
LTFTL: Lightweight Time-shift Flash Translation Layer
for Flash Memory based Embedded Storage

Kyoungmoon Sun
School of Computer Sci. and Eng.

Dankook University
Yongin, Korea

msg2me@dankook.ac.kr

Donghee Lee
Dept. of Computer Science

University of Seoul
Seoul, Korea

dhl_express@uos.ac.kr

Seungjae Baek
School of Computer Sci. and Eng.

Dankook University
Yongin, Korea

ibanez1383@dankook.ac.kr

Sam H. Noh
School of Computer and Info. Eng.

Hongik University
Seoul, Korea

samhnoh@hongik.ac.kr

Jongmoo Choi
School of Computer Sci. and Eng.

Dankook University
Yongin, Korea

choijm@dankook.ac.kr

Sang Lyul Min
School of CSE

Seoul National University
Seoul, Korea

symin@archi.snu.ac.kr

ABSTRACT
Flash memory storage has been widely used in various embedded
systems such as digital cameras, MP3 players, cellular phones,
and DMB devices and now it applies to PCs as a form of SSDs.
Characteristics of Flash memory necessitate a software layer
called FTL (Flash Translation Layer) that directs modified data to
new places in Flash memory and maintains a mapping between a
logical sector number to a physical page. We notice that this out-
of-place update scheme of the FTL allows a low-overhead time-
shifting between multiple versions of storage state. From this
observation, we propose LTFTL (Lightweight Time-shift FTL)
that provides not only multiple versions of storage state but also
an open-ended interface to traverse them. This open-ended
interface can be used to support fault-resilience schemes,
transactions of various granularities, and user-friendly roll-back
services. Experimental results from a prototype implementation
show that the proposed LTFTL can (1) provide a low-overhead
time-shift capability at the user level by maintaining multiple
storage states and (2) enhance the reliability/survivability of Flash
memory by allowing to roll back to a previous consistent storage
state at the storage system level.

Categories and Subject Descriptors
C.5.3 [Microcomputers]: Portable Devices; D.4.5 [Operating
System]: Storage Management—Secondary storage

General Terms
Design, Performance, Reliability, Experimentation

Keywords
Flash memory, FTL (Flash Translation Layer), File system, Time-
shift, Fault tolerance, Reliability

1. INTRODUCTION
Flash memory has advantages over conventional magnetic disks in
terms of access time, power consumption, shock resistance, and
weight. Hence, many embedded systems including cellular
phones, digital cameras, MP3 players, and SSDs (solid state
disks) utilize Flash memory as their storage medium. However,
Flash memory has some limitations such as no in-place update
and a limited life-time of its memory cells [1].
To overcome the limitations, most Flash memory software uses an
out-of-place update scheme [1, 2, 3]. For updates of existing data,
such a scheme allocates a new page, writes the new data to the
allocated page, and invalidates the page that contains the (now
obsolete) original data. The invalidated page is recycled after it is
cleared.
Various schemes have been proposed for performing out-of-place
update. In most of them, the focus was on minimizing the
overheads associated with the out-of-place update [4 – 9]. In this
paper, we contend that although we cannot avoid the inevitable
costs of the out-of-place update, this same feature provides new
opportunities to enhance the reliability of Flash memory-based
storage device with only negligible additional overheads.
Based on the observation above, in this paper, we proposes a new
FTL, called LTFTL (Lightweight Time-shift FTL) that supports a
time-shift capability. It provides new interfaces to build up a
consistent state of Flash memory at any time and to transit from
one state to another. In this paper, the state of Flash memory is
defined as a set of valid pages and transitions are expressed as a
set of updating logs. By taking the merit of out-of-place update,
we can implement the capability with only a marginal degradation
of performance.
The time-shift capability can be exploited usefully in several fault-
resilience mechanisms. For example, when a file system mount
failure occurs we can try to mount with the most recent consistent
state of Flash memory, which enhances the reliability/survivability
of embedded storages. Also, it enables transactional operations
with various granularities that support atomicity and recovery
from crashes. Furthermore, it allows various version-control
mechanisms, undelete facilities, and user-friendly roll-back
services.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10...$5.00.

51

The proposed LTFTL has been implemented on an embedded
system that has 64MB of NAND Flash memory running the Linux
kernel 2.6.21. In the Linux kernel, Flash memory is managed by
MTD (Memory Technology Device) layer [11] and this layer
already has its own FTL, called NFTL [3]. We incorporated our
LTFTL into this layer and compared the performance with the
existing NFTL. Performance evaluation results show that LTFTL
enhances the availability and consistency of Flash memory with
minimal time and space overheads.
This paper is organized as follows. In Section 2, we describe
characteristics of Flash memory and related works. Then, we
introduce the time-shift capability and its model in Section 3. In
Section 4, we discuss implementation details, and performance
evaluation results are presented in Section 5. Finally, we provide a
summary and directions for future works in Section 6.

