
Interface Theories with Component Reuse∗

Laurent Doyen
EPFL, Switzerland

laurent.doyen@epfl.ch

Thomas A. Henzinger
EPFL, Switzerland

tah@epfl.ch

Barbara Jobstmann
EPFL, Switzerland

barbara.jobstmann@epfl.ch

Tatjana Petrov
EPFL, Switzerland

tatjana.petrov@epfl.ch

ABSTRACT
Interface theories have been proposed to support incremen-
tal design and independent implementability. Incremental
design means that the compatibility checking of interfaces
can proceed for partial system descriptions, without know-
ing the interfaces of all components. Independent imple-
mentability means that compatible interfaces can be refined
separately, maintaining compatibility. We show that these
interface theories provide no formal support for component
reuse, meaning that the same component cannot be used to
implement several different interfaces in a design. We add
a new operation to interface theories in order to support
such reuse. For example, different interfaces for the same
component may refer to different aspects such as functional-
ity, timing, and power consumption. We give both stateless
and stateful examples for interface theories with component
reuse. To illustrate component reuse in interface-based de-
sign, we show how the stateful theory provides a natural
framework for specifying and refining PCI bus clients.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability—Inter-
face definition languages

General Terms
Design, Theory

Keywords
Interfaces, Composition, Refinement

1. INTRODUCTION
Interface theories [5] are intended to provide a formal

framework for component-based design. An interface con-
strains the interaction of a component with its environment,

∗This research was supported by the Swiss National Science
Foundation and by the European COMBEST project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10 ...$5.00.

i.e., with the other components in a system. An inter-
face (ϕ,ψ) captures both an assumption ϕ that the com-
ponent makes about the environment, and a guarantee ψ
that the component provides to the environment. Two in-
terfaces I1 = (ϕ1, ψ1) and I2 = (ϕ2, ψ2) are compatible if
there is a context in which I1 and I2 satisfy each other’s
assumptions, and the weakest condition on the environ-
ment to have I1 and I2 fit together — roughly speaking,
(ψ1 ∧ψ2) → (ϕ1 ∧ϕ2) — is the assumption of the composi-
tion I1‖I2 (the guarantee of the composition is ψ1 ∧ ψ2).

Interfaces support stepwise refinement. An interface I ′ =
(ϕ′, ψ′) refines an interface I = (ϕ,ψ) if in every context, the
interface I can be replaced by the more detailed version I ′.
Formally, this means that if I ′ � I (denoting that I ′ re-
fines I), then I ′‖J � I‖J for all interfaces J that are also
compatible with I . For this to happen, the refined inter-
face I ′ cannot make any stronger assumption about the en-
vironment than I (i.e., ϕ → ϕ′), and I ′ cannot provide any
weaker guarantee to the environment than I (i.e., ψ′ → ψ).
This contravariant refinement can be found in subtyping re-
lations for function types [10]. Indeed, function types are
interfaces whose assumptions and guarantees constrain the
data values of inputs and outputs. More expressive inter-
face theories have been developed for settings where the as-
sumptions and guarantees constrain the protocol aspect of
the interaction of a component with the environment (so-
called interface automata [4, 8]), the timing of inputs and
outputs [6], the power consumption of components [3], the
trade-off between throughput and resource needs [11, 12, 7],
etc. A main strength of all these interface theories is that
they not only provide algorithms for checking interface com-
patibility and refinement, but that the compatibility check
computes the weakest requirement on the inputs, timing,
power, or computational resources provided by the environ-
ment which makes two or more interfaces fit together. In
this way, interface theories provide important information
about a partial design to the designer.

A second main strength of interface theories is that re-
finement supports the independent implementability of inter-
faces. To see this, consider Figure 1. Suppose the top-level
interface is decomposed into two interacting component in-
terfaces, I1 and I2. The interface I1 is refined into three
component interfaces, I11, I12, and I13. Independently, pos-
sibly by a different design team or supplier, the interface I2 is
refined into two component interfaces, I21 and I22. The com-
patibility of I1 and I2 ensures that also the refined versions
I11‖I12‖I13 and I21‖I22 are compatible. Similarly, if I11 is
further refined into I111‖I112, then all components in the

79

entire design I111‖I112‖I12‖I13‖I21‖I22 are guaranteed to fit
together. Design, however, rarely proceeds in such a strict,
tree-like, top-down manner. Often design involves the use
of already available components. Also, for space or cost rea-
sons, different logical parts of a design may have to share
a common implementation. In Figure 1, suppose the inter-
faces I22 and I112 (which are at different levels in different
parts of the design tree) are similar enough that they should
be implemented by the same component. Interface theories
do not provide for this possibility. In this paper, we extend
interface theories to support such shared implementability
of interfaces. In other words, within our extended theories,
components can be reused in different parts of a design (or
in different designs); designs are not restricted to be trees of
components, but they can be DAGs.

Formally, we say that two interfaces I1 = (ϕ1, ψ1)
and I2 = (ϕ2, ψ2) are shared refinable if there is an inter-
face that refines both I1 and I2. If I1 and I2 are shared
refinable, then we compute the shared refinement I1 � I2 as
the most general refinement of I1 and I2, i.e., the greatest
lower bound in the refinement lattice on interfaces: the as-
sumption of I1 � I2 is ϕ1 ∨ ϕ2, and the guarantee of I1 � I2
is ψ1 ∧ ψ2. A component can be used to implement both I1
and I2 iff it refines I1 � I2. Notice that such a component
must be prepared to accept inputs that satisfy any of the two
assumptions ϕ1 and ϕ2, and it must provide outputs that
satisfy both guarantees ψ1 and ψ2. Interestingly, the shared
refinement I1�I2 can also be used to implement two or more
different views (or aspects) of a single component. For ex-
ample, the interface I1 may provide functional constraints
(i.e., assumptions and guarantees) and the interface I2 may
provide power constraints on the same component. For the
component to satisfy both the constraints specified by I1 and
the constraints specified by I2, it must refine I1 � I2. Note
that this is different from refining the composition I1‖I2:
while the composition I1‖I2 has the assumption ϕ1 ∧ ϕ2,
the shared refinement has the assumption ϕ1 ∨ ϕ2.

