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ABSTRACT
Relations between models are important for effective auto-
matic validation, for comparing implementations with speci-
fications, and for increased understanding of embedded sys-
tems designs. Timed automata may be used to model a
system at multiple levels of abstraction, and timed trace
inclusion is one way to relate the models.

It is known that a deterministic and τ -free timed automa-
ton can be transformed such that reachability analysis can
decide timed trace inclusion with another timed automa-
ton. Performing the transformation manually is tedious and
error-prone. We have developed a tool that does it auto-
matically for a large subset of Uppaal models.

Certain features of the Uppaal modeling language, namely
selection bindings and channel arrays, complicate the trans-
formation. We formalize these features and extend the vali-
dation technique to incorporate them. We find it impracti-
cable to manipulate some forms of channel array subscripts,
and some combinations of selection bindings and universal
quantifiers; doing so either requires premature parameter
instantiation or produces models that Uppaal rejects.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis; C.3 [Special-purpose and Application-based
Systems]: Real-time and embedded systems

General Terms
Design, Verification
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Timed trace inclusion, Uppaal, Model transformation
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1. INTRODUCTION
Models help to design, simulate, verify, and synthesize

embedded systems. Multiple models may be constructed
for a system, describing it from different perspectives and at
various abstraction levels. Details may be added to specify
an implementation, or removed to make analysis practicable.

Timing details are important for correctness and precision
in many embedded systems. It is often possible to model
such systems as networks of timed (safety) automata [1, 2],
which can be edited, simulated, and analyzed by tools like
the Uppaal model checker [4], which is described in §2.

Two timed automata models are related by timed trace in-
clusion if all of the sequences of observable events and delays
of one are also possible in the other. Such relationships are
important for comparing implementation models to abstract
specifications, or when creating successive abstractions to
make verification feasible [3, 7]. Employing either technique
requires validation of the inclusion relation. Timed trace in-
clusion is similar to timed language inclusion, which is unde-
cidable in general [1, Corollary 5.3], but PSPACE-complete
if the specification automaton is deterministic [1, Theorem
6.6]. The decidable case can be verified in Uppaal by con-
structing a validation automaton and performing reachabil-
ity analysis. An example is given in §1.2.

Constructing validation automata manually can be te-
dious and error prone; analysis can improve models, which
then require updated constructions. We have, thus, devel-
oped a tool, §4, to do it automatically. It turns out that
features of the Uppaal (Classic; version 4.0.6) language for
creating succinct models are challenging to manipulate even
though they are not fundamentally more expressive.

The main contribution of this paper is contained in §3. It
shows how, when possible, the existing validation construc-
tion can be extended to incorporate advanced Uppaal fea-
tures while preserving concision and parameterization. We
develop a formalization that is more concrete than usual to
explain and justify our technique.

1.1 Related Work
Trace inclusion between two models can be verified by

showing refinement relations between their states. Lynch
and Vaandrager give a thorough review and references [5],
and also consider models with time [6].

Timed trace inclusion validation via reachability analysis
is discussed by both Jensen, Larsen, and Skou [3], who con-
sider urgent channels and shared variables, and Stoelinga [7],
whose exposition we adapt to handle channel arrays, quan-
tifiers, and selection bindings.
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1.2 Example: A liberal railway controller
Uppaal is distributed with an idealized railway controller

model [8]. Imagine a bridge where several lines converge
temporarily to a single track. A controller receives signals
as trains approach and leave the bridge. It can signal a train
to stop provided it does so quickly enough; another signal
is sent when it is safe to continue. Two properties must be
satisfied. Safety: only one train is on the bridge at a time,
and liveness: all approaching trains eventually leave.

The model is shown in Figures 1a, 1b, and 1c. The con-
troller has been modified so that go is not urgent, because
although the technique and tool can handle such channels,
combining them with invariants, as we do, can give valida-
tion automata with clock guards that Uppaal rejects. Com-
mitted locations are not addressed and have been made ur-
gent instead. The allow approach[front()]! action was added
to make observable the decision to let an approaching train
pass; the Silent automaton ensures that it is never blocked.1

In the complete model, no train ever sends two consecu-
tive approach signals; we make this assumption explicit, by
adding an extra guard on the approach[e]? transition.2

The model is parameterized over the number of trains N .
Each train is identified by an integer which selects an ele-
ment from the channel arrays connected to the controller.

The original controller stops trains as they arrive and adds
their identifiers to a queue, from which they are resumed
in order. Suppose a more flexible specification is desired,
one that permits controllers that give preference to mov-
ing trains, or prioritize certain tracks, or delay decisions
for longer, while still never stopping trains indefinitely. A
candidate solution is given in Figure 1d. It maintains a
two-dimensional array with, for each train, a status—AWAY,
APPR, STOP, or GO—and, if it is stopped, the number of
times trains on each other track have been allowed through.
It keeps a timer for each train, reset on approach, that mon-
itors the deadline for sending a stop signal. The model
uses selection bindings, the i : id t expressions, that stand
for multiple transitions, one for each i value. Guard and
invariant expressions contain universal, forall ( j : id t ), and
existential, exists (k: id t ), quantifiers.

Suppose we want to know if the new controllerN allows all
behaviors of the original O. Since N is deterministic, it can
be transformed into a validation automaton N Err, Figure 1e,
with a new location Err and where actions are inverted, for
example go[ i ]! becomes go[ i ]?, transition guards are the
conjunctions of the original guards and location invariants,
which are removed, and from each location a transition to Err
is added for everything that cannot happen. Timed trace
inclusion validation is verified by model-checking:

O ‖ N Err |= A2¬N Err.Err.

If there were a trace of O that was not a trace of N , then O
would eventually offer an action that caused N Err to en-
ter Err; Uppaal would present it as a counter-example.

The channel arrays, selection bindings, and quantifiers
in N are not directly handled by the basic construction.
Whilst they could be unravelled for fixed parameter values,
the result could be difficult to examine, making counter-
example traces hard to follow, and more difficult to model-
check. This paper shows how to treat such features directly.

1A broadcast channel cannot be used: §2.
2The results hold if a self-loop with no update is added.

2. UPPAAL
An Uppaal model comprises multiple communicating com-

ponents. Each is typically presented as a (timed safety) au-
tomaton, but a more concrete formalization is required to
describe and understand the extended validation technique.
In this section we introduce a process model with explicit
variable valuations, selection bindings, and channel arrays.

Several Uppaal features are excluded from our model.
Urgent nodes, where delays cannot occur, can be removed

from models by adding the conjunct xu ≤ 0 to their invari-
ants, where xu is a new clock that is reset on every edge.3

Communications on urgent channels and through shared
variables are not formalized, but they are treated in §3.4.