2. FLASH MEMORY CHARACTERISTICS
AND RELATED WORKS
In this section, we explain the structure and characteristics of
Flash memory. Then, we describe why FTL is required and how it
affects the performance of Flash memory.

2.1 Flash memory and FTL
Flash memory that is most widely used today is either NOR type
or NAND type. One key difference between NOR and NAND
Flash memory is the access granularity. NOR Flash memory
supports byte-level random accesses, while NAND Flash memory
supports only page-level accesses. Hence, in embedded systems,
NOR Flash memory is typically used to store code, while NAND
Flash memory is used as storage for the file system. From here we
limit our focus to NAND Flash memory, though the ideas
proposed in this paper, are also applicable to NOR Flash memory.
NAND Flash memory consists of same size blocks, each of which
in turn consists of same size pages. The block size and the page
size are typically 16 to 256 KB and 0.5 to 4 KB, respectively.
Read/write operations are performed in page units, while the erase
(i.e., clear) operation is performed in block units. One
characteristics of Flash memory is the overwrite limitation – a
block needs to be erased before new data can be written.
FTL is a software layer that supports out-of-place update to
handle the overwrite limitation. Figure 1 shows two main
functionalities of FTL: remapping and block cleaning. In the
figure, we assume that each block consists of four pages and there
is no written data in the Flash memory initially.
Figure 1(a) shows the contents of Flash memory after the initial
write requests to the four logical sectors, numbered from 0 to 3
are serviced. These sectors are stored in pages, numbered from 0
to 3. Then, sectors 1 and 3 are requested to be updated, as shown
in Figure 1(b). Due to the overwrite limitation, the update
requests cannot be performed in-place. So, FTL allocates new
pages (page 4 and 5 in the case of Figure 1(b)) and writes the
updated data onto them. Then, FTL invalidates the original pages
that previously contained the two sectors (pages 1 and 3) and
modifies its mapping table to reflect these changes.
Block cleaning is a mechanism to reclaim the invalidated pages. It
first chooses a block to be reclaimed and copies valid pages of the
chosen block into another block that has been erased. Then, it
erases the reclaimed block as shown in Figure 1(c). The mapping

and block cleaning mechanisms significantly affect the
performance of Flash memory-based storage systems. Hence,
much research on improving the effectiveness of these
mechanisms has been performed in previous studies [1].

2.2 Related Works
According to the mapping unit, FTLs can be divided into three
categories; page mapping, block mapping, and hybrid mapping. A
page mapping FTL can map a logical sector into any physical
page in Flash memory, allowing a more flexible management [2].
But, it carries a large space overhead for the mapping table. On
the other hand, in a block mapping FTL, the mapping granularity
is a block rather than a page [3]. It reduces the mapping table
space overhead, compared with a page mapping FTL, but requires
high overhead for block cleaning. A hybrid approach, called the
log block scheme [4] and the FAST scheme [5] have been
proposed to balance the space overheads and block cleaning
overheads. Our proposed LTFTL is based on the page mapping
mechanism.
For block cleaning, a page mapping FTL typically uses a garbage
collection mechanism while a block mapping FTL uses a merge
mechanism. The key issue of block cleaning is how to reduce the
copy of the valid pages during reclamation. Kim et al. identified
two merge mechanisms, a general merge and a switch merge, and
showed that the switch merge can reclaim pages without any copy
overheads [4]. Lee et al. proposed a new merge scheme that
further reduces block cleaning overheads in the case of a repeated
write pattern [9].
Like FTL, Flash memory file systems also contain remapping and
block cleaning functionalities [6, 10, 13]. Kawaguchi et al.
designed a page mapping flash memory file system and suggested
a cost-benefit block cleaning mechanism [6]. Baek et al. proposed
a new page allocation scheme that can reduce block cleaning
overheads by improving the uniformity of a block [8]. Chiang el al.
proposed a data clustering mechanism to allocate valid pages and
invalid pages onto different blocks [7].
These studies mainly focus on the mapping and block cleaning
mechanisms to reduce the performance degradation due to the
out-of-place update characteristic. However, our study focuses on
how to enhance the reliability by making use of the out-of-place
update characteristic of Flash memory.
The reliability is a critical issue in Flash memory-based storage
systems as well as in magnetic disks. Flash memory is widely used
in embedded systems, especially in mobile consumer products that
are prone to sudden power-failures resulting from abruptly