In Section 2, we formally develop a simple, stateless in-
terface theory with shared refinement along the lines out-
lined above. The formalism becomes far more interesting
and powerful once we introduce a temporal aspect in the
form of state. Then, assumptions and guarantees, which
may change from state to state, can be specified by an au-
tomaton. To check if two such automata are compatible,
we need to solve a game where the environment, which pro-
vides inputs to the two interacting automata, must have a
strategy that avoids incompatibilities [4, 8]. The most gen-
eral such strategy defines the composite interface automa-
ton. Refinement between interface automata is an alternat-
ing simulation relation [1], which ensures that every winning
environment strategy of the more abstract automaton is in-
herited by the more detailed automaton. In Section 3, we
add shared refinement to such a stateful theory of interfaces.
For technical simplicity, we choose to present shared refine-
ment not for the original asynchronous theory of interface
automata [4], but for a synchronous version, which was used
in [2] to specify interfaces for PCI bus components.

As is to be expected from the stateless case, shared re-
finement is different from parallel composition also in the
automaton case. The standard parallel composition of two
automata with n1 and n2 states is the product automaton
with n1n2 states. The parallel composition of two interface
automata is a pruned product automaton, from which states

I2

I2

I11

I1

I1

I11 I22

I112
I111

I21

I13

I12

I112 � I22

Figure 1: Top-down design with shared refinement.

without a winning environment strategy are removed. By
contrast, the shared refinement of two interface automata
with n1 and n2 states is an extended product automaton
with up to n1n2 + n1 + n2 states. Roughly speaking, as
long as the assumptions of both automata are satisfied, the
shared refinement provides the guarantees of both automata.
But as soon as the assumption of one automaton is violated,
only the guarantee of the other automaton is maintained.
We believe that this automata-theoretic construction is in-
teresting in its own right, for example, to combine two dif-
ferent views of a system. We illustrate its use in Section 4,
where we provide a refined version of the PCI bus example
from [2]. In particular, we provide a functional interface F1

and a power interface P for a PCI bus client, as well as a
functional interface F2 for the client of a different bus. Then
we show that F1 � P and F2 � P are shared refinable. In
other words, the client specifications for both busses can be
implemented by the same component, and the requirement
on such a component is that it refines the shared refine-
ment F1 � F2 � P .

2. STATELESS INTERFACES
A stateless interface for a component in a design describes

the environments in which the component can be embed-
ded [4, 8]. It has input and output variables, and two predi-
cates restricting their values: the first predicate specifies the
set of input values that the component should accept, the
second predicate specifies the set of output values that the
component may produce.

Definition 1 (stateless interface). A stateless in-
terface is a tuple M = 〈XI , XO, ϕ, ψ〉, where

• XI and XO are two disjoint sets of input and output
variables, respectively,

• ϕ is a predicate over XI called input assumption, and

• ψ is a predicate over XO called output guarantee.

We require that an interface accepts at least one input
value and produces at least one output value.

Definition 2 (well-formedness). A stateless inter-
face M = 〈XI ,XO , ϕ, ψ〉 is well-formed if

(1) ϕ is satisfiable and

(2) ψ is satisfiable.

80

Refinement.
The refinement relation for interfaces is such that when-

ever an interface N refines an interface M , then M can be
replaced by N in every design that provides inputs satis-
fying the assumption of M and expects outputs satisfying
the guarantee of M . Hence, the refining interface N has to
accept at least the same inputs as M , and may produce a
subset of the possible outputs of M .

Definition 3. Given two well-formed stateless interfaces
M = 〈XI

M ,XO
M , ϕM , ψM 〉 and N = 〈XI

N ,X
O
N , ϕN , ψN 〉, we

say that N refines M , written N �M , if

(1) (XI
M ∪XI

N) ∩ (XO
M ∪XO

N) = ∅,

(2) ϕM → ϕN , and

(3) ψN → ψM .

The classical theory of interfaces [4, 8] includes two oper-
ations to compose stateless interfaces:

• The connection allows to connect output variables to
input variables of an interface.

• The parallel composition describes how to obtain the
interface of a component that combines two or more
sub-components running in parallel.

We recall the definition and properties of these two opera-
tions, and we introduce the new shared refinement, a binary
operation that gives the most general interface refining two
given interfaces.

Connection.
A connection consists of a set of pairs of variables defin-

ing which variables are connected when the connection is
applied to an interface. The first component of each pair in
a connection is an output variable, and the second an input
variable to which the output is connected.

Definition 4 (Connection). A connection θ is a set
of pairs (x, y) of variables, consisting of a source vari-
able x and a target variable y, such that for all pairs
(x, y), (x′, y′) ∈ θ, if x �= x′, then y �= y′.

We denote the set of source variables of θ by Sθ and
the set of target variables by Tθ. The predicate ρθ denotesV

(x,y)∈θ(x = y).

A connection is compatible with an interface M , if (1) its
source variables are all output variables of M , (2) its target
variables are all input variables of M , and (3) when the
source variables are connected to the target variables (i.e.,
ρθ holds), there exist values of the remaining input variables
of M such that the assumption of M is satisfied for all values
of the output variables of M that satisfy the guarantee of M .

Definition 5 (compatibility for connection). A
stateless interface M = 〈XI ,XO , ϕ, ψ〉 is compatible with
a connection θ if the following conditions hold:

(1) Sθ ⊆ XO,

(2) Tθ ⊆ XI , and

(3) the predicate ϕ̂ ≡ ∀XO · ∀Tθ · ((ψ ∧ ρθ) → ϕ) is satisfi-
able.

If M is compatible with θ, then the result of applying θ
to M is the stateless interface Mθ = 〈X̂I , X̂O , ϕ̂, ψ̂〉, where

• X̂I = XI \ Tθ,

• X̂O = XO ∪ Tθ, and

• ψ̂ ≡ (ψ ∧ ρθ).

Theorem 1. Let M be a well-formed stateless interface
and θ be a connection. If M is compatible with θ, then Mθ
is a well-formed stateless interface.

The connection supports independent implementability.
Given a design Mθ and an interface N that refines M , we
can replace M by N in the design Mθ, independently of θ,
because Nθ refines Mθ.

Theorem 2. Let M and N be two well-formed stateless
interfaces and θ be a connection. If N � M and M is
compatible with θ, then N is compatible with θ and Nθ �
Mθ.

