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ABSTRACT 
Flash memory storage has been widely used in various embedded 
systems such as digital cameras, MP3 players, cellular phones, 
and DMB devices and now it applies to PCs as a form of SSDs. 
Characteristics of Flash memory necessitate a software layer 
called FTL (Flash Translation Layer) that directs modified data to 
new places in Flash memory and maintains a mapping between a 
logical sector number to a physical page. We notice that this out-
of-place update scheme of the FTL allows a low-overhead time-
shifting between multiple versions of storage state. From this 
observation, we propose LTFTL (Lightweight Time-shift FTL) 
that provides not only multiple versions of storage state but also 
an open-ended interface to traverse them. This open-ended 
interface can be used to support fault-resilience schemes, 
transactions of various granularities, and user-friendly roll-back 
services. Experimental results from a prototype implementation 
show that the proposed LTFTL can (1) provide a low-overhead 
time-shift capability at the user level by maintaining multiple 
storage states and (2) enhance the reliability/survivability of Flash 
memory by allowing to roll back to a previous consistent storage 
state at the storage system level.  

Categories and Subject Descriptors 
C.5.3 [Microcomputers]: Portable Devices; D.4.5 [Operating 
System]: Storage Management—Secondary storage 

General Terms 
Design, Performance, Reliability, Experimentation 

Keywords 
Flash memory, FTL (Flash Translation Layer), File system, Time-
shift, Fault tolerance, Reliability 

1. INTRODUCTION 
Flash memory has advantages over conventional magnetic disks in 
terms of access time, power consumption, shock resistance, and 
weight. Hence, many embedded systems including cellular 
phones, digital cameras, MP3 players, and SSDs (solid state 
disks) utilize Flash memory as their storage medium. However, 
Flash memory has some limitations such as no in-place update 
and a limited life-time of its memory cells [1]. 
To overcome the limitations, most Flash memory software uses an 
out-of-place update scheme [1, 2, 3]. For updates of existing data, 
such a scheme allocates a new page, writes the new data to the 
allocated page, and invalidates the page that contains the (now 
obsolete) original data. The invalidated page is recycled after it is 
cleared. 
Various schemes have been proposed for performing out-of-place 
update. In most of them, the focus was on minimizing the 
overheads associated with the out-of-place update [4 – 9]. In this 
paper, we contend that although we cannot avoid the inevitable 
costs of the out-of-place update, this same feature provides new 
opportunities to enhance the reliability of Flash memory-based 
storage device with only negligible additional overheads.  
Based on the observation above, in this paper, we proposes a new 
FTL, called LTFTL (Lightweight Time-shift FTL) that supports a 
time-shift capability. It provides new interfaces to build up a 
consistent state of Flash memory at any time and to transit from 
one state to another. In this paper, the state of Flash memory is 
defined as a set of valid pages and transitions are expressed as a 
set of updating logs. By taking the merit of out-of-place update, 
we can implement the capability with only a marginal degradation 
of performance. 
The time-shift capability can be exploited usefully in several fault-
resilience mechanisms. For example, when a file system mount 
failure occurs we can try to mount with the most recent consistent 
state of Flash memory, which enhances the reliability/survivability 
of embedded storages. Also, it enables transactional operations 
with various granularities that support atomicity and recovery 
from crashes. Furthermore, it allows various version-control 
mechanisms, undelete facilities, and user-friendly roll-back 
services. 
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The proposed LTFTL has been implemented on an embedded 
system that has 64MB of NAND Flash memory running the Linux 
kernel 2.6.21. In the Linux kernel, Flash memory is managed by 
MTD (Memory Technology Device) layer [11] and this layer 
already has its own FTL, called NFTL [3]. We incorporated our 
LTFTL into this layer and compared the performance with the 
existing NFTL. Performance evaluation results show that LTFTL 
enhances the availability and consistency of Flash memory with 
minimal time and space overheads. 
This paper is organized as follows. In Section 2, we describe 
characteristics of Flash memory and related works. Then, we 
introduce the time-shift capability and its model in Section 3. In 
Section 4, we discuss implementation details, and performance 
evaluation results are presented in Section 5. Finally, we provide a 
summary and directions for future works in Section 6. 