Committed nodes are used to express the atomicity of ac-
tion sequences, edges leaving them have priority over those
leaving normal nodes. Process and transition priorities also
give preference to some edges over others. Neither feature
is addressed by this paper.

Output actions on broadcast channels synchronize with
all enabled input actions on the same channel, or, if there
are none, may occur alone. We do not treat broadcast in-
puts as they become validation automata outputs that may
always occur irrespective of how a model being validated
behaves. Broadcast outputs, however, become inputs in the
validation automaton and are treated normally. They could
potentially validate whether a pattern of synchronizations
between two input-enabled automata, each relying on as-
sumptions embodied in the other, is timed trace included in
a protocol model. But, unfortunately, Uppaal rejects tran-
sitions on broadcast inputs with clock variables in guards,
and as clock variables are allowed on output transitions and
in location invariants, the technique is of limited use.

2.1 Variables, expressions, and valuations
Some preliminary definitions and notation are required

before a process can be defined.
Uppaal models may contain clock variables, which express

timing constraints, and data variables, which facilitate con-
cise and flexible process models.

Data variables are typed, but we will ignore, without loss
of generality, boolean variables, record types, and arrays of
anything but channels. The set of all variables Vars encom-
passes the two remaining categories of types: bounded sets
of integers, written [l, u] where l ≤ u and ∀i ∈ Z. l ≤ i ≤ u
implies i ∈ [l, u], and finite scalar sets, written [S]. Both inte-
ger and scalar types can index arrays, and be bound by quan-
tifiers in expressions and by selection bindings over process
edges. Scalar variables may only be directly assigned to one
another and compared for equality, which permits model-
checking optimizations. Each scalar declaration, for exam-
ple, scalar [5] ids , gives a new disjoint set. Type aliases,
stated with typedef, preserve set identity.

Expressions are built from variables, constants, function
calls, operators, relations, and quantifiers. We treat them
as members of a set Exprs. The set of unbound variables
in e ∈ Exprs is written freevars(e). Each expression e de-
notes either a truth value, an integer, or a value from a
scalar set. Its value depends on the values assigned to vari-
ables in freevars(e). A valuation valV gives a value valV (v)
of appropriate type for each variable v in the finite set V.
The set of all valuations for a given set V is written ValsV.

3The implementation automatically expands urgent nodes.
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Figure 1: Railway controller example
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Valuations may be composed:

valV1 . valV2(v) = valV2(v) if v ∈ V2, otherwise valV1(v).

The value of expression e with respect to valuation valV is
written JeKvalV

, provided freevars(e) ⊆ V.

Given a set of clock variables K, we write val0K for the
valuation that maps each k ∈ K to 0, and val+dK for the
valuation mapping each k ∈ K to valK(k) + d.

The set of update functions is written ∆V , an element δV
maps one valuation valV to another val′V . Clock variables
may only become 0. The set of clock variables reset by an
update δV is written resets(δV).

2.2 Channels and actions
Channel arrays are convenient for specifying a parame-

terizable number of channels; a sequence of expressions can
select a channel for synchronization. The controller of Fig-
ure 1a uses channel arrays to communicate with N trains. A
precise notation is necessary to define their transformation.

Let Chansets be a finite collection of channel sets. Every
C ∈ Chansets is associated with a sequence of nC types, each
either of the form [l, u], or [S]. A single element C〈i1,...,inC〉 of

the set C is designated by a sequence of values 〈i1, . . . , inC〉
of appropriate types. Non-array, elementary, channels are
denoted by singleton channel sets, for example Cε. Two
actions are associated with each channel. To each channel
set C are associated sets of input and output actions,

C? = {C〈i1...inC〉? | for all 〈i1, . . . , inC〉 }, and,

C! = {C〈i1...inC〉! | for all 〈i1, . . . , inC〉 }

We write ?/! for either direction, used consistently in a rule,
and !/? for its inverse.

For C ⊆ Chansets, let C? =
S
C∈C C? and C! =

S
C∈C C!.

We define action sets Acts = Chansets?
.∪ Chansets! and

Actsτ = Acts
.∪ {τ} with disjoint union and the silent ac-

tion τ . The inverse of an action a 6= τ , is written a; if a = c?
then a = c! and vice versa; similarly for action sets.

Subsets of a channel set C may be designated by an ex-
pression sequence 〈e1, . . . , enC〉. Evaluation is lifted to such
designations to specify a single channel from the subset,

JC[e1, . . . , enC ] KvalV
= C〈Je1KvalV

,...,JenC KvalV
〉.

2.3 Processes
Transition guard expressions in Uppaal are restricted in

form for efficient manipulation as symbolic zones. They are
built on clock terms.

Def. 2.1. The set of clock terms Tclk (K,V ), K ∩ V =∅,
is the smallest containing 1. pnclk where freevars(pnclk ) ⊆ V;
2. k R e where k ∈ K, R∈{<,≤,=,≥, >}, freevars(e) ⊆ V;
and 3. k1 − k2 R e where k1, k2 ∈ K, and freevars(e) ⊆ V.

Form 1 admits boolean-valued, clock-free expressions. In
form 2 a clock variable is compared with an integer-valued,
clock-free expression, in form 3 the difference of two clock
variables is compared.

Def. 2.2. The guard expressions on K and V, Eg(K,V ),
where K and V are disjoint sets of clock and non-clock vari-
ables respectively, is the smallest set built by the rules:

p ∈Tclk (K,V )

p ∈Eg(K,V )

p, q∈Eg(K,V )

p ∧ q ∈Eg(K,V )

p∈Eg(K,V ) v∈Vars

(∀v. p) ∈Eg(K,V )

Uninterpreted clock-free expressions pnclk may contain ex-
istential quantifiers and disjunctive sub-terms, but guard
expressions may not. Invariant expressions Einv(K,V ) are
the subset of guard expressions where comparisons in clock
terms are restricted to R ∈ {<,≤}.

There is now sufficient background to formalize processes
as modeled directly within Uppaal.

Def. 2.3. A process P = (N,n0,K, V, valinit
V , invV ∪K , E)

over Actsτ comprises finite sets of nodes N, clocks K, vari-
ables V, and edges E; an initial node n0 and valuation valinit

V ;
and invV ∪K , mapping from N to expressions in Einv(K,V ).
The labeled edges connect pairs of nodes, where S ⊆ Vars,

E ⊆ N × S × Eg(K,V ∪ S)× 2Acts ×∆V ∪K(V, S)×N.