Parallel composition.
Parallel composition allows to combine interfaces that are

compatible with each other. Two interfaces are compatible
for parallel composition if (1) the sets of output variables are
disjoint, (2) the input variables of each interface are disjoint
from the output variables of the other interface, and (3) the
conjunction of the guarantees is satisfiable.

Definition 6 (parallel composition). Two
stateless interfaces M = 〈XI

M ,XO
M , ϕM , ψM 〉 and

N = 〈XI
N , X

O
N , ϕN , ψN 〉 are compatible for parallel

composition, written M ≈ N , if

(1) XO
M ∩XO

N = ∅,

(2) XI
M ∩XO

N = ∅, XI
N ∩XO

M = ∅, and

(3) ϕM ∧ ϕN is satisfiable.

If M ≈ N holds, then the parallel composition is the state-
less interface M‖N = 〈X̂I , X̂O , ϕ̂, ψ̂〉, where

• X̂I = XI
N ∪XI

M ,

• X̂O = XO
N ∪XO

M ,

• ϕ̂ ≡ (ϕN ∧ ϕM), and

• ψ̂ ≡ (ψN ∧ ψM).

Theorem 3. Let M and N be two well-formed stateless
interfaces. If M ≈ N , then M‖N is a well-formed stateless
interface.

The parallel composition supports independent imple-
mentability. In a design M‖S, we can replace M by any N
that refines M if all variables common to N and S are also
variables of M , because then N‖S refines M‖S. Intuitively,
the new variables of N should not conflict with variables of
the design S.

Theorem 4. Let M , N , and S be three well-formed state-
less interfaces such that XN ∩ XS ⊆ XM . If M ≈ S and
N �M , then N ≈ S and N‖S �M‖S.

81

Shared refinement.
The shared refinement allows to describe the interface of

a component that is meant to work in two or more environ-
ments based on separate descriptions of each environment.
Note that different environment descriptions may use dif-
ferent variable names. Since it is the choice of the user to
decide which variables are going to be shared, we assume
that the interface variables are renamed accordingly before
the shared refinement is applied.

The shared refinement of two interfaces needs to be able
to replace each of the given interfaces. Therefore, it has to
refine both interfaces. In order to ensure that the combined
interface is well-formed, we introduce the notion of shared
refinability. Two interfaces are shared refinable if (1) the
input variables do not overlap with the output variables and
(2) their output guarantees do not contradict each other.

Definition 7 (shared refinement). Two stateless
interfaces M = 〈XI

M ,XO
M , ϕM , ψM 〉 and N = 〈XI

N ,X
O
N ,

ϕN , ψN 〉 are shared refinable, written M ∼ N , if

(1) (XI
M ∪XI

N) ∩ (XO
M ∪XO

N) = ∅ and

(2) ψM ∧ ψN is satisfiable.

If M ∼ N holds, then the shared refinement of M and N
is the interface M �N = 〈X̂I , X̂O , ϕ̂, ψ̂〉, where

• X̂I = XI
M ∪XI

N ,

• X̂O = XO
M ∪XO

N ,

• ϕ̂ ≡ (ϕM ∨ ϕN), and

• ψ̂ ≡ (ψM ∧ ψN).

Note that the assumption of the shared refinement of two
interfaces is the disjunction of their assumptions, while in
the parallel composition the assumptions are conjoined.

Theorem 5. Let M and N be two well-formed stateless
interfaces. If M ∼ N , then N �M is a well-formed stateless
interface.

Proof. Let M = 〈XI
M , XO

M , ϕM , ψM 〉 and N = 〈XI
N ,

XO
N , ϕN , ψN 〉. Due to well-formedness of M and N , we have

that ϕM and ϕN are satisfiable, and therefore ϕ̂ ≡ ϕM ∨ϕN

is satisfiable. It follows from M ∼ N that ψ̂ ≡ (ψM ∧ ψN)
is satisfiable.

Example 1. Assume that after decomposing a design, we
obtain (among others) two components with interface de-
scriptions M and N , respectively. Both interfaces refer to
input variable x and output variable y. The interfaces are
depicted in Figure 2. The interface M states that the compo-
nent has to accept all even numbers, and produces numbers
that are multiple of 3. The second interface N takes numbers
greater than 0 and guarantees multiples of 4. A common im-
plementation has to accept all even numbers and all numbers
greater than 0. Furthermore, it has to guarantee that every
output is a multiple of 3 and 4, therefore a multiple of 12.

In the following, we prove that the shared refinement of
two interfaces subsume all behaviors of the given interfaces.

Theorem 6 (greatest lower bound). Let M and
N be two well-formed stateless interfaces. If M ∼ N , then
M �N �M and M �N � N , and for all well-formed state-
less interfaces S, if S �M and S � N , then S �M �N .

M

XI = {x}
XO = {y}

even(x) y mod 3 = 0

N

XI = {x}
XO = {y}

x > 0 y mod 4 = 0

M � N

XI = {x}
XO = {y}

even(x) ∨ x > 0
y mod 12 = 0

Figure 2: Shared refinement of two simple stateless
interfaces.

Proof. Let M�N = 〈X̂I , X̂O , ϕ̂, ψ̂〉, let M = 〈XI
M ,XO

M ,
ϕM , ψM 〉, and let N = 〈XI

N , X
O
N , ϕN , ψN 〉.

First, we show that M�N �M . The proof of M�N � N
is analogous. From Condition (1) of Definition 7, since M ∼
N , we have that (X̂I ∪XI

N)∩(X̂O ∪XO
N) = ∅. Furthermore,

ϕM implies ϕ̂ ≡ ϕM ∨ ϕN and ψ̂ ≡ (ψM ∧ ψN) implies ψM .
Hence M �N �M .

Second, we show that every well-formed interface S =
〈XI

S ,X
O
S , ϕS, ψS〉 that refines both M and N is a refinement

of M � N . Since S � M and S � N , we have that (XI
S ∪

XI
M) ∩ (XO

S ∪XO
M) = ∅ and (XI

S ∪XI
N) ∩ (XO

S ∪XO
N) = ∅.