2. FLASH MEMORY CHARACTERISTICS 
AND RELATED WORKS 
In this section, we explain the structure and characteristics of 
Flash memory. Then, we describe why FTL is required and how it 
affects the performance of Flash memory. 

2.1 Flash memory and FTL 
Flash memory that is most widely used today is either NOR type 
or NAND type. One key difference between NOR and NAND 
Flash memory is the access granularity. NOR Flash memory 
supports byte-level random accesses, while NAND Flash memory 
supports only page-level accesses. Hence, in embedded systems, 
NOR Flash memory is typically used to store code, while NAND 
Flash memory is used as storage for the file system. From here we 
limit our focus to NAND Flash memory, though the ideas 
proposed in this paper, are also applicable to NOR Flash memory. 
NAND Flash memory consists of same size blocks, each of which 
in turn consists of same size pages. The block size and the page 
size are typically 16 to 256 KB and 0.5 to 4 KB, respectively. 
Read/write operations are performed in page units, while the erase 
(i.e., clear) operation is performed in block units. One 
characteristics of Flash memory is the overwrite limitation – a 
block needs to be erased before new data can be written. 
FTL is a software layer that supports out-of-place update to 
handle the overwrite limitation. Figure 1 shows two main 
functionalities of FTL: remapping and block cleaning. In the 
figure, we assume that each block consists of four pages and there 
is no written data in the Flash memory initially.  
Figure 1(a) shows the contents of Flash memory after the initial 
write requests to the four logical sectors, numbered from 0 to 3 
are serviced. These sectors are stored in pages, numbered from 0 
to 3. Then, sectors 1 and 3 are requested to be updated, as shown 
in Figure 1(b). Due to the overwrite limitation, the update 
requests cannot be performed in-place. So, FTL allocates new 
pages (page 4 and 5 in the case of Figure 1(b)) and writes the 
updated data onto them. Then, FTL invalidates the original pages 
that previously contained the two sectors (pages 1 and 3) and 
modifies its mapping table to reflect these changes. 
Block cleaning is a mechanism to reclaim the invalidated pages. It 
first chooses a block to be reclaimed and copies valid pages of the 
chosen block into another block that has been erased. Then, it 
erases the reclaimed block as shown in Figure 1(c). The mapping 

and block cleaning mechanisms significantly affect the 
performance of Flash memory-based storage systems. Hence, 
much research on improving the effectiveness of these 
mechanisms has been performed in previous studies [1].   