For (n, S, e, C[e1, . . . , enC ]?/!, δ
(V,S)
V ∪K , n

′) ∈ E we write

n
S e δ

(V,S)
V∪K−−−−−−−−−−→

C[e1,...,enC ]?/!
E n′,

similarly for τ -transitions, where n and n′ are, respectively,
source and destination nodes; S is a finite set of selection

bindings, S ∩ V=∅; freevars(e) ⊆ V ∪ S; δ
(V,S)
V ∪K is an update

for valuations over V and K that depends on a valuation
of V and S; and the action set is either {τ}, or consistent in
name and direction, that is, it has the form C[e1, . . . , enC ]?/!

where freevars(C[e1, . . . , enC ]) ⊆ V ∪ S.

2.4 Automata
Uppaal models are normally formalized as automata.

Def. 2.4. An automaton A = (L, l0,K, invK , T ) on Actsτ
comprises finites sets of locations L and clocks K, an initial
location l0, a function invK from L to Einv(K, ∅), and a set
of transitions T ⊆ L× Eg(K, ∅)× Actsτ × 2K × L. A tran-
sition (l, e, a, R, l′) ∈ T is written l

e R−−→
a

T l
′.

We define a function ΓV to map processes to automata by
expanding references to non-clock variables. It gives the se-
mantics of the process modeling notation. We write VeWvalV

for a partial evaluation that maps one expression to another
such that J VeWvalV KvalV ′

= JeKvalV ′.valV
if freevars(e)\V ⊆ V ′.

Def. 2.5. Given a P = (N,n0,K, V, valinit
V , invV ∪K , E),

let ΓV (P) = (L, l0,K, invK , T ), where L = N × ValsV , l0 =`
n0, valinit

V

´
, invK ((n, valV )) = V invV ∪K(n) WvalV , and T is

the smallest relation satisfying:

n
S e δ

(V,S)
V∪K−−−−−−−−−→

C[e1,...,e2]?/!
E n
′ valV ∈ ValsV valS∈ ValsS

(n, valV)
VeWvalV .valS

resets
“
δ
(V,S)
V∪K

”

−−−−−−−−−−−−−−−−−→JC[e1,...,enC ]?/!KvalV .valS

T

“
n′, δ(V,S)

V ∪K (valV)
” ?, !

n
S e δ

(V,S)
V∪K−−−−−−−→
τ

E n
′ valV ∈ ValsV valS∈ ValsS

(n, valV)
VeWvalV .valS

resets
“
δ
(V,S)
V∪K

”

−−−−−−−−−−−−−−−−−→
τ

T

“
n′, δ(V,S)

V ∪K (valV)
” τ

The three rules above differ only in the action type. Au-
tomata locations are formed of process nodes paired with
non-clock variable valuations. After fixing a variable valu-
ation, each process edge may still expand to multiple tran-
sitions, one for every valuation valS of the selection bind-
ings S. The original guard is partially evaluated—the result
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may depend on clock variables—against binding and vari-
able values. The combined binding and variable values affect
the update of the destination valuation, and, in the rules for
? and !, select an element from the channel set. Updates to
clocks remain on the result transitions.

Later manipulations work from the observation that ev-
ery edge corresponds to a set of transitions determined by
the combination of control node and data valuation, and all
possible assignments to S.

An Uppaal model of n processes P1, . . . ,Pn over Actsτ and
variables V can be mapped to a closed system automaton

Aτ = (ΓV (P1) ‖ . . . ‖ ΓV (Pn)) \ Acts

We will not repeat definitions for parallel composition and
restriction. Parallelism follows CCS, complementary actions
synchronize to τ -transitions; rules are added for urgent and
broadcast channels, and shared variables. Restriction prunes
transitions open to synchronization on a set of actions.

2.5 Validation automata
We repeat the validation construction definition [7, §A.1.5]

for automata. It will be lifted to processes in §3.

Def. 2.6. For a deterministic A = (L, l0,K, invK , T ) over

Acts let AErr = (L
.∪ {Err}, l0,K, invErr

K , T
Err) where invErr

K (l ∈
L) = true, T Err is the smallest relation such that

l
¬invK(l) ∅−−−−−−→

τ TErr Err
1

a ∈ Acts

Err
true ∅−−−→
a TErr Err

2

l
g R−−−→
a

T l
′

l
(g ∧ invK(l)) R−−−−−−−−−→

a TErr l
′

3

g(a,l) = ¬
_
{ g | l g R−−−→

a
T l
′ }

l
(g(a,l) ∧ invK(l)) ∅
−−−−−−−−−−−−→

a TErr Err
4

If there are no transitions for a pairing of action and location
(a, l) the upper part of rule 4 becomes ¬W ∅ = true, giving
a transition directly to the Err state.

The validation construction can only be applied to τ -free,
deterministic automata, as timed trace inclusion is not de-
cidable for nondeterministic specifications. It is sometimes
possible to remove nondeterminism by relabeling [7, §7.5.2,
Appendix A], τ -transitions may be similarly dispatched.

The railway controller, for example, was relabeled, replac-
ing τ with allow approach[i]! actions. Without observable ac-
tions, the validation automaton could remain in Free, when
the gate being validated silently entered Occ, whence it could
perform actions leading the former to Err. Were a single
allow approach! action used, the models would be nonde-
terministic, and although initially synchronized, each could
change its variables differently and later behave differently.

3. TRANSFORMING UPPAAL MODELS
The validation construction for automata was given in

Definition 2.6. Given a process P our aim is to analogously
define how to construct another process PErr such that:

ΓV (PErr) ≈ ΓV (P)Err,

P Definition 3.1−−−−−−−−−→ PErr

??yΓV

??yΓV

A Definition 2.6−−−−−−−−−→
ˆ
AErr

˜

whereA1 ≈ A2 iff 1.A1 has a location Err, 2. as doesA2, and
3. ∀A . (A1 ‖ A |= A2¬A1.Err) ⇔ (A2 ‖ A |= A2¬A2.Err).

The equivalence class is introduced as the validation con-
struction for processes may add additional states and tran-
sitions to handle unexpanded features.

In pragmatic terms, we want to correctly extend the orig-
inal construction to allow direct timed trace inclusion vali-
dation of models, leaving explicit expansion, ΓV, to Uppaal.

Def. 3.1. Let P = (N,n0,K, V, valinit
V , invV ∪K , E) where

the underlying automaton ΓV (P) is deterministic and τ -free,

then PErr = (N
.∪ {Err}, n0,K, V, valinit

V , invErr
V ∪K , E

Err), where
invErr

V ∪K(l ∈ L) = true and EErr is the least relation such that,

n
∅ ¬invV∪K(n) ·−−−−−−−−−−→

τ EErr Err
1

a ∈ Acts

Err
∅ true ·−−−−−→

a EErr Err
2

n
S g λ−−−−−−−−−−→

C[e1,...,enC ]?/!
E n
′

n
S (g∧ invV∪K(n)) λ−−−−−−−−−−−−−→
C[e1,...,enC ] !/?