0 1 2 3 0 1 2 3
1 3 1 3 0 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Block 0

Block 1

Block 3

Block 4

Mapping
Table

Free Valid Invalid

(a) 0~3 sectors writing (b) 1, 3 sectors update (c) block cleaning

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 1. FTL: Remapping and Block Cleaning

52

detaching the battery. Also, Flash memory has inherent faults such
as the bad block error, the bit flip error, and the wear limit [14].
Recently, MLC (Multi Level Cell) Flash memory where a single
cell can represent multiple bits is employed widely to make high
density embedded storage [15]. Since, in MLC Flash memory, the
possibility of the bit flip error is higher and the number of
erasures possible (i.e., wear-limit) on each block is more limited,
the requirement of fault tolerance becomes indispensible.
FTLs and Flash memory file systems have their own mechanisms
to handle bad blocks [2, 3, 10, 21]. A common approach is
reserving some spare blocks and swapping the spare block with
the bad block. Kim et al. showed that the bit flip errors occurring
in Flash memory could make the whole file system inaccessible
[16]. Chang proposed a wear-leveling mechanism that tries to
reduce the wearing out of more worn out blocks by storing cold
data in them, while storing hot data in less worn out blocks [17].
Agrawal et al. suggested a new wear-leveling algorithm controlled
by two parameters, namely, retirementAge and ageVariance, and
showed its effectiveness for extending SSD lifetime [25].
Gal et al. designed a transactional file system that supports atomic
operations and recovery from crashes [18]. They support
transactions in the file system layer with pruned versioned trees,
whereas we support them in the FTL layer with time-shift
capability. Lim et al. proposed a journal remapped-based FTL that
can reduce the copy overheads by remapping the journal region to
a home location in the ext3 file system [26]. Park et al. proposed
an atomic write FTL that provides AtomicWriteStart() and
AtomicWriteCommit() interfaces for robust flash file systems [27].
In the disk-based storage systems, the time-shift capability has
been proposed in [19, 20]. Peterson et al. suggested a copy-on-
write based file versioning and snapshot platform, called ext3cow
[19]. Ta-Shma proposed a virtual machine based time travel
scheme that enables reverts of the storage state to a point in the
past by using a live-migration based checkpointing [20]. However,
most disk-based storage systems use in-place update, so additional
overheads are inevitable to provide such functionalities.

3. Time-shift capability in Flash memory
In this section, we first illustrate the concept of the time-shift
capability. Then, we define the state of Flash memory and discuss
a model for expressing the transitions between Flash memory
states.

3.1 Basic idea
Figure 2 shows a write reference pattern and the contents of Flash
memory. In the figure, we assume that write requests to sectors 0,
1, 2, 3, 0, 1, 4, 5, 3, 4, 5, 6 occur at time t (0 ≤ t ≤ 11) where in
this paper time is defined as a virtual time that is incremented on
each sector write.

Figure 2(a) shows the contents of Flash memory at time t=4,
when write requests to sectors from 0 to 3 are stored in pages 0 to
3. Also, Figure 2(b) and (c) show the contents of Flash memory at
time t=8 and t=12, respectively.
At time t=12, we can define the state of Flash memory as follows.

S12 represents the state of Flash memory at time t=12, where the
sectors numbered from 0 to 6 are stored in pages numbered 4, 5, 2,
8, 9, 10, and 11, respectively.
Similarly, at time t=8, we can define the state of Flash memory as
follows.

It denotes that the state of Flash memory at time t=8 is the sectors
numbered from 0 to 5 that are stored in pages numbered 4, 5, 2, 3,
6, and 7, respectively. Note that, by virtue of out-of-place update,
even at time t=12, the pages for reconstructing S8 are all still in
Flash memory. In other words, at time t=12, we can revert from
S12 to S8, which is the basic idea of our proposed time-shift
capability in Flash memory.
The time-shift from S12 to S8 is expressed as follows.

In this example of Figure 2, U, Domain(U), and Range(U) are
expressed as follows.

The above equations imply that by maintaining the update
information, we can revert from the current state into any previous
states (of course, we need to control block cleaning mechanisms
as explained in Section 3.2).