2.2 Related Works 
According to the mapping unit, FTLs can be divided into three 
categories; page mapping, block mapping, and hybrid mapping. A 
page mapping FTL can map a logical sector into any physical 
page in Flash memory, allowing a more flexible management [2]. 
But, it carries a large space overhead for the mapping table. On 
the other hand, in a block mapping FTL, the mapping granularity 
is a block rather than a page [3]. It reduces the mapping table 
space overhead, compared with a page mapping FTL, but requires 
high overhead for block cleaning. A hybrid approach, called the 
log block scheme [4] and the FAST scheme [5] have been 
proposed to balance the space overheads and block cleaning 
overheads. Our proposed LTFTL is based on the page mapping 
mechanism. 
For block cleaning, a page mapping FTL typically uses a garbage 
collection mechanism while a block mapping FTL uses a merge 
mechanism. The key issue of block cleaning is how to reduce the 
copy of the valid pages during reclamation. Kim et al. identified 
two merge mechanisms, a general merge and a switch merge, and 
showed that the switch merge can reclaim pages without any copy 
overheads [4]. Lee et al. proposed a new merge scheme that 
further reduces block cleaning overheads in the case of a repeated 
write pattern [9]. 
Like FTL, Flash memory file systems also contain remapping and 
block cleaning functionalities [6, 10, 13]. Kawaguchi et al. 
designed a page mapping flash memory file system and suggested 
a cost-benefit block cleaning mechanism [6]. Baek et al. proposed 
a new page allocation scheme that can reduce block cleaning 
overheads by improving the uniformity of a block [8]. Chiang el al. 
proposed a data clustering mechanism to allocate valid pages and 
invalid pages onto different blocks [7].  
These studies mainly focus on the mapping and block cleaning 
mechanisms to reduce the performance degradation due to the 
out-of-place update characteristic. However, our study focuses on 
how to enhance the reliability by making use of the out-of-place 
update characteristic of Flash memory. 
The reliability is a critical issue in Flash memory-based storage 
systems as well as in magnetic disks. Flash memory is widely used 
in embedded systems, especially in mobile consumer products that 
are prone to sudden power-failures resulting from abruptly 
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Figure 1. FTL: Remapping and Block Cleaning 
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detaching the battery. Also, Flash memory has inherent faults such 
as the bad block error, the bit flip error, and the wear limit [14]. 
Recently, MLC (Multi Level Cell) Flash memory where a single 
cell can represent multiple bits is employed widely to make high 
density embedded storage [15]. Since, in MLC Flash memory, the 
possibility of the bit flip error is higher and the number of 
erasures possible (i.e., wear-limit) on each block is more limited, 
the requirement of fault tolerance becomes indispensible.  
FTLs and Flash memory file systems have their own mechanisms 
to handle bad blocks [2, 3, 10, 21]. A common approach is 
reserving some spare blocks and swapping the spare block with 
the bad block. Kim et al. showed that the bit flip errors occurring 
in Flash memory could make the whole file system inaccessible 
[16]. Chang proposed a wear-leveling mechanism that tries to 
reduce the wearing out of more worn out blocks by storing cold 
data in them, while storing hot data in less worn out blocks [17]. 
Agrawal et al. suggested a new wear-leveling algorithm controlled 
by two parameters, namely, retirementAge and ageVariance, and 
showed its effectiveness for extending SSD lifetime [25]. 
Gal et al. designed a transactional file system that supports atomic 
operations and recovery from crashes [18]. They support 
transactions in the file system layer with pruned versioned trees, 
whereas we support them in the FTL layer with time-shift 
capability. Lim et al. proposed a journal remapped-based FTL that 
can reduce the copy overheads by remapping the journal region to 
a home location in the ext3 file system [26]. Park et al. proposed 
an atomic write FTL that provides AtomicWriteStart() and 
AtomicWriteCommit() interfaces for robust flash file systems [27].  
In the disk-based storage systems, the time-shift capability has 
been proposed in [19, 20]. Peterson et al. suggested a copy-on-
write based file versioning and snapshot platform, called ext3cow 
[19]. Ta-Shma proposed a virtual machine based time travel 
scheme that enables reverts of the storage state to a point in the 
past by using a live-migration based checkpointing [20]. However, 
most disk-based storage systems use in-place update, so additional 
overheads are inevitable to provide such functionalities.  

3. Time-shift capability in Flash memory 
In this section, we first illustrate the concept of the time-shift 
capability. Then, we define the state of Flash memory and discuss 
a model for expressing the transitions between Flash memory 
states. 

3.1 Basic idea 
Figure 2 shows a write reference pattern and the contents of Flash 
memory. In the figure, we assume that write requests to sectors 0, 
1, 2, 3, 0, 1, 4, 5, 3, 4, 5, 6 occur at time t (0 ≤ t ≤ 11) where in 
this paper time is defined as a virtual time that is incremented on 
each sector write. 

Figure 2(a) shows the contents of Flash memory at time t=4, 
when write requests to sectors from 0 to 3 are stored in pages 0 to 
3. Also, Figure 2(b) and (c) show the contents of Flash memory at 
time t=8 and t=12, respectively. 
At time t=12, we can define the state of Flash memory as follows. 
 
 

S12 represents the state of Flash memory at time t=12, where the 
sectors numbered from 0 to 6 are stored in pages numbered 4, 5, 2, 
8, 9, 10, and 11, respectively.   
Similarly, at time t=8, we can define the state of Flash memory as 
follows. 
 