From Condition 1 of Definition 7, since M ∼ N , we know
that (XI

M ∪XI
N) ∩ (XO

M ∪XO
N) = ∅ holds, so (X̂I ∪XI

S) ∩
(X̂O ∪XO

S) = ∅ holds. It follows from ϕM → ϕS and ϕN →
ϕS that ϕ̂ → ϕS (because ϕ̂ ≡ ϕM ∨ ϕN). Furthermore,

ψS → ψM and ψS → ψN implies ψS → ψ̂ (because ψ̂ ≡
(ψM ∧ ψN)).

3. STATEFUL INTERFACES
We consider interfaces with an internal state, analogous to

the Moore interfaces of [2]. In each state of the interface, an
assumption predicate constrains the input variables, and a
predicate over output variables provides an output guaran-
tee. The state of the interface changes according to a deter-
ministic transition function over input and output variables.

Definition 8 (stateful interface). A stateful in-
terface is a tuple M = 〈XI , XO, Q, q̂, ϕ, ψ, ρ〉, where

• XI , XO are disjoint sets of input and output variables.
We define XM = XI ∪XO;

• Q is a finite set of locations (or states), and q̂ ∈ Q is
the initial location;

• ϕ and ψ are two labelings that associate with each
location q ∈ Q an input assumption predicate ϕ(q)
over XI , and an output guarantee predicate ψ(q)
over XO;

• ρ is a labeling that associates with each pair of loca-
tions q, q′ ∈ Q a predicate ρ(q, q′) over XM , called the
transition guard.

82

EF̄ ĒF̄ ĒF

enq ↔ deq enq ↔ deq enq ↔ deq

enq ∧ ¬deq enq ∧ ¬deq

¬enq ∧ deq¬enq ∧ deq

Figure 3: FIFO buffer – functional specification S1.

Example 2. We illustrate the stateful model of interfaces
with the specification of a FIFO buffer. The buffer has two
Boolean input variables enqand deq, which are set to perform
an enqueue or dequeue operation, and two Boolean output
variables E and F, which describe whether the buffer is empty
or full. In Figure 3, we present a specification S1 for this
buffer, which we assume to be of size 2. States are labeled by
their guarantee, and transitions are labeled by their guards.
The assumption in a state is the disjunction of the guards
of the outgoing transitions. Initially, the buffer is empty
(EF̄) and therefore it is not allowed to dequeue. When the
buffer is neither empty nor full (ĒF̄), dequeuing makes it
empty, and enqueuing makes it full. If the buffer is full
(ĒF), then enqueuing is not allowed. Simultaneous enqueue
and dequeue operations have no effect (but they are allowed).

Given a set X of variables, we denote by V[X] the set of
all valuations v for X, i.e., the functions that assign to each
x ∈ X a value v(x). Given a predicate ϕ on X, we write
v |= ϕ if the valuation v satisfies ϕ.

An execution of M is a sequence q0, v0, q1, . . . , qn, vn, qn+1

of states qk ∈ Q and valuations vk ∈ V[XM] such that q0 =
q̂, and vk |= ϕM (qk)∧ψM (qk)∧ρM (qk, qk+1) for all 0 ≤ k ≤
n. We say that the sequence v0, . . . , vn is a trace of M , and
that the states q0, . . . , qn+1 are reachable in M . We denote
by Traces(M) the set of all traces of M , and by Reach(M)
the set of all states that are reachable in M .

Definition 9 (well-formedness). A stateful inter-
face M = 〈XI ,XO , Q, q̂, ϕ, ψ, ρ〉 is well-formed if for all
states q ∈ Reach(M),

(1) both ϕ(q) and ψ(q) are satisfiable,

(2) (ϕ(q) ∧ ψ(q)) → ∃q′ · ρ(q, q′) is valid, and

(3) (ρ(q, q′)∧ρ(q, q′′)) → (q′ =q′′) is valid for all q′, q′′∈ Q.

Well-formedness ensures that the interface is non-blocking
by condition (1) and (2), and deterministic by condition (3).

Refinement and parallel composition.
The definition of refinement and parallel composition for

stateful interfaces follows the lines of [2].

Definition 10 (Refinement). Given two stateful in-
terfaces M = 〈XI

M ,XO
M , QM , q̂M , ϕM , ψM , ρM 〉 and N =

〈XI
N ,X

O
N , QN , q̂N , ϕN , ψN , ρN〉, we say that N refines M ,

written N �M , if

(1) (XI
N ∪XI

M) ∩ (XO
N ∪XO

M) = ∅ and

q1 q2

¬enq ∧ ¬deq

enq ∨ deq

¬enq ∧ ¬deq

Figure 4: FIFO buffer – functional specification S2.

(2) there exists a relation R ⊆ QN × QM such that
(q̂N , q̂M) ∈ R, and for all pairs (r, q) ∈ R,

(2a) ϕM (q) → ϕN (r) is valid,

(2b) ψN (r) → ψM (q) is valid, and

(2c) for all q′ ∈ QM and r′ ∈ QN , if ϕM (q) and
ψN (r) and ρM (q, q′) and ρN(r, r′) are valid, then
(r′, q′) ∈ R.

Such a relation R is an alternating simulation relation [1]
and we say that R is a witness for N �M .

For parallel composition, we do require that the two state-
ful interfaces share no output variable, but we allow variables
that are both output variable in one interface and input vari-
able in the other interface. This implicitly enables a connec-
tion operation for stateful interfaces.

Definition 11 (parallel composition). Given two
stateful interfaces M = 〈XI

M ,XO
M , QM , q̂M , ϕM , ψM , ρM 〉

and N = 〈XI
N ,X

O
N , QN , q̂N , ϕN , ψN , ρN〉, let

• XO
P = XO

M ∪XO
N ,

• XI
P = (XI

M ∪XI
N) \XO

P ,

• QP = QM ×QN , and

• q̂P = (q̂M , q̂N),

and for all states q, q′ ∈ QM and r, r′ ∈ QN , let

• ψP (q, r) ≡ (ψM (q) ∧ ψN(r)) and

• ρP ((q, r), (q′, r′)) ≡ (ρM (q, q′) ∧ ρN(r, r′)).

We say that M and N are compatible for parallel composi-
tion, written M ≈ N , if

(1) XO
M ∩XO

N = ∅ and

(2) there exists a labeling ϕ⊗ that associates with each pair
(q, r) ∈ QM ×QN a predicate ϕ⊗(q, r) on XI

P such that

(2a) ϕ⊗(q, r) is satisfiable, and

(2b) for all executions (q0, r0), v0, (q1, r1), . . . , (qn, rn)
of 〈XI

P ,X
O
P , QP , q̂P , ϕ⊗, ψP , ρP 〉, we have that

vk |= (ϕM (qk) ∧ ϕN (rk)) holds for all 0 ≤ k < n.