3.2 Model
Formally, the time-shift from St to St’ can be expressed as follows.

--- (1)

In Equation (1), St’ and St are the states of Flash memory at time t’
and t, respectively. Each Flash memory state is defined as a set of
valid pages at the time. The term Ut’~t represents the set of
modified mappings between t’ and t. Then, Domain(Ut’~t) is
defined as the set of the original mappings, while Range(Ut’~t) is
defined as the set of the new mappings. The null element (φ) in

0 1 2 3 1 2
0 1 0 1

3 4

Block 0

Block 1

Block 3

Block 4

(a) t=4 (b) t=8 (c) t=12

0 3
4 5

5 6

210 3
4 5

time

write reference
pattern

0 4 8 12

0 1 2 3 0 1 4 5 3 4 5 6

Figure 2. Write Reference Pattern and Flash Memory States

)())((~'~'' tttttt URangeUDomainSS −∪=

},,,,,,{ 11
6

10
5

9
4

8
3

2
2

5
1

4
012 PPPPPPPS =

.number pagein stored is numbersector of Data :
. at time statememory Flash :

j
i j iP

tSt

−

−

},,,,,{ 7
5

6
4

3
3

2
2

5
1

4
08 PPPPPPS =

)())((12~812~8128 URangeUDomainSS −∪=

. of valuescoordinate second ofSet :)(
. of valuescoordinatefirst ofSet :)(

.12 ~ 8 period theduring updaten informatio mapping ofSet :12~8

RRRange
RRDomain

U

−
−
−

},,,{)(

},,{)(

)},(),,(),,(),,{(

11
6

10
5

9
4

8
312~8

7
5

6
4

3
312~8

11
6

10
5

7
5

9
4

6
4

8
3

3
312~8

PPPPURange

PPPUDomain

PPPPPPPU

=

=

= φ

53

Domain(Ut’~t) denotes that a mapping for a logical sector that has
not been mapped to any page is newly established.
Now, the question is how to design a block cleaning mechanism
for the time-shift capability. Conventionally, FTL reclaims all
invalid pages during block cleaning. However, in LTFTL, we
need to take into account the pages that should be reserved for the
time-shift capability. Figure 3 shows the state of each page in
conventional FTL and our proposed LTFTL.

Free

Invalid Valid

Free

Invalid

Valid

(a) Conventional FTL (b) LTFTL

Retractable

Figure 3. Page Status in Conventional FTL and LTFTL

In conventional FTL, each page is in one of three possible states;
free, valid, and invalid. If a page holds legitimate data, it is a valid
page. When a valid page is invalidated by being deleted or by
being updated, then the page become an invalid page and is
treated as a candidate for block cleaning. Finally, by performing
block cleaning, the pages that reside on blocks that have been
erased become free and eligible to be written to.
In LTFTL, some invalid pages should not be subject to block
cleaning so as to provide the time-shift capability. We define
these pages as retractable pages. Let us assume that the current
time is t and we might revert to the previous state of Flash
memory at time t’. Then, the retractable pages can be expressed as
follows.
 ---- (2)

Equation (2) implies that, among the invalid pages, the pages that
belong to the state of Flash memory specified as revertible
become retractable. If there are several revertible states, the union
of each Rt become the overall retractable pages. In LTFTL, the
block cleaning mechanism can reclaim invalid pages that are not
retractable. From this discussion, we find that there are trade-offs
between the number of revertible states the user can specify and
the space overhead for keeping retractable pages.

4. Implementation Details
In this section, we explain how we implemented the proposed
LTFTL in the Linux kernel.
Figure 4 shows the software architecture of the Linux kernel for
Flash memory. It consists of three layers; VFS (Virtual File
System) layer, specific file system layer (such as Ext3, FAT,
JFFS2, and YAFFS), and MTD (Memory Technology Device)
layer. The MTD layer is further divided into three layers; MTD
user module layer, MTD glue logic layer, and MTD chip driver
layer. The MTD user module layer includes some open source
FTLs such as NFTL and FTL. NFTL is a block mapping FTL for

NAND Flash memory that uses a block chain mechanism to
support out-of-place update [3]. FTL is a page mapping FTL that
only supports NOR Flash memory [2].
We first tried to modify NFTL to implement our time-shift
capability. However, it is very difficult to support the lightweight
time-shift capability in the NFTL framework, mainly due to its
block mapping nature. Therefore, we decided to implement our
own LTFTL that uses a page mapping mechanism. Our LTFTL
resides in the MTD user module layer, just like NFTL. Any file
system that can run on top of hard disks such as the FAT and Ext3
file systems can run on top of either NFTL or LTFTL (note that
Flash memory file systems such as YAFFS and JFFS2 that run
directly on Flash memory without FTL support do not belong to
this group).

Figure 5. Logical Layout of LTFTL

Figure 5 shows the logical layout of LTFTL. It partitions Flash
memory into four sections; metadata, mapping, data, and log
sections. The metadata section contains control information of
LTFTL such as the location of each section, the current Flash
memory state id, and the oldest revertible Flash memory state id.
The mapping section contains the mapping table that translates
logical sector numbers into physical page numbers. The data
section contains data for logical sectors and is managed by page-
mapping and garbage-collected. Finally, the log section contains
the intent log that keeps information for each write request
including the original page, the new page, and the requested
sector number.