EErr n
′

3

n ∈ N C ∈ Chansets (S′, g′, 〈e′1, . . ., e′nC〉) ∈ flip(C, T )

where T =

(
(S, g, 〈e1, . . ., enC 〉) | n

S g ·−−−−−−−−−−→
C[e1,...,enC ]?/!

E ·
)

n
S′ (g′ ∧ invV∪K(n)) ·−−−−−−−−−−−−−−→

C[e′1,...,e
′
nC

] !/?
EErr Err

4

The function flip maps a set of triples—selection bindings,
guards, and subscript expressions—of edges for a fixed loca-
tion l and channel set C, to another set of triples so as to
satisfy ΓV (PErr) ≈ ΓV (P)Err.

Rule 4 applies to node/action set pairs, mapping, via the
flip function, all associated edges to another set of edges to
the Err state. The flip function encapsulates the treatment
of selection bindings and channel arrays. It is presented
incrementally over the following subsections. The presenta-
tion includes details that, while not required for the abstract
definition, are important for implementation.

3.1 Elementary channels
In this section we consider edges labeled with singleton

channel sets; selection bindings are thus limited to guards.

3.1.1 No selection binding or quantifiers
In the absence of selection bindings and quantifiers over

expressions containing clocks, the challenge is to produce
guard expressions that meet the syntactic restrictions of Up-
paal. Ideally, expressions are simplified when possible.

Clock expressions represent the intermediate results of
manipulations. They must be converted to guard expres-
sions, Eg(K,V ) ⊆ Eclk (K,V ), for acceptance by Uppaal.

Def. 3.2. The set of clock expressions Eclk (K,V ) over
clock K and non-clock variables V is the smallest such that

p ∈ Tclk (K,V )
p ∈ Eclk (K,V )

1

p, q ∈ Eclk (K,V )
p ∧ q ∈ Eclk (K,V )

2
p, q ∈ Eclk (K,V )
p ∨ q ∈ Eclk (K,V )

3

p ∈Eclk (K,V ) v ∈ Vars
∀v. p ∈ Eclk (K,V )

4
p ∈Eclk (K,V ) v ∈ Vars
∃v. p ∈ Eclk (K,V )

5

For now, we limit our attention to quantifier-free clock
expressions, that is those formed without using rules 4 and
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5. Quantifiers may nevertheless appear in clock terms p ∈
Tclk (K,V ) where they do not encompass clock variables.

Quantifier-free clock expressions are closed under nega-
tion. The function neg is defined over the structure of ex-
pressions, after the pattern:

neg(c < e) = c ≥ e, neg(c = e) = c < e ∨ c > e,

neg(pnclk ) = negnclk (pnclk ), neg(p ∨ q) = neg(p) ∧ neg(q).

where negnclk (pnclk ) negates clock-free expressions pnclk .
The set ofm edges to flip can be written E = {g1, . . . , gm},

as each edge has the same source node, none have selection
bindings, each synchronizes on the same action, and neither
updates nor destination nodes are relevant.

The set of edges E = flip(E) should contain guards such
that at least one is true when all of the guards in E are
false. We directly mimic the premise of rule 4 of Defini-
tion 2.6 by forming neg(g1 ∨ · · · ∨ gm). To ensure that the
resulting expression conforms to Uppaal’s syntactic restric-
tions, it must first be converted into Disjunctive Normal
Form (DNF) g1 ∨ · · · ∨ gm′ , before separating the clauses to
give E = {g1, . . . , gm′}.

In practice, it is often possible to simplify the resulting
guard terms. For example, c > 2 ∧ c ≤ 2 may be omitted
completely, and c < 2 ∧ c < 4 may be replaced with c < 4.
Simplification is not strictly necessary, but it improves read-
ability which, in turn, increases confidence in the results,
and makes counter-example traces easier to follow. Our im-
plementation uses simple syntactic criteria to assess, for a
pair of terms in a conjunctive clause, whether one implies or
contradicts the other. A possible improvement would be to
exploit a heavy-duty simplifier, as in theorem proving tools.

s3

s2 x<4s1

x>1
  && x < 3

d?d!

c?

P2 :

Err

s3

s2s1

x>=4
c! c? d!d?

x<4 c!
x<4 c?

x<=1 d!
x<4 && x>=3 d!

x<4 d?

c?

d!
x<3
  && x>1

d!d?

c!

PErr
2 :

// p r o c e s s
c l o c k x ;

Figure 2: No selection bindings or quantifiers

Figure 2 shows a process P2 that has one clock x and
synchronizes on channels c and d, and the corresponding
validation process PErr

2 . The two transitions from s1 of PErr
2

to Err are labeled with inverses of the actions not leaving
that state. Transitions from s2 of PErr

2 have more involved
guards

c?, c!, d? x < 4 guard is node invariant
τ x ≥ 4 negated invariant
d! x < 3 ∧ x > 1 original guard
d! x < 4 ∧ x ≥ 3 invariant, half negated guard
d! x ≤ 1 other half of negated guard

In the third and fifth lines above, simplification has removed
the redundant invariant conjunct. The negated guard of d!
is split over two transitions to avoid disjunction.

3.1.2 With selection bindings
A selection binding pairs a variable name with a bounded

integer or scalar type. Multiple names may be bound over
the expression, update statement, and action array indices
of an edge. The latter are not considered until §3.2.2.

An edge with selection bindings represents multiple transi-
tions in the unwound automaton, even after fixing the values
of state variables. This is apparent in Definition 2.5. Any
choice of values for the selection bindings that satisfies the
guard represents a possible transition.

The set of m edges to be flipped must now be written
E = {(S1, g1), . . . , (Sm, gm)}, where each Si is a set of selec-
tion variables, bound over gi. We assume that the selection
sets are pairwise disjoint, without loss of generality since
elements may be renamed if necessary. For now, we only
consider quantifier-free gi.

A transition for fixed location and action is enabled when

(∃s11, . . . , s1n1
. g1) ∨ · · · ∨ (∃sm1, . . . , smnm . gm),

where Si = {si1, . . . , sini}, which can be rewritten

∃s11, . . . , s1n1
, . . . , sm1, . . . , smnm . g1 ∨ · · · ∨ gm.