83

� �

EF̄ ĒF̄ ĒF

EF̄ ĒF̄ ĒF

EF̄ ĒF̄ ĒF

ēd̄

e ∨ d

ēd̄

ēd

ed̄ēd̄ ēd̄ ēd̄

ed̄

ed

ēd

ed

ed̄ ēd

edēd̄ ēd̄ ēd̄

ed̄

ed

ēd

ed

ed̄ ēd

ed

e ↔ d e ↔ d e ↔ d

ed̄ ed̄

ēdēd

Figure 5: FIFO buffer – shared refinement S1 � S2.

When M ≈ N , the parallel composition M‖N is the
well-formed stateful interface P = 〈XI

P ,X
O
P , QP , q̂P , ϕP ,

ψP , ρP 〉, where ϕP is the weakest labeling1 such that con-
ditions (2a) and (2b) are satisfied.

Algorithms are presented in [2] to check refinement (given
interfaces M and N , decide whether N � M) and to check
compatibility for parallel composition (given interfaces M
and N , decide whether M ≈ N , and if the answer is affirma-
tive, then construct M‖N). Refinement checking is done by
constructing the largest alternating simulation relation for
N �M using an iterative fixed point computation. Starting
with the relation R0 = QN × QM , for each i ≥ 0, the re-
lations Ri+1 are obtained by removing the pairs (r, q) from
Ri that violate one of the conditions (2a), (2b) or (2c) in
Definition 10 (for Ri instead of R). Compatibility for par-
allel composition is checked by solving a safety game. The
input assumptions of the interface P in Definition 11 are
iteratively strengthened to ensure that no state with unsat-

1Here, a labeling ϕ is weaker than a labeling ϕ′ if ϕ′(p) →
ϕ(p) is valid for all states p that are reachable in P with la-
beling ϕ′. Note that if ϕ is weaker than ϕ′, then every state
that is reachable in P with ϕ′ is also reachable in P with
ϕ. Furthermore, the predicates that label the states that
are not reachable in P with ϕ′ are irrelevant. Therefore, as-
suming that � is the assumption of every unreachable state
of an interface, it is easy to show that there always exists a
weakest labeling.

isfiable assumption is reachable. Initially, for all pairs of
states (q, r) ∈ QM × QN , the assumption ϕP (q, r) is set to
∀XO

P · (ψP (q, r) → (ϕM (q) ∧ ϕN (r))). The algorithm stops
when no assumption needs to be strengthened, and the in-
terfaces are declared compatible for parallel composition if
the pair of their initial states has a satisfiable assumption.
The updated iterface P computed by the algorithm is their
parallel composition.

Parallel composition supports independent imple-
mentability. In a design M‖S, we can replace M by any N
that refines M if all variables common to N and S are also
variables of M , because then N‖S refines M‖S.

Theorem 7. [2] Let M,N , and S be three well-formed
stateful interfaces such that XN ∩XS ⊆ XM . If M ≈ S and
N �M , then N ≈ S and N‖S �M‖S.

Shared refinement.
The shared refinementM�N is the weakest interface that

refines both M and N . Roughly, the interface for M � N
starts with a classical product construction of M and N ,
where the assumptions allow inputs that satisfy the assump-
tion of either M or N . As long as both assumptions of M
and N are satisfied by the inputs, the outputs must satisfy
the conjunction of the guarantees of M and N . When the
assumption of M (resp. N) is violated, then the interface
jumps to a copy of N (resp. M), where the assumptions and
guarantees are those of N (resp. M). Note that the interface
does not allow inputs that violate the assumptions of both
M and N .

Definition 12 (shared refinement). Given two
stateful interfaces M = 〈XI

M ,XO
M , QM , q̂M , ϕM , ψM , ρM 〉

and N = 〈XI
N ,X

O
N , QN , q̂N , ϕN , ψN , ρN 〉, let P be the

interface 〈XI
P ,X

O
P , QP , q̂P , ϕP , ψP , ρP 〉 where

• XI
P = XI

M ∪XI
N ,

• XO
P = XO

M ∪XO
N ,

• QP = (QM ×QN) ∪QM ∪QN ,

• q̂P = (q̂M , q̂N),

• ϕP and ψP are defined, for all q ∈ QM and r ∈ QN , by

ϕP (q, r) ≡ (ϕM (q) ∨ ϕN(r)) ψP (q, r) ≡ (ψM (q) ∧ ψN(r))
ϕP (q) ≡ ϕM (q) ψP (q) ≡ ψM (q)
ϕP (r) ≡ ϕN (r) ψP (r) ≡ ψN (r),

• ρP is defined, for all q, q′ ∈ QM and r, r′ ∈ QN , by

ρP ((q, r), (q′, r′)) ≡ (ϕM (q)∧ϕN (r)∧ρM (q, q′)∧ρN (r, r′))
ρP ((q, r), q′)) ≡ (ϕM (q)∧¬ϕN (r) ∧ ρM (q, q′))
ρP ((q, r), r′) ≡ (¬ϕM (q) ∧ ϕN (r) ∧ ρN(r, r′))
ρP (q, q′) ≡ ρM (q, q′)
ρP (r, r′) ≡ ρN(r, r′)
ρP (q, (q′, r′)) ≡ ρP (r, (q′, r′)) ≡ ⊥.

We say that M and N are shared refinable, written
M ∼ N , if

• XI
P ∩XO

P = ∅ and

• ψP (p) is satisfiable for all states p ∈ Reach(P).

When M ∼ N , the shared refinement M � N is the well-
formed stateful interface P .

84

D0uninit

D0active D3hot

D3cold

a: init
g: �

a:

j
pmc = 11
∨ ¬off

g: �
a:

8<
:

¬gnt∧
(pmc = 00
∨ ¬off)

g: �

a: ¬gnt
g: �

pmc = 00
∧ ¬off

pmc = 11
∧ ¬off
∧ ¬gnt

¬rst ∧ ¬gnt

init

pmc = 11

pmc = 00 ∧ ¬gnt

¬gnt
∧ off

rst ∧ ¬gnt

Figure 6: Power management view P .