 

It denotes that the state of Flash memory at time t=8 is the sectors 
numbered from 0 to 5 that are stored in pages numbered 4, 5, 2, 3, 
6, and 7, respectively. Note that, by virtue of out-of-place update, 
even at time t=12, the pages for reconstructing S8 are all still in 
Flash memory. In other words, at time t=12, we can revert from 
S12 to S8, which is the basic idea of our proposed time-shift 
capability in Flash memory.  
The time-shift from S12 to S8 is expressed as follows.  
 
 
 
 
 

In this example of Figure 2, U, Domain(U), and Range(U) are 
expressed as follows. 
 
 
 
 
The above equations imply that by maintaining the update 
information, we can revert from the current state into any previous 
states (of course, we need to control block cleaning mechanisms 
as explained in Section 3.2).  

3.2 Model  
Formally, the time-shift from St to St’   can be expressed as follows. 

--- (1)  
 
In Equation (1), St’ and St are the states of Flash memory at time t’ 
and t, respectively. Each Flash memory state is defined as a set of 
valid pages at the time. The term Ut’~t represents the set of 
modified mappings between t’ and t. Then, Domain(Ut’~t) is 
defined as the set of the original mappings, while Range(Ut’~t) is 
defined as the set of the new mappings. The null element (φ) in 
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Figure 2. Write Reference Pattern and Flash Memory States 
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Domain(Ut’~t) denotes that a mapping for a logical sector that has 
not been mapped to any page is newly established.  
Now, the question is how to design a block cleaning mechanism 
for the time-shift capability. Conventionally, FTL reclaims all 
invalid pages during block cleaning. However, in LTFTL, we 
need to take into account the pages that should be reserved for the 
time-shift capability. Figure 3 shows the state of each page in 
conventional FTL and our proposed LTFTL. 
 

Free

Invalid Valid

Free

Invalid

Valid

(a) Conventional FTL (b) LTFTL

Retractable

 
Figure 3. Page Status in Conventional FTL and LTFTL 

 
In conventional FTL, each page is in one of three possible states; 
free, valid, and invalid. If a page holds legitimate data, it is a valid 
page. When a valid page is invalidated by being deleted or by 
being updated, then the page become an invalid page and is 
treated as a candidate for block cleaning. Finally, by performing 
block cleaning, the pages that reside on blocks that have been 
erased become free and eligible to be written to. 
In LTFTL, some invalid pages should not be subject to block 
cleaning so as to provide the time-shift capability. We define 
these pages as retractable pages. Let us assume that the current 
time is t and we might revert to the previous state of Flash 
memory at time t’. Then, the retractable pages can be expressed as 
follows. 
                                                                           ----  (2) 
 
Equation (2) implies that, among the invalid pages, the pages that 
belong to the state of Flash memory specified as revertible 
become retractable. If there are several revertible states, the union 
of each Rt become the overall retractable pages. In LTFTL, the 
block cleaning mechanism can reclaim invalid pages that are not 
retractable. From this discussion, we find that there are trade-offs 
between the number of revertible states the user can specify and 
the space overhead for keeping retractable pages. 

4. Implementation Details 
In this section, we explain how we implemented the proposed 
LTFTL in the Linux kernel.  
Figure 4 shows the software architecture of the Linux kernel for 
Flash memory. It consists of three layers; VFS (Virtual File 
System) layer, specific file system layer (such as Ext3, FAT, 
JFFS2, and YAFFS), and MTD (Memory Technology Device) 
layer. The MTD layer is further divided into three layers; MTD 
user module layer, MTD glue logic layer, and MTD chip driver 
layer. The MTD user module layer includes some open source 
FTLs such as NFTL and FTL. NFTL is a block mapping FTL for 

NAND Flash memory that uses a block chain mechanism to 
support out-of-place update [3]. FTL is a page mapping FTL that 
only supports NOR Flash memory [2].  
We first tried to modify NFTL to implement our time-shift 
capability. However, it is very difficult to support the lightweight 
time-shift capability in the NFTL framework, mainly due to its 
block mapping nature. Therefore, we decided to implement our 
own LTFTL that uses a page mapping mechanism. Our LTFTL 
resides in the MTD user module layer, just like NFTL. Any file 
system that can run on top of hard disks such as the FAT and Ext3 
file systems can run on top of either NFTL or LTFTL (note that 
Flash memory file systems such as YAFFS and JFFS2 that run 
directly on Flash memory without FTL support do not belong to 
this group).  
 