Thus, no transitions are enabled when

∀s11, . . . , s1n1
, . . . , sm1, . . . , smnm . neg(g1 ∨ · · · ∨ gm),

that is, when no guard is satisfied for any valuation of the
selection bindings. The result of neg(g0∨· · ·∨gm) can be con-
verted to DNF g0∨ · · ·∨ gm, but it is only possible to assign
each clause to a separate transition if the scope of each uni-
versally bound variable can be reduced to a single disjunct.
One solution is to eliminate problematic quantified variables
by creating a new edge for each of their possible values and
every disjunct in scope. This is not possible for variables
that take values from a scalar set, or from bounded inte-
gers where either of the bounds is an expression that cannot
be reduced to a concrete value, for instance those involving
template arguments. We will look at another construction
in the next section that can also be applied to non-scalar
types. Our current implementation warns when a negated
expression cannot be split into separate transitions and is
thus likely to be rejected by Uppaal.

P3:
s0

i : int[0,n-1]
x[i]<=i
c!

PErr
3 :

Err s0

c!

forall (i : int[0,n - 1]) x[i]>i
c?

i : int[0,n - 1]
x[i]<=i
c?

// p r o c e s s
c l o c k x [ n ] ;

Figure 3: Selection bindings but no quantifiers

In PErr
3 of Figure 3 a transition from s0 to Err occurs on c?

when the negated guard is true for all possible values of i.

P4:
s:IDXT x<a[s] && y>b[s] c?

c l o c k x , y ;
t y p e d e f s c a l a r [N] IDXT ;
i n t a [ IDXT ] , b [ IDXT ] ;

PErr
4 :

Err c!

c?
forall (s : IDXT) x>=a[s] || y<=b[s]

c!

c?

s:IDXT x<a[s] && y>b[s] c!

Figure 4: Selection bindings/negated guard clash

Another process and corresponding validation process are
shown in Figure 4. The guard disjuncts of PErr

4 cannot be
split into separate transitions, because of the forall; this pro-
cess is rejected by Uppaal.

3.1.3 With universal quantifiers
The previous section showed how universal quantifiers are

introduced when negating transitions with selection bind-
ings. We now consider guards that already contain universal
quantifiers (rule 5 of Definition 3.2). Guards with existential
quantifiers are rejected by Uppaal, and hence not considered.
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Quantifier bindings, like selection bindings, bind a name
and finite type over a subexpression. A universally quanti-
fied expression ∀i ∈ [l, u]. e(i) is equivalent to a sequence of
conjunctions e(l)∧ · · · ∧ e(u), and similarly for scalar types.

As it is possible to convert guard expressions into prenex
normal form where all the quantifiers are universal, and thus
order is irrelevant, a set of m edges is now written

E = {(S1, A1, g1), . . . , (Sm, Am, gm)},
where each Ai is a set of universally quantified variables
binding over gi. We assume that all selection and quantifier
sets are pairwise disjoint, renaming if necessary, and further
that quantified variables only occur in corresponding guard
expressions, that is, for all 1 ≤ i, j ≤ m, Si ∩ Aj =∅, and if
i 6= j then Si ∩ Sj = ∅, Ai ∩ Aj = ∅, Ai ∩ freevars(gj) = ∅,
and Si ∩ freevars(gj) =∅. These assumptions can be met by
renaming as required.

A transition for a given action is enabled whenever

∃s11, . . . , smnm . ∀a11, . . . , amn′m . g1 ∨ · · · ∨ gm.
Thus, there are no transitions enabled for the action when

∀s11, . . . , smnm . ∃a11, . . . , amn′m . neg(g1 ∨ · · · ∨ gm), (ψ1)

which is problematic because Uppaal will reject it if any
of the guards contain clock variables. One solution is to
rearrange the expression, if possible, into the form

∃a11, . . . , amn′m . ∀s11, . . . , smnm . neg(g1 ∨ · · · ∨ gm), (ψ2)

where existential bindings in the prefix could then be con-
verted into selection bindings, the remainder of the expres-
sion having the form discussed in §3.1.2 and subject to the
same limitations and treatment.

We require some condition(ψ1) such that

condition(ψ1)⇒ ∀ valV ∈ ValsV . Jψ1KvalV
= Jψ2KvalV

.

The minimal condition is false which rejects all processes
with guards that mix selections and quantifiers over clock
variables. Logical equivalence of ψ1 and ψ2 is the most ac-
cepting. We could, for example, emit constraints and proof
obligations for treatment in a theorem prover or a model
checker. Currently we implement an approximate condition.

Def. 3.3. The canswap predicate is defined on formulas
of form ∀a1, . . . , an. ∃e1, . . . , em. ϕ1∨ · · ·∨ϕl, where each ϕi
is a conjunction of clock terms, p1

i ∧ · · · ∧ pnii . Let

A = {a1, . . . , an}, E = {e1, . . . , em},
Ai = freevars(ϕi) ∩A Ei = freevars(ϕi) ∩ E

canswap is true iff for 1 ≤ i ≤ l either 1. Ai = ∅ ∨ Ei = ∅,
or 2. For 1 < j 6= i < n, Ai ∩ Aj =∅, Ei ∩ Ej =∅, and for
all 1 < k < ni freevars(pki ) ∩Ai =∅ or freevars(pki ) ∩Ei =∅.

Proposition 1. For a quantifier-free formula ψ in DNF,
canswap(∀a1, . . . , an. ∃e1, . . . , em. ψ) implies

∀a1, . . . , an. ∃e1, . . . , em. ψ ≡ ∃e1, . . . , em. ∀a1, . . . , an. ψ

The canswap predicate is no panacea, but it does address
several useful cases, for example, sets of transitions where
no single transition employs both selection bindings and uni-
versal quantifiers and each guard is a single term.

An alternative to rearranging formulas, when none of the
universal quantifiers are of scalar type, is shown in Figure 5.

In the committed location, meta variables s11 . . . smnm, shad-
owing universal quantifiers, are iterated over all valuations
provided assignments to selection bindings a11 . . . amn′m

can

be found to satisfy one of the disjunctive clauses ϕ1 . . . ϕm′ .
If this is not possible, the construction returns to the original
location, otherwise it offers a synchronization into Err.

3.2 Channel arrays
We now generalize the techniques of the previous subsec-

tion by considering edges labeled with actions on elements
of channel arrays. The central challenge is to decide when
two index sequences specify the same channel. For singleton
channel sets, channels may be identified by the set name
alone.4 An array name, however, is usually shared by multi-
ple channels. Individual elements are selected by sequences
of expressions over state variables and selection bindings.

We first develop techniques for handling array index ex-
pressions where the only variables are state variables, then
extend these to address selection bindings in a limited way.

The implementation warns if channel arrays are passed by
reference as template parameters. Exact detection of alias-
ing is not possible because reference equality is not testable.