The mapping table uses an inverted mapping structure, where
each entry in the table indexed by a page number contains the
corresponding sector number. During the LTFTL initialization,
the forward mapping structure that maps a sector number into the
corresponding page number is created on SDRAM and used for
actual address translations. The reason for using the inverted
structure for the in-Flash mapping table is that we want to use the
table not only for translating between sector numbers and page

Figure 4. Flash Memory Software Architecture in Linux

)}({ ~'' tttt UDomainSR ∩=

54

numbers but also for identifying the state of each page. For
example, an entry of the table holding a valid sector number
implies that its state is valid, while an entry with 0xffff ffff
represents its state as free. The overall size of the mapping table is
4B × sizeof(Flash memory) / sizeof(page).

The data structure for each entry in the log section is defined as
<sector number, old page number, new page number,
global_time>. The global_time is incremented at each write
request and used as the sequence number to manage a system
wide virtual time and to differentiate between old and new pages.
We define each field in the data structure as integer type and the
size of the log section is changed dynamically depending on the
number of log entries that in turn depends on the number of
revertible states.

In LTFTL, the log section plays two roles. The first is maintaining
a transition of Ut’~t between two states St’ and St defined in
Equation (1). The global_time is used for t’ and t in this case. The
second role is to allow a delayed update of the in-Flash mapping
table without loss of data even under power failures. Each log
entry is a record of intent for updates to be performed on Flash
memory. Hence, if we keep all log entries, we can generate the up-
to-date mapping table from any old mapping table.

As a whole, the LTFTL handles write requests as follows. It first
allocates a new page from the data section and writes the
requested data on the page. Then, it modifies the forward mapping
structure on SDRAM to reflect this change. Finally, it adds a log
entry into the log section. In the implementation, we generate the
up-to-date mapping table and store it in the mapping section when
LTFTL is initialized or when the size of the log section become
larger than a maximum threshold (we set the threshold to 16B ×
sizeof(Flash memory) / sizeof(page) per each Flash memory state,
in the current implementation).

Note that, in NAND Flash memory, writing is performed in page
units. So, we use one page size of SDRAM as a write buffer for
collecting log entries and store them on the log section when the
write buffer is full or when the system is normally shutdown. Now
the question is how to protect the contents of the write buffer from
a sudden power failure? We piggyback <sector number,
global_time> onto each write request and store them in the
OOB(Out Of Band) area, also called the spare area, of the page
allocated for the request. During the initialization of LTFTL, we
can detect the abnormal shutdown of the system from a flag
recorded in the metadata section. Then, we scan the OOB of the
whole pages and reconstruct log entries for the write buffer by
identifying the OOB whose global_time is larger than the latest
one stored in the log section.

For the time-shift capability, LTFTL provides three interfaces;
LTFTL_freeze(), LTFTL_unfreeze(), and LTFTL_revert(). The
LTFTL_freeze() interface is used to build a new state of Flash
memory at the current time. It returns a state_id, which is used as
an argument for subsequent LTFTL_unfreeze() and
LTFTL_revert() requests that are explained next. The
LTFTL_unfreeze() interface is used to remove a Flash memory
state. Finally, LTFTL_revert() is used to change from the current
state to the state specified as an argument.

A more detailed description of the processing of LTFTL_freeze()
is as follows: (1) allocate space from the metadata section for

managing the information of the new state; (2) set the
‘global_time of the last log entry’ as the epoch time of the state;
(3) set every subsequently invalidated pages as retractable pages
related to the state. The LTFTL_unfreeze() interface is
implemented as follows: (1) set the associated retractable pages of
the state as invalid pages; (2) remove the log entries for the state if
they are not needed any more for other states and for generating
the up-to-date mapping table; (3) free the allocated space for
managing the state information. Finally, the LTFTL_revert()
interface is implemented as follows: (1) generate the up-to-date
mapping table; (2) roll back to the specified state by undoing the
operation of the log entries backward in time until it reaches the
epoch time of the state.

The garbage collection mechanism used by LTFTL to reclaim the
invalid pages is similar to those for other page-mapping FTLs
except for the handling of pages with retractable state - when
there are not enough free pages, the mechanism first selects blocks
that have higher ratios of invalid pages to the total pages in the
block and performs block cleaning. Also, we employ a simple
wear-leveling mechanism that periodically switches blocks among
the sections. Designing more efficient algorithms for garbage
collection and wear-leveling for LTFTL are left as future work.