Example 3. Figure 4 shows a different specification S2

for the FIFO buffer. The interface requires that no two con-
secutive operations of either enqueuing or dequeuing occur,
because in state q2 neither enq nor deq is allowed. The guar-
antee is � in each state. Figure 5 shows the shared refine-
ment S1 � S2 of the two specifications of the FIFO buffer,
where enq and deq are abbreviated by e and d, and the con-
junction operator ∧ is omitted. The dashed box corresponds
to the usual synchronized product of automata. To obtain
the shared refinement, additional transitions are leaving this
box when the assumption of one of the specifications is vio-
lated. From then on, only the assumption and the guarantee
of the other specification need to hold.

The shared refinement has the flavor of a greatest lower
bound for the refinement relation �, because M �N refines
both M and N , and every interface refining both M and N
also refines M �N . Since the relation � is not necessarily a
partial order (it is reflexive and transitive, but not necessar-
ily antisymmetric), the notion of greatest lower bound is not
well-defined as it may not be unique. However, the partial
order defined in the usual way over the equivalence classes
of the relation � ∩ �−1 has shared refinement as greatest
lower bound operator.

Theorem 8 (greatest lower bound). Let M
and N be two well-formed stateful interfaces. If M ∼ N ,
then M �N �M and M �N � N , and for all well-formed
stateful interfaces S, if S � M and S � N then S �M �N .

Proof. Let M and N be stateful interfaces such that
M ∼ N and let M � N = 〈XI

P ,X
O
P , QP , q̂P , ϕP , ψP , ρP 〉.

First, we show that M�N �M . We have XI
P ∩XO

P = ∅ and
thus (XI

P ∪XI
M)∩(XO

P ∪XO
M) = ∅. Let R ⊆ QP ×QM be the

union of R1 = {((q, r), q) | (q, r) ∈ QP} and R2 = {(q, q) |
q ∈ QM}. We have (q̂P , q̂M) ∈ R and for all ((q, r), q) ∈ R1,

(1) ϕM (q) → ϕP (q, r) since ϕP (q, r) ≡ ϕM (q) ∨ ϕN (r),

(2) ψP (q, r) → ψM (q) since ψP (q, r) ≡ ψM (q) ∧ ψN (r),

(3) if ϕM (q)∧ψP (q, r)∧ ρP ((q, r), p′)∧ ρM (q, q′), then ei-
ther p′ = q′ and then (p′, q′) ∈ R2, or p′ = (q′, r′) for
some r′ ∈ QN and then (p′, q′) ∈ R1.

Analogous results trivially hold for R2, and therefore R is
a witness for M � N � M . We have M � N � N by a
symmetrical argument.

Second, we show that S �M and S � N implies S �M�
N for all S. SinceXI

P ∩XO
P = ∅, it is easy to show that (XI

S∪
XI

P)∩ (XO
S ∪XO

P) = ∅. Let R1 be a witness for S �M , and
R2 be a witness for S � N . Let R ⊆ QS×QP be the union of
R1 ∪ R2 and R3 = {(s, (q, r)) | (s, q) ∈ R1 and (s, r) ∈ R2}.
We have (q̂S , q̂P) ∈ R because (q̂S , q̂M) ∈ R1 and (q̂S , q̂N) ∈
R2. Moreover, for all (s, (q, r)) ∈ R3, we have

(1) ϕP (q, r) → ϕS(s) since ϕP (q, r) ≡ ϕM (q) ∨ ϕN (r),
ϕM (q) → ϕS(s), and ϕN (r) → ϕS(s),

(2) ψS(s) → ψP (q, r) since ψS(s) → ψM (q), ψS(s) →
ψN (r) and ψP (q, r) ≡ ψM (q) ∧ ψN(r), and

(3) if ϕP (q, r)∧ψS(s)∧ρS(s, s′)∧ρP ((q, r), p′), then either

(a) p′ = (q′, r′) and ϕM (q) ∧ ϕN (r) ∧ ρM (q, q′) ∧
ρN (r, r′), and then ϕM (q) ∧ ψS(s) ∧ ρS(s, s′) ∧
ρM (q, q′) so that (s′, q′) ∈ R1, and symmetrically
(s′, r′) ∈ R2, and therefore (s′, p′) ∈ R3, or

(b) p′ = q′ ∈ QM and ϕM (q) ∧ ρM (q, p′) and then
(s′, p′) ∈ R1, or

(c) p′ = r′ ∈ QN and (s′, p′) ∈ R1 by a symmetric
argument.

Analogous results trivially hold for all (s, p) ∈ R1 ∪R2, and
therefore R is a witness for S �M �N .

Finally, we have the following associativity property of
shared refinement, which follows from the greatest lower
bound property of Theorem 8.

Theorem 9. Given three well-formed stateful interfaces
M , N , and S, either both (M � N) � S and M � (N � S)
are undefined, or they are both defined, and then they refine
each other.

4. REUSE OF PCI DEVICES
We illustrate the use of shared refinement for specifica-

tions of the peripheral interconnection of components on a
bus. On the one hand, for the PCI bus, we consider the
functional specification as described in [2] and the power
management interface [9]. On the other hand, we consider
the functional specification of a different peripheral bus. Fi-
nally, we show that the shared refinement of these three
specifications is an interface of any implementation of a de-
vice that satisfies the power management specification, and
is functionally compatible with both busses.

Power management interface.
A PCI function is a device that can be connected to the

PCI bus, and which has to implement its own power man-
agement interface. According to the PCI Bus Power Man-
agement Interface Specification [9], each PCI function can
be in one of four power-management states: D0, D1, D2, or
D3 in decreasing order of power consumption. The states
D0 and D3 are further split into D0uninit, D0active, and
D3hot, D3cold. To comply with the PCI standard, all PCI
functions have to support the D0 and D3 states.

85

NO

O

R

a: ¬gnt
g: �

a: �
g: �

a: �
g: �

¬gnt ∧ ¬req

req

¬gnt ∧ req

¬req

¬gnt ∧ req

¬req

gnt ∧ req

Figure 7: First functional view F1.