3.2.1 State expressions only
Rather than collecting edges on a single action, they must

now be grouped by channel set and direction.
The set of m edges to be flipped is now written

E =
˘`
S1, A1, g1, 〈e1

1, . . . , e
1
nC 〉
´
,

. . . ,
`
Sm, Am, gm, 〈em1 , . . . , emnC 〉

´¯
,

where the added expression sequences specify an element of
the channel set. We make the same disjointness assump-
tions as in the previous section, and additionally require
that quantifier bindings are restricted to guards, and like-
wise, until the next section, for selection bindings, that is,

∀1 ≤ i, j ≤ m, 1 ≤ k ≤ nC . (Ai ∪ Si) ∩ freevars(ejk) =∅
The edges within E must be grouped by channel and al-

lowance made for channels not represented by any edge. For
example, given a set of two channels C = {c[1], c[2]}, and,

E = {(S1, A1, g1, e
1), (S2, A2, g2, e

2)},
there are two possibilities, for a fixed valuation valV : if
Je1KvalV

= Je2KvalV
the previous techniques can be applied

to the edge (S1 ∪ S2, A1 ∪A2, g1 ∨ g2) on action c[ Je1KvalV
],

and the edge (∅, ∅, false) on action c[i] where i 6=
q
e1
y

valV
.

Otherwise, if Je1KvalV
6= Je2KvalV

there is one edge (S1, A1, g1)

on c[ Je1KvalV
], and another (S2, A2, g2) on c[ Je2KvalV

].
We originally formed explicit edge groupings in this way,

but the number of possible partitions grows very quickly, and
the generalization to index expressions containing selection
bindings is intricate. It turns out that both problems can
be avoided by introducing additional selection bindings.

We introduce a new selection binding, ensuring disjoint
names, for each channel array dimension, with a type that
spans the entire dimension. Let Sw = {z1, . . . , znC} be this
set of nC sweep bindings. We assume that they are disjoint
from one another and from other selection and quantifier
bindings. Each valuation of the bindings specifies a different
element of the channel set and all elements are considered.

4Unless they are template parameters passed by reference.
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Err

. . .

. . .
s11 = L11, ..., smnm = Lmnm

forall(a11 : int[L11, U11]), ...,
forall(amn′m

: int[Lmn′m
, Umn′m

])

g1(s11, ..., smnm )

forall(a11 : int[L11, U11]), ...,
forall(amn′m

: int[Lmn′m
, Umn′m

])

gm(s11, ..., smnm )

...
a11 : int[L11, U11], ..., amn′m

: int[Lmn′m
, Umn′m

]

s11== U11 && · · ·&& smnm == Umnm &&ϕ1(s11, ..., smnm )

a11 : int[L11, U11], ..., amn′m
: int[Lmn′m

, Umn′m
]

s11== U11 && · · ·&& smnm == Umnm &&ϕm′ (s11, ..., smnm )

...

c?/!

c?/!

si ∈ {s12, . . . , smnm}

a11 : int[L11, U11], ..., amn′m
: int[Lmn′m

, Umn′m
]

s11== U11 && · · ·&& si−1== Ui−1 && si < Ui &&ϕ1(s11, ..., smnm )
s11 = L11, ..., si−1 = Li−1, si = si + 1

a11 : int[L11, U11], ..., amn′m
: int[Lmn′m

, Umn′m
]

s11== U11 && · · ·&& si−1== Ui−1 && si < Ui &&ϕm′ (s11, ..., smnm )
s11 = L11, ..., si−1 = Li−1, si = si + 1

· · ·

a11 : int[L11, U11], ..., amn′m
: int[Lmn′m

, Umn′m
]

s11 < U11 &&ϕ1(s11, ..., smnm )
s11 = s11 + 1

a11 : int[L11, U11] , ..., amn′m
: int[Lmn′m

, Umn′m
]

s11 < U11 &&ϕm′ (s11, ..., smnm )
s11 = s11 + 1

. . .
where ϕ1 ∨ · · · ∨ ϕm′ = neg(g1 ∨ · · · ∨ gm)

// p r o c e s s
meta i n t [ L11 , U11 ] s11 ;

meta i n t [ Lmnm , Umnm ] smnm ;

...

Figure 5: Construction for ∀s11, . . . , smnm . ∃a11, . . . , amn′m . neg(g1 ∨ · · · ∨ gm)

For any valuation, the negated disjunction of all applicable
guards must be formed, as for an elementary channel. Thus
to each sequence of index expressions we associate a clause
satisfied only when the sweep binding valuation specifies the
same element as do the evaluated expressions. The conjunc-
tions of each clause and guard may then be combined in dis-
junction, and the entirety negated as required. The clauses
ensure appropriate grouping of guards as the model checker
evaluates the entire expression through all valuations.

The m edges can thus be considered as a single edge

ε =
“
Sw ∪ S1 ∪ · · · ∪ Sm, A1 ∪ · · · ∪Am,

(z1 = e1
1 ∧ · · · ∧ znC = e1

nC ∧ g1)
∨ (z1 = e2

1 ∧ · · · ∧ znC = e2
nC ∧ g2)

...
∨ (z1 = em1 ∧ · · · ∧ znC = emnC ∧ gm),

〈z1, . . . , znC 〉
”
.

For a valuation of the sweep bindings valSw the conjunct
(z1 = e1 ∧ · · · ∧ znC = enC ∧ g) is either equivalent to g,
and remains in the disjunction, or to false, and drops from
the disjunction, depending on whether the guard applies to
an edge on a channel set element identified by 〈z1, . . . , znC 〉.
The guards of channels not referred to by any index sequence
are, appropriately, equivalent to false. The sets of univer-
sal bindings Ai may be grouped into the union because the
scope of each applies only to a single guard expression gi and
is disjoint from the set of free variables in the array index
expressions ei1, . . . , e

i
nC . Similarly for the selection bindings

Si. We also note that the (z1 = e1 ∧ · · · ∧ znC = enC )
subexpressions do not contain clocks since they are formed
by equating selection bindings and array index expressions,
and that every assignment to Sw selects a different channel.

Edge ε represents multiple transitions, one for each valu-
ation of Sw. No transitions are enabled for an action when

∀s11, . . . , smnm . ∃a11, . . . , amn′m .

(z1 6= e1
1 ∨ · · · ∨ znC 6= e1

nC ∨ neg(g1))
∧ (z1 6= e2

1 ∨ · · · ∨ znC 6= e2
nC ∨ neg(g2))

...
∧ (z1 6= em1 ∨ · · · ∨ znC 6= emnC ∨ neg(gm)).

(ψ3)

The sweep bindings are not negated into universal quan-

tifiers since their role is only to choose elements from the
channel set. They do not have the effect of disjunction since
no two valuations specify the same channel. For an ele-
ment, the quantifier free part is equivalent to a conjunction
of l negated guards gi1 ∧ · · · ∧ gil , which is equivalent to the
corresponding form for elementary channels, §3.1.3.

