when the life-
period D of each task is partitioned into intervals of length
100ms, 50ms and 20ms respectively.

We observe that as the interval size reduces, the TALK al-
gorithms can achieve larger energy saving. This is because
the finer granularity, potentially the more times the algo-
rithm can put the system into sleep mode to save leakage
energy. In fact, we see the number of times for the system
to wake up is inversely proportional to the interval sizes. In
practical, choosing the interval size is also restricted by the
wakeup delay and energy overhead.

Finally, the last row of the table shows the average results
over eleven benchmarks. Note that the average number of
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Figure 2: Leakage energy in the systems with naive
approach, traditional DVS, CS-DVS and TALK al-
gorithms.

wakeup times does not include that of benchmark MPEG4
because it is substantially larger than the others due to the
tasks’ much longer period and execution time. Thus, we
think it is reasonable to treat this particular benchmark sep-
arately.

4.3 Leakage Reduction in DVS-Enabled Sys-
tems

Next, we simulate the TALK algorithms in a DVS-enabled
system. Again, we first report the leakage energy of a naive
algorithm and compare the leakage saving of TALK with
the traditional DVS algorithm (DVS) and the leakage aware
DVS algorithm (CS-DVS) proposed in [4]. In five out of
eleven benchmarks, DVS algorithm will not be able to scale
the voltage down below 0.7V, which is higher than the crit-
ical voltage defined by CS-DVS. In another word, the tra-
ditional DVS algorithm that extends the execution over the
entire period by having the system run at the lowest possible
voltage is still the most energy efficient approach for those
five benchmarks. Therefore, in those case, there will be no
idle time for the system and TALK algorithms will not be
beneficial.

We report our simulation results for the rest of six bench-
marks in Figure 2. The naive algorithm always let the sys-
tem run at the highest voltage and hence the run-time leak-
age power consumed is very high. The traditional DVS al-
gorithms try to set the lowest possible speed to complete
tasks. In this case, the supply voltages are between 0.5V to
0.55V. The CS-DVS algorithm favors leakage energy. There-
fore, the supply voltages are set at 0.6V, allowing the tasks
to finish before the deadline and put the system into the
sleep mode to save leakage power. As a results, CS-DVS
achieves 19% more leakage saving than DVS on average. In
our TALK algorithm, we use the same supply voltages as
those determined by CS-DVS; instead of having the system
run up front and sleep, we choose to selectively puts the
system into sleep mode based on the chip temperature when
executing the tasks. The TALK can achieve on average 11%
more leakage saving than CS-DVS algorithm.

Moreover, we also consider the total energy consumption
including dynamic energy in the system. We report those
results in [13].

5. CONCLUSIONS
In this paper we stress the importance of temperature con-

sideration in designing energy efficient real-time systems.
We study the temperature impact on leakage energy and
propose a temperature aware leakage minimization algo-
rithms that adjust the processor modes at runtime based on
the chip temperature. Our online algorithms can improve
the leakage energy saving by 34% over the traditional DVS
algorithm and 15% over the leakage aware DVS algorithm.
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