In Figure 6, we present a stateful interface P for con-
trolling the different power states for the PCI bus. The
input signals are XI = {init, rst, pmc, gnt, off}, and there is
no output signal. In state D0uninit the PCI function must
be initialized by the system software (variable init) in or-
der to be put in the active state D0active. Functions in
D3hot can move to the D0active state and back via soft-
ware by writing to the function’s PMCSR register (variable
pmc). The difference between the two D3 states is defined
by the absence (D3cold) or presence (D3hot) of voltage Vcc

(regulated by the off signal). A PCI function can be transi-
tioned into D3cold states either by software (variable off) or
by physically removing the power from its host PCI device.
Functions in D3cold can only get to D0uninit by reapplying
Vcc and asserting the reset signal (rst) to the function’s host
PCI device.

Additionally, the device may receive a signal gnt when it
has been granted to access the PCI bus, but this should not
happen when it is in one of the low-consumption states D3.

Bus request management.
We consider the functional specification described in [2]

(see Figure 7) for connection with the PCI bus, and we de-
fine a different specification for a different peripheral bus
(see Figure 8). F1 and F2 are stateful interfaces of the de-
vice that can be attached to the corresponding peripheral
bus. Interfaces F1 and F2 have the three states NotOwner,
Request, and Owner (of the device). The input variable is
gnt, and the output variable is req to request the bus.

As required by the PCI bus, the stateful interface F1 spec-
ifies that the device either keeps requesting the bus until it
is granted, or it withdraws the request and goes back to the
NotOwner state. Further, the stateful interface F2 gives a
specification of a different bus, where the device is expected
to send a req signal once and then wait to be granted.

Note that the two specifications F1 and F2 do not re-
fine each other: the trace starting with req ∧ ¬gnt, req ∧
gnt, req ∧ ¬gnt,¬req ∧ gnt, . . . violates the assumption ¬gnt
of the state NotOwner in interface F2, while it can be con-
tinued according to the specification F1. Therefore the de-
vice should recognize that it has to continue the execution
according to the specification F1. Further, the trace start-
ing with req ∧ ¬gnt,¬req ∧ gnt,¬req ∧ gnt, . . . is allowed by
specification F2 but not by F1.

NO

O

R

a: ¬gnt
g: �

a: �
g: �

a: �
g: �

¬gnt ∧ ¬req

gnt

¬gnt

¬gnt

¬gnt ∧ req

gnt

Figure 8: Second functional view F2.

Now we consider the interfaces C1 = P � F1 and C2 =
P � F2. Any component that refines C1 satisfies the power
management specification P , and at the same time, such a
component is compatible with a PCI bus as described with
the functional interface F1. An analogous statement holds
for C2. However, in order to enable the reuse of components,
one may require that the same component refines both C1

and C2, or equivalently refines C1�C2 = P �F1�F2. More-
over, any component which refines both interfaces C1 and
C2 has to refine S = P � F1 � F2, as it is the weakest in-
terface with this property. Note that C1 and C2 are shared
refinable, because P , F1, and F2 have trivial guarantees.
Therefore, we can construct the stateful interface S, which
has 5 · 4 · 4 − 1 = 79 states.

The device implementations that are compliant with both
busses are exactly those that refine S. The interface S en-
sures that the guarantees of all three specifications P , F1,
and F2 are satisfied as long as the assumptions of the three
specifications are met. If the inputs no longer conform to
the power specification P , then only the guarantees of the
functional specifications F1 and F2 can be maintained. If the
inputs no longer comply with the PCI specification F1, then
only the guarantees for F2 and P can be ensured. A similar
statement holds for F2. Finally, if the inputs violate the as-
sumptions of two of the three specifications, then S moves
to a copy of the third interface and behaves according to
that interface.

5. DISCUSSION
The shared refinement of two interfaces represents the

most permissive interface that refines both interfaces. This
can be viewed as a greatest lower bound property for the
refinement relation (Theorem 8), which is defined as alter-
nating simulation. Classically, the parallel composition also
defines a greatest lower bound, but for the trace inclusion
relation. For instance, in automata theory, the language
L(A‖B) of the parallel product of two automata is exactly
the set of all traces that are common to the languages of A
and B, i.e., L(A‖B) = L(A) ∩ L(B). Notice that ∩ is the
greatest lower bound for set inclusion.

In the theory of interfaces, the set of traces of the par-
allel composition M‖N may not be the intersection of the
traces of M and N . More precisely, there exist two well-
formed interfaces M over variables XM and N over XN

86

q1

q2

q3

M

x

�

x ∧ y

¬(x ∧ y)

q′1

q′2

q′3

N

¬x

�

x ∧ z

¬(x ∧ z)

Figure 9: Two interfaces M and N .

that are compatible for parallel composition and such that
Traces(M‖N) � Traces′(M)∩Traces′(N), where Traces′(M)
(resp. Traces′(N)) is the set of sequences v1, . . . , vn of valu-
ations for XM ∪XN that agree with a trace of M (resp. N)
on variables in XM (resp. XN). Consider the interfaces M
and N in Figure 9 over the Boolean variables x, y, and
z, where XI

M = XI
N = {x}, XO

M = {y}, and XO
N = {z}.

Assumptions and guarantees in all states are trivial except
in q2 and q′2, where the assumptions are ϕM (q2) ≡ x and
ϕN (q′2) ≡ ¬x. In the parallel composition M‖N (see Fig-
ure 10), the pair of states (q2, q

′
2) should not be reachable,

because their assumptions are incompatible. Hence, the as-
sumption of (q1, q

′
1) in M‖N is strengthened to ¬x in order

to avoid a transition to (q2, q
′
2). So traces starting with val-

uation v such that v(x) = � and v(y) = v(z) = ⊥ are not
included in Traces(M‖N). On the other hand, M and N al-
low both all traces starting with valuations v1 and v2, respec-
tively, such that v1(x) = v2(x) = � and v1(y) = v2(z) = ⊥.

We note that interfaces strictly separate input and out-
put variables, in the sense that assumptions refer to input
variables only and guarantees to output variables only. This
strict separation may force assumptions in the parallel com-
position to be stronger than intuitively necessary. In the
previous example, one may expect the assumption of (q1, q

′
1)

to be � and its guarantee to be ¬x∨¬y∨¬z. This requires
that guarantee predicates may refer to both input and out-
put variables. Let us try to consider in the stateless case
such an extended setting, which we call extended interfaces.