Formula ψ3 must be manipulated to form a set of valid
Uppaal transitions. This means swapping the universal and
existential quantifiers and transforming the quantifier-free
subexpression into DNF before splitting the resulting clauses
over multiple transitions. The techniques of previous sec-
tions remain applicable. The sweep variables are treated as
state variables during the manipulations and then afterward
reintroduced on each separate transition.

In the construction for formulas with unswappable quan-
tifiers, Figure 5, sweep binding values must remain constant
while testing the range of universal quantifier valuations.
Thus a meta variable would also be introduced for each
sweep binding; with a value assigned non-deterministically
on entry to the committed state. The meta variables re-
place the bindings in guard expressions and when selecting
a specific channel on the transitions into Err.

In Figure 6, P6 has two transitions on the same two dimen-
sional channel array; both indexed by state variables, one
with tail and i, the other with head and j. Two sweep bind-
ings, s0 and s1, are introduced in PErr

6 . The negated guard
for c? gives twelve transitions after conversion to DNF. The
increase in transitions is unfortunate but less pronounced
when selection bindings index channel arrays—which we con-
sider next and expect to be more usual. The constants N1

and N2 are declared globally, but they could be template
parameters; PErr

6 is correct whatever their exact values.

3.2.2 Limited selection bindings
We now relax the restriction on selection bindings occur-

ring in channel array subscripts. The set of m edges to be
flipped is written as in the previous section, and disjointness
per §3.1.3 is also assumed. Quantifiers are still restricted to
guards, ∀1 ≤ i, j ≤ m, 1 ≤ k ≤ nC . Ai ∩ freevars(ejk) = ∅,
but selection bindings may now occur as index expressions,
∀1 ≤ i ≤ m, 1 ≤ k ≤ nC , s ∈ Si. s ∈ freevars(eik) ⇒ eik = s.
We assume, for now, that no selection variable appears in
two different index positions on an edge. We will also assume
that the type of each selection binding used in an array di-
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P6:

s0

x<=3 && (head<tail || head==N1-1)
c[head][j]!

head = (head+1) % N1

x>=5
c[tail][i]!

tail = (tail+1) % N1, x=0

PErr
6 :

Err

s0

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
s1!=i && s1!=j
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
s1!=i && s0!=head
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
s1!=i && (head>=tail && head!=N1 - 1)
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
s1!=i && x>3
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
s0!=tail && s1!=j
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
s0!=tail && s0!=head
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
s0!=tail && (head>=tail && head!=N1 - 1)
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
s0!=tail && x>3
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
x<5 && s1!=j
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
x<5 && s0!=head
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
x<5 && (head>=tail && head!=N1 - 1)
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
x<5 && x>3
c[s0][s1]?

s0 : int[0,N1 - 1], s1 : int[0,N2 - 1]
c[s0][s1]!

x<=3 && (head<tail || head==N1 - 1)
c[head][j]?

head = (head + 1) % N1

x>=5
c[tail][i]? tail = (tail + 1) % N1, x = 0

// g l o b a l
const i n t N1=3, N2=2;
chan c [ N1 ] [ N2 ] ;

// p r o c e s s
c l o c k x ;
i n t [ 0 , N1−1] head =0;
i n t [ 0 , N1−1] t a i l =0;
i n t [ 0 , N2−1] i =0;
i n t [ 0 , N2−1] j =1;

Figure 6: Channel arrays with state variables

mension spans that entire dimension. Scalar bindings must,
and while an integer binding s of type [l, u] may index a di-
mension of larger size, its type can be altered if correspond-
ing guards are further constrained by the clause l ≤ s ≤ u.

When merging transitions, a selection binding s that in-
dexes array dimension i will be replaced by the sweep bind-
ing zi, as for a state expression. But rather than include the
restriction zi = s in the new guard conjunct observe that of
all the possible valuations that include zi and s, only those
where the two are equal need actually be considered. Since
both variables have the same type, we can replace s with zi
in both the set of selection bindings, effectively removing s,
and the guard, where the restriction zi = zi would have
anyway become redundant.

Edges where a selection binding occurs in multiple in-
dex positions are readily addressed, despite the previous
assumption, by further constraining their guards. For ex-
ample given Sw = {z1, z2}, the edge ({s}, A, g, 〈s, s〉) may
become (Sw, A, z2 = z1 ∧ g, 〈z1, z2〉). This manipulation can
be combined with the one for stretching types.

Figure 7 is an example of channel selection involving se-
lection bindings. The two edges leaving s0 are combined and
negated to give an edge to Err. The selection bindings in the
first dimension are conflated to a sweep binding. The state
variables, m and n, are replaced by a sweep binding and new
guard constraints. The two edges leaving s1 on c are handled
similarly, even though one specifies the first dimension with
a state variable curr and the other with a selection binding s.
The resulting guards are not converted to DNF because they
do not contain clock variables.

Another example is given in Figure 8. The selection bind-
ing on the lower transition is of type int [2, N], whereas the
array dimension is of type int [0,9] . The merged guard thus
becomes (x > 1 ∧ i 6= 3) ∨ (x < 8 ∧ i 6= 4 ∧ i ≥ 2 ∧ i ≤ N),
which is negated to five transitions in PErr

8 . The current sim-
plifier cannot eliminate the transition labeled i1 = 3∧i1 = 4,
which can obviously never be enabled.

P7:

s2
forall (t : int[0,N - 1]) v[t]<10

s1s0

s : int[0,N - 1]
s!=curr && s<N/2 c[s][m]!

v[curr]<10
inc?

v[curr]++

c[curr][m]!

s : int[0,N - 1]
s<=protected
c[s][n]?

s : int[0,N - 1]
s>protected c[s][m]? curr = s

PErr
7 :

Err

s2

s1s0

inc?
inc!

s0 : int[0,N - 1], s1 : int[0,4] c[s0][s1]?

s : int[0,N - 1], s1 : int[0,4]
(s<=protected || s1!=m)
&& (s>protected || s1!=n)

c[s][s1]!

inc?
v[curr]>=10 inc!

s : int[0,N - 1], s1 : int[0,4]
(s!=curr || s1!=m) &&
(s==curr || s>=N / 2 || s1!=m)

c[s][s1]?

s0 : int[0,N - 1], s1 : int[0,4] c[s0][s1]!

forall (t : int[0,N - 1]) v[t]<10 inc?
forall (t : int[0,N - 1]) v[t]<10 inc!

s0 : int[0,N - 1], s1 : int[0,4] forall (t : int[0,N - 1]) v[t]<10 c[s0][s1]?
s0 : int[0,N - 1], s1 : int[0,4] forall (t : int[0,N - 1]) v[t]<10 c[s0][s1]!