5. Performance Evaluation
In this section, we first present the time and space overheads of
the proposed LTFTL. Then, we present evaluation results to
assess the impact of LTFTL on the reliability of Flash memory.

5.1 Overhead Analysis
We have implemented LTFTL on an embedded system. The
hardware components of the system include a 400MHz XScale
PXA CPU, 64MB SDRAM, 64MB NAND Flash memory (page
size: 512B and block size: 16KB), and embedded controllers such
as those for LCD, UART and JTAG [22]. The system is running
the Linux kernel 2.6.21 and our LTFTL is implemented in the
MTD user module layer. Then, we run the FAT file system on
LTFTL. For comparison purposes, we also run the FAT file
system on the existing NFTL.

localhost ~ # mount /dev/ltftla1 mnt

localhost ~ # echo "It's an original string" > mnt/file

localhost ~ # ltftl_freeze

LTFTL freeze: 10

localhost ~ # echo "It's a modified string" > mnt/file

localhost ~ # cat mnt/file

It's a modified string

...

localhost ~ # ./ltftl_revert 10

localhost ~ # cat mnt/file

It's an original string

localhost ~ #

Figure 6. Example of Multiple States

Figure 6 shows an example of time-shifting supported by LTFTL.
We first create a file whose content is “It’s an original string”, and
build a state using the ltftl_freeze command. The command

55

invokes the LTFTL_freeze() interface internally to perform the
requested function. Then, we change the content of the file as “It’s
a modified string”. Later, we want to restore the original contents
of the file and issue the ltftl_revert command that calls the
LTFTL_revert() interface. After the revert operation, we find that
the image of the file system is actually time-shifted to the state we
specify.
To evaluate the overhead of LTFTL, we ran the Postmark
benchmark [23] and measured the execution time of the
benchmark as shown in Figure 7 while invoking different
numbers of the LTFTL_freeze() function. The benchmark creates
a large number of randomly sized files. It then executes read,
write, delete, and append transactions on these files. In this
experiment, we created 1000 files ranging in size from 512byte to
9.77KB and performed 38000 transactions that made roughly
32MB of Flash memory as valid pages. In the figure, NFTL
represents the default FTL of the MTD in the Linux kernel.
LTFTL(none) represents the case of LTFTL that does not invoke
the LTFTL_freeze() interface during the benchmark execution,
while LTFTL(n) represents the case that the interface is invoked n
times.

0

100

200

300

400

500

600

700

800

900

NFTL LTFTL(none) LTFTL(1) LTFTL(2) LTFTL(3) LTFTL(4) LTFTL(5)

El
ap

se
d

Ti
m

e(
Se

c)

Number of states

Figure 7. Execution time for Postmark

From Figure 7, we find that LTFTL performs comparably with the
existing NFTL. Although a direct comparison between NFTL and
LTFTL is unfair since the former employs a block level mapping
while the latter a page level mapping, the results show that our
implementation of LTFTL does not incur excessive overheads. A
more detailed experiment shows that the block chain scheme used
by NFTL incurs frequent block cleaning for repeated small writes,
which results in an inferior performance as compared against
LTFTL.
As the number n in LTFTL(n) increases, the overhead of LTFTL
also increases. For example, the execution time of LTFTL(1) is
460 seconds while that of LTFTL(5) is 526 seconds. This
additional overhead includes the housekeeping costs for log
entries and the state information management. Also, it includes
the increased block cleaning costs due to the keeping of
retractable pages. As a result, as n increases, the block cleaning is
performed more frequently since the number of free pages
reclaimed in each block cleaning is reduced. Such trends are

evident in Figure 8, which shows the usage patterns of Flash
memory for each FTL.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

NFTL LTFTL(none) LTFTL(1) LTFTL(2) LTFTL(3) LTFTL(4) LTFTL(5)

Retractable Invalid Valid Free Log Superblock Map
Figure 8. Flash Memory Usage Patterns

Figure 8 shows that in NFTL 49.72% of Flash memory is
occupied by valid pages while 50.17% is occupied by invalid
pages. The remaining 0.12% is used by metadata, map, and free
pages. In LTFTL(1), 46.51%, 47.91%, 2.98%, 1.59%, and 0.76%
of Flash memory are used by valid, invalid, log, map, and
retractable pages, respectively. In contrast, in LTFTL(5), 46.87%,
3.53%, 4.77%, 1.59%, and 43.01% of Flash memory are used by
valid, invalid, log, map, and retractable pages, respectively. In
LTFTL(5), block cleaning can reclaim only a limited number of
invalid pages, which makes LTFTL(5) trigger block cleaning
more frequently. We expect that, in most cases, LTFTL can
support various fault-resilience mechanisms with only 1 or 2
revertible states of Flash memory. In such cases, since there are
still plenty of invalid pages to reclaim, the execution time
difference is not much (460, 469, and 487 seconds for LTFTL(0),
LTFTL(1), and LTFTL(2), respectively).