Note that assumptions would not be necessary anymore,
as one can define the assumption ϕ as ∃XO · ψ, i.e., the al-
lowed values of the input variables are those for which the
guarantee predicate is satisfiable. So every pair of an as-
sumption and a guarantee can be written as a single (maybe
different) guarantee that would describe the same interface.
The well-formedness condition (analogous of Definition 2)
then would simply require that ϕ be satisfiable (which im-
plies that ψ is satisfiable). However, in the following we
keep assumptions and guarantees separately, because it is
the natural way to think about interfaces.

If we consider extended interfaces, the definition of shared
refinement could be adapted to keep the greatest lower
bound property. Indeed, with the extended guarantees, we
could define more permissive interfaces that refine two given
interfaces. Specifically, using the notation of Definition 12,
the assumption ϕ̂ and the guarantee ψ̂ of the shared refine-
ment M �N could be defined as

(q1, q
′
1) (q3, q

′
3)

M‖N

�

¬x

Figure 10: The parallel composition M‖N for the
interfaces of Figure 9.

• ϕ̂ ≡ (ϕM ∨ ϕN) ∧ ∃X̂O · ψ̂, and

• ψ̂ ≡ (ϕM → ψM) ∧ (ϕN → ψN).

The refined guarantee allows the new shared refinement
to refine both M and N while the shared refinement of Def-
inition 12 refines M � N . Theorem 6 holds for extended
interfaces with this new definition.

Example 4. Consider the interfaces M and N of Exam-
ple 1, which are now considered to be extented interfaces.
The new guarantee of M�N would be (even(x) → y mod 3 =
0) ∧ (x > 0 → y mod 4 = 0), which is strictly weaker than
the guarantee y mod 12 = 0 in the original setting. For in-
stance, y would not required to be a multiple of 12 when x is
a positive odd number.

Extended interfaces seem to provide a stronger framework
than classical interface theories. Unfortunately, the basic
properties of stepwise refinement and independent imple-
mentability do not hold in the extended framework. For-
mally, the extended interfaces do not support congruence
with connection, i.e., there exist a connection θ and two
well-formed extended interfaces M and N such that N �M
and M is compatible with θ, but N is not compatible
with θ. Consider the stateless interfaces M and N over
input variable x and output variable y with trivial assump-
tions and guarantees, except the guarantee of N , which is
ψN ≡ (y �= x). Let θ be the connection {(y, x)}. The in-
terface M is compatible with θ, and the interface Mθ has
the trivial assumption and guarantee ψ̂M ≡ (y = x). How-
ever, even though N refines M , it is not compatible with θ
because the predicate ρθ ≡ (y = x) contradicts the guaran-
tee ψN and thus Nθ would not be well-formed owing to an
unsatisfiable guarantee. Hence, the analogous of Theorem 2
for extended interfaces does not hold.

We believe that the well-formedness requirement that the
guarantee must be satisfiable should not be dropped in an
interface theory. Well-formed interfaces should have at least
one environment in which they can be embedded. In fact,
by definition an interface is well-formed iff it can be used
in some context [5]. On the other hand, independent im-
plementability formalized by congruence is a crucial aspect
of the theory and should not be dropped either. It turns
out that interface theories in which inputs and outputs are
separated are the most general known framework in which
these two features coexist.

87

Acknowledgments
We gratefully acknowledge discussions with Albert Ben-
veniste, who convinced us that the operation � is missing
from interface theories and inspired us to start this work. As
part of the same debt, we also acknowledge Albert’s coau-
thors of the talk on“Multiple viewpoints contracts and resid-
uation,”which he gave at the 2008 Workshop on Foundations
of Interface Technologies (FIT): Jean-Baptiste Raclet, Eric
Badouel, Benoit Caillaud, and Roberto Passerone.

6. REFERENCES
[1] R. Alur, T. A. Henzinger, O. Kupferman, and M. Y.

Vardi. Alternating refinement relations. In Proceedings
of CONCUR: Concurrency Theory, volume 1466 of
Lecture Notes in Computer Science, pages 163–178.
Springer, 1998.

[2] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and
F. Y. C. Mang. Synchronous and bidirectional
component interfaces. In Proceedings of CAV:
Computer Aided Verification, volume 2404 of Lecture
Notes in Computer Science, pages 414–427. Springer,
2002.

[3] A. Chakrabarti, L. de Alfaro, T. A. Henzinger, and
M. Stoelinga. Resource interfaces. In Proceedings of
EMSOFT: Embedded Software, volume 2855 of Lecture
Notes in Computer Science, pages 117–133. Springer,
2003.

[4] L. de Alfaro and T. A. Henzinger. Interface automata.
In Proceedings of FSE: Foundations of Software
Engineering, pages 109–120. ACM Press, 2001.

[5] L. de Alfaro and T. A. Henzinger. Interface theories
for component-based design. In Proceedings of
EMSOFT: Embedded Software, volume 2211 of Lecture
Notes in Computer Science, pages 148–165. Springer,
2001.

[6] L. de Alfaro, T. A. Henzinger, and M. Stoelinga.
Timed interfaces. In Proceedings of EMSOFT:
Embedded Software, volume 2491 of Lecture Notes in
Computer Science, pages 108–122. Springer, 2002.

[7] T. A. Henzinger and S. Matic. An interface algebra for
real-time components. In IEEE Real-Time and
Embedded Technology and Applications Symposium
(RTAS), pages 253–266. IEEE Computer Society,
2006.

[8] E. A. Lee and Y. Xiong. System-level types for
component-based design. In Proceedings of EMSOFT:
Embedded Software, pages 237–253. Springer, 2001.

[9] PCI bus power management interface specification
revision, 2004.
http://www.pcisig.com/specifications/conventional.

[10] B. C. Pierce. Types and Programming Languages. MIT
Press, 2002.

[11] E. Wandeler and L. Thiele. Real-time interfaces for
interface-based design of real-time systems with fixed
priority scheduling. In Proceedings of EMSOFT:
Embedded Software, pages 80–89. ACM Press, 2005.

[12] E. Wandeler and L. Thiele. Interface-based design of
real-time systems with hierarchical scheduling. In
IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 243–252.
IEEE Computer Society, 2006.

88

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