exists (t : int[0,N - 1]) v[t]>=10

s : int[0,N - 1]
s!=curr && s<N/2 c[s][m]?

v[curr]<10
inc!
v[curr]++

c[curr][m]?

s : int[0,N - 1]
s<=protected
c[s][n]!

s : int[0,N - 1]
s>protected c[s][m]! curr = s

// g l o b a l
const i n t N=12;
const i n t p r o t e c t e d =5;
chan c [N ] [ 5 ] ;
chan i n c ;

// p r o c e s s
t y p e d e f i n t [ 0 , 4 ] Sub ;
Sub m, n ;
i n t c u r r ;
i n t v [N ] ;

Figure 7: Channel arrays with selection bindings

P8:

s1s0

i : int[2,N]
x<8 && i != 4
C[i]?

i : int[0,9]
x>1 && i != 3
C[i]? PErr

8 :

Err

s1s0

s0 : int[0,9] C[s0]?
i : int[0,9] i==3 && (i<2 || i>N) C[i]!
i : int[0,9] i==3 && i==4 C[i]!
i : int[0,9] i==3 && x>=8 C[i]!
i : int[0,9] x<=1 && (i<2 || i>N) C[i]!
i : int[0,9] x<=1 && i==4 C[i]!

s0 : int[0,9] C[s0]?
s0 : int[0,9] C[s0]!

i : int[2,N] x<8 && i!=4 C[i]!

i : int[0,9] x>1 && i!=3 C[i]!

// g l o b a l
chan c [ 1 0 ] ;
const i n t N = 8 ;

// p r o c e s s
c l o c k x ;

Figure 8: Channel selections with differing ranges

The technique can be extended to allow selection bindings
in some forms of composite index expressions, namely those
preserving the property that each selection binding valua-
tion specifies a different channel. Some operators preserve
this property, like (non-zero) addition and integer multipli-
cation, but others do not necessarily, like modulo, shift, di-
vision, and function calls (like f(x) = 1). Multiple selection
binding valuations that specify the same channel cannot be
considered separately but rather their guards and quantifiers
must be grouped prior to negation. Implementing such fea-
tures does not seem to be worth the additional complexity.

3.3 Inverting invariants
The validation construction produces τ -transitions for lo-

cations with non-trivial invariants (rule 1 of Definition 3.1).
It is sometimes necessary to split negated invariants over
transitions per §3.1.1, and to treat quantifiers per §3.1.3.

3.4 Urgent Channels and shared variables
A process is not usually obliged to synchronize on enabled

channels if its location invariant permits further delay, but
synchronization on urgent channels has priority over delay.

Basic timed trace inclusion is insufficient for models with
urgent channels, instead timed ready simulation and a val-
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P9:

s2

s1s0

j : int[0,4]
w < 2

u[j][w+1]?

i : int[0,4] w>4 u[i][w]?

// g l o b a l
urgent chan u [ 5 ] [ 1 0 ] ;

// p r o c e s s
i n t w;

// added to P e r r o n l y
i n t [ 0 , 4 ] i 3 ;
i n t [ 0 , 9 ] i 2 ;
c l o c k x u ;

PErr
9 :

l_ul_u_out

s2

s1

s0_u

s0

Err

s0 : int[0,4], s1 : int[0,9]
u[s0][s1]?

j : int[0,4], s1 : int[0,9]
(w<=4 || s1!=w) && (w>=2 || s1!=w + 1)
u[j][s1]!

s0 : int[0,4], s1 : int[0,9] u[s0][s1]?
s0 : int[0,4], s1 : int[0,9] u[s0][s1]!

s0 : int[0,4], s1 : int[0,9] u[s0][s1]?
s0 : int[0,4], s1 : int[0,9] u[s0][s1]!

x_u>0

u[i1][i2]!

j : int[0,4] w<2 x_u = 0, i1 = j, i2 = w + 1
i : int[0,4] w>4 x_u = 0, i1 = i, i2 = w

j : int[0,4]
w<2

u[j][w + 1]!

i : int[0,4] w>4 u[i][w]!

Figure 9: Validating an array of urgent channels

idation construction that can also handle shared variables
have been proposed [3]. There is only space to note that
this technique can be extended and implemented for the
processes we consider. Arrays of urgent channels are han-
dled by storing index values in a variable across the two-
transition check for immediate synchronization, as in the
example of Figure 9. Uppaal supports direct array compar-
ison, so shared variable arrays present no special challenges.

Uppaal does not allow clock variables in the guards of
transitions that synchronize on urgent channels. They may
be introduced when transforming models where clock vari-
ables are used in location invariants.5

4. IMPLEMENTATION
The techniques described have been implemented in a tool

called urpal, written in Standard ML, that parses Uppaal
models and generates validation automata if possible.

XML parse XML parse desc. manipulate layout pretty print XML

Figure 10: High-level structure of Urpal

The five major subsystems of the tool are shown in Fig-
ure 10: a parser for the Uppaal XML format; a parser for
the description language used in declarations, expressions
and actions; algorithms for transforming models; an inter-
face to Graphviz for placing nodes and routing transitions;
and a pretty printer back to an Uppaal model file.

Uppaal is distributed with a library for parsing the file
format and description language, and type checking mod-
els. We decided that integrating the object-oriented library
into Standard ML would involve as much work as writing a
custom parser, besides making the tool dependent on third-
party binary releases and complicating installation.

An interface to Graphviz tries to untangle introduced tran-
sitions while preserving the original layout. Producing read-
able models is essential to the understandability of counter-
example traces if timed trace inclusion validation fails.

Although the tool focuses on the validation construction,
its subsystems are suitable for implementing other model

5Unless the negated disjunction of guards simplifies to false.

transformations. We have, for instance, added an expression
language for pruning transitions and manipulating nodes.

The tool does not validate the assumption of determin-
ism, which ultimately depends on reachable valuations of
state variables. Fortunately, since timed trace inclusion is
reflexive, the assumption can be checked by attempting to
verify P ‖ PErr |= A2¬Err. A failure indicates either a
model for which determinism or τ -freedom do not hold, or
a flaw in the implementation or in Uppaal. Unfortunately
the converse is not true in general.

Efficiency has not been a major concern as the tool need
only transform models for which model checking is feasible.

5. CONCLUDING REMARKS
Uppaal contains features that increase both modeling con-

venience and the complexity of manipulation. We have for-
malized many of these features and shown how to transform
them for timed trace inclusion validation. We have not eval-
uated the output models for efficiency of analysis.

Our implementation could be improved with support for
committed locations and priorities, more sophisticated term
rewriting, features for relabeling to eliminate nondetermin-
ism, and support for multi-process specifications.
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