5.2 Reliability Analysis
Table 1 investigates the impact of LTFTL on the reliability of
Flash memory. To measure the reliability, we simulated sudden
power failures, one of the most common type of faults in battery-
operated mobile embedded systems. More specifically, we
simulated a sudden power failure for each of 5060 sector writes
generated by a Postmark benchmark consisting of 100
transactions to 100 files. The same experiments were performed
for both NFTL and LTFTL and the reliability was measured in
two different ways: (1) mount success ratio and (2) fsck (file
system consistency checker) pass ratio. In the case of LTFTL, we
performed LTFTL_freeze() when (1) the total amount of storage
write since the last LTFTL_freeze() exceeds 25 KB and (2) there
are no file system activities. Also, immediately after the
LTFTL_freeze(), we performed LTFTL_unfreeze() for the Flash
memory state created by the LTFTL_freeze() before the current
one. Thus, at all times there was only one revertible state that was
guaranteed to be consistent since it was made when there were no
file system activities and the LTFTL always returned to this state
at the subsequent reboot time.

56

Table 1. Mount Success Ratio and fsck Pass Ratio
on a Sudden Power Failure

 Mount Success Ratio fsck Pass Ratio

LTFTL 100% (5060/5060) 100% (5060/5060)

NFTL 99.72% (5046/5060) 56.75% (2872/5060)

Table 1 gives the two reliability measures for LTFTL and NFTL.
As expected, the LTFTL gives a 100% mount success ratio. Even
for NFTL, the mount success ratio is very high (99.72%).
However, in the case of NFTL, even when the mount is successful,
the file system still contains inconsistencies as we can see from its
low fsck pass ratio (56.75%). But for LTFTL, the fsck pass ratio is
also 100% since it always rolls back to a consistent Flash memory
state on a power-failure recovery.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 100 200 300 400 500 600 700 800 900 1000

Er
as

e C
ou

nt

Block Number

With Wear-Leveing Without Wear-Leveing
Figure 9. Wear-leveling Effects

Figure 9 shows the effects of the wear-leveling mechanism used by
LTFTL. Recall that LTFTL partitions Flash memory into four
sections as shown in Figure 5. This makes some blocks to be more
worn out than others. To prevent this problem, after 50 erase
operations, we select one block from each section (except for the
metadata section) and perform a swap between them. Figure 9
shows that in LTFTL without such proactive wear-leveling, the
erase count of the blocks from 0 to 350 is significantly lower than
those over 350. We find out that the less worn out blocks are those
for the mapping table and retractable pages. In LTFTL with wear-
leveling, we can that blocks are evenly worn out since the block
switching allows for blocks once used for the mapping table and
retractable pages to be used for data blocks as well at other times.

6. CONCLUSION
Two contributions are made in this paper. First, we identify that
the out-of-place update scheme of Flash memory can be exploited
usefully to provide lightweight time-shift capability. Second,
through an implementation study, we demonstrate that the
lightweight time-shift capability can enhance the reliability of
Flash memory by providing consistent Flash memory states to
roll back.
We are considering two research directions for future work. One
direction is to implement the time-shift capability in Flash
memory file systems such as YAFFS [10]. A file system interacts
with user applications directly, which provides more

opportunities for the time-shift. Another direction is applying our
model to LFS (Log-structured File System) [24]. Though LFS is
a disk-based file system, it uses the out-of-place update scheme.
We need to investigate how to manage intent logs in large scale
storage and how to reduce the state transition overheads.

7. ACKNOWLEDGMENT
This work was partly supported by the IT R&D program of
MKE/IITA [2006-S-040-03, Development of Flash Memory-
based Embedded Multimedia Software] and by the Korea Science
& Engineering Foundation (KOSEF) through the NRL Program
(No. R0A-2007-000-20071-0). Also, this work was supported in
part by the Korea Science and Engineering Foundation (KOSEF)
grant funded by the Korea government (MEST) (No. R01-2008-
000-12028-0).

8. REFERENCES
[1] E. Gal and S. Toledo, “Algorithms and Data Structures for

Flash Memories”, ACM Computing Surveys, vol. 37, no. 2,
pp. 138-163, 2005.

[2] Intel Corporation, “Understanding the Flash Translation
Layer (FTL) Specification”, 1998.

[3] M-Systems, “Flash-Memory translation layer for NAND
flash (NFTL)”, 1998.

[4] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and Y. Cho, "A
space-efficient Flash translation layer for CompactFlash
systems", IEEE Transactions on Consumer Electronics, vol.
48, no. 2, pp. 366-375, 2002.

[5] S. W. Lee, D. J. Park, T. S. Chung, D. H. Lee, S. Park, and
H. J. Song, "A Log Buffer based Flash Translation Layer
using Fully Associative Sector Translation", ACM
Transactions on Embedded Computing Systems, vol. 6, issue
3, 2007.

[6] A. Kawaguchi, S. Nishioka, and H. Motoda, "A Flash-
memory based file system", Proceedings of the 1995
USENIX Annual Technical Conference, pp. 155-164, 1995.

[7] M-L. Chiang, P. C. H. Lee, and R-C. Chang, "Using data
clustering to improve cleaning performance for Flash
memory", Software: Practice and Experience, vol. 29, no. 3,
pp. 267-290, 1999.

[8] S. Baek, S. Ahn, J. Choi, D. Lee, and S. H. Noh, “Uniformity
Improving Page Allocation for Flash Memory File system”,
ACM International Conference on Embedded Software
(EMSOFT), pp. 154-163, 2007.

[9] J. Lee, S. Kim, H. Kwon, C. Hyun, S. Ahn, J. Choi, D. Lee,
and S. H. Noh, “Block Recycling Schemes and Their Cost-
Based Optimization in NAND Flash Memory Based Storage
system”, ACM International Conference on Embedded
Software (EMSOFT), pp. 174-182, 2007.

[10] Aleph One, "YAFFS: Yet another Flash file system",
www.aleph1.co.uk/yaffs/.

57

[11] MTD subsystem for Linux, http://www.linux-
mtd.infradead.org/archive/index.html.

[12] Linux VFAT File System,
http://bmrc.berkeley.edu/people/chaffee/vfat.html.

[13] S. Lim and K. Park, “An Efficient NAND Flash File System
for Flash Memory Storage”, IEEE Transactions on
Computers, Vol. 55, No. 7, July, 2006.

[14] Samsung Electronics, Co., “NAND Flash Memory and
SmartMedia Data Book”, 2004.

[15] Samsung Electronics, Co., “1G x 8Bit / 2G x 8Bit NAND
Flash memory (K9L8G08U0M) Data Sheets”, 2005

[16] S. Kim, J. Choi, D. Lee, S. H. Noh, and S. L. Min "Virtual
Framework for Testing the System Software on Embedded
System", ACM Symposiums on Applied Computing, pp.
1192-1196, 2007.

[17] Li-Pin Chang, “On Efficient Wear Leveling for Large-Scale
Flash-Memory Storage Systems”, ACM Symposium on
Applied Computing, pp.1126~1130, 2007.

[18] E. Gal and S. Toledo, "A transactions Flash file system for
microcontrollers", Proceedings of the 2005 USENIX Annual
Technical Conference, pp. 89-104, 2005.

[19] Z. Peterson and R. Burns, "Ext3cow: A Time-shifting File
System for Regulatory Compliance", ACM Transactions on
Storage, Volume 1 , Issue 2, pp. 190~212, 2005.

[20] P. Ta-Shma, G. Laden, M. Ben-Yehuda, M. Factor, “Virtual
Machine Time Travel Using Continuous Data Protection and

Checkpointing”, ACM Operating Systems Review, Vol. 42,
Issue 1, Jan. 2008.

[21] D. Woodhouse, "JFFS: The journaling Flash file system",
Ottawa Linux Symposium, 2001,
http://source.redhat.com/jffs2/jffs2.pdf.

[22] EZ-X5, www.falinux.com/zproducts.

[23] J. Katcher, "PostMark: A New File System Benchmark",
Technical Report TR3022, Network Appliance Inc., 1997.

[24] M. Rosenblum and J. K. Ousterhout, "The design and
implementation of a log-structured file system", ACM
Transactions on Computer Systems, vol. 10, no. 1, pp. 26-52,
1992.

[25] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis, M.
Manasse and R. Panigrahy, “Design Tradeoffs for SSD
Performance”, Proceedings of the 2008 USENIX Annual
Technical Conference, pp. 57-70, 2008.

[26] S. Lim, H. Choi and K. Park, “Journal Remap-Based FTL for
Journaling File System with Flash Memory”, The 3rd
International Conference on High Performance Computing
and Communications, pp. 192-203, 2007.

[27] S. Park, J. Yu and S. Ohm, “Atomic Write FTL for Robust
Flash File system”, Proceeding of the 9th International
Symposium on Consumer Electronics, pp. 155-160, 2005.

58