 
Figure 5. Logical Layout of LTFTL 

 
Figure 5 shows the logical layout of LTFTL. It partitions Flash 
memory into four sections; metadata, mapping, data, and log 
sections. The metadata section contains control information of 
LTFTL such as the location of each section, the current Flash 
memory state id, and the oldest revertible Flash memory state id. 
The mapping section contains the mapping table that translates 
logical sector numbers into physical page numbers. The data 
section contains data for logical sectors and is managed by page-
mapping and garbage-collected. Finally, the log section contains 
the intent log that keeps information for each write request 
including the original page, the new page, and the requested 
sector number. 

The mapping table uses an inverted mapping structure, where 
each entry in the table indexed by a page number contains the 
corresponding sector number. During the LTFTL initialization, 
the forward mapping structure that maps a sector number into the 
corresponding page number is created on SDRAM and used for 
actual address translations. The reason for using the inverted 
structure for the in-Flash mapping table is that we want to use the 
table not only for translating between sector numbers and page 

 
Figure 4. Flash Memory Software Architecture in Linux 
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numbers but also for identifying the state of each page. For 
example, an entry of the table holding a valid sector number 
implies that its state is valid, while an entry with 0xffff ffff 
represents its state as free. The overall size of the mapping table is 
4B × sizeof(Flash memory) / sizeof(page).  

The data structure for each entry in the log section is defined as 
<sector number, old page number, new page number, 
global_time>. The global_time is incremented at each write 
request and used as the sequence number to manage a system 
wide virtual time and to differentiate between old and new pages. 
We define each field in the data structure as integer type and the 
size of the log section is changed dynamically depending on the 
number of log entries that in turn depends on the number of 
revertible states. 

In LTFTL, the log section plays two roles. The first is maintaining 
a transition of Ut’~t between two states St’ and St defined in 
Equation (1). The global_time is used for t’ and t in this case. The 
second role is to allow a delayed update of the in-Flash mapping 
table without loss of data even under power failures. Each log 
entry is a record of intent for updates to be performed on Flash 
memory. Hence, if we keep all log entries, we can generate the up-
to-date mapping table from any old mapping table.  

As a whole, the LTFTL handles write requests as follows. It first 
allocates a new page from the data section and writes the 
requested data on the page. Then, it modifies the forward mapping 
structure on SDRAM to reflect this change. Finally, it adds a log 
entry into the log section. In the implementation, we generate the 
up-to-date mapping table and store it in the mapping section when 
LTFTL is initialized or when the size of the log section become 
larger than a maximum threshold (we set the threshold to 16B × 
sizeof(Flash memory) / sizeof(page)  per each Flash memory state, 
in the current implementation). 

Note that, in NAND Flash memory, writing is performed in page 
units. So, we use one page size of SDRAM as a write buffer for 
collecting log entries and store them on the log section when the 
write buffer is full or when the system is normally shutdown. Now 
the question is how to protect the contents of the write buffer from 
a sudden power failure? We piggyback <sector number, 
global_time> onto each write request and store them in the 
OOB(Out Of Band) area, also called the spare area, of the page 
allocated for the request. During the initialization of LTFTL, we 
can detect the abnormal shutdown of the system from a flag 
recorded in the metadata section. Then, we scan the OOB of the 
whole pages and reconstruct log entries for the write buffer by 
identifying the OOB whose global_time is larger than the latest 
one stored in the log section. 

For the time-shift capability, LTFTL provides three interfaces; 
LTFTL_freeze(), LTFTL_unfreeze(), and LTFTL_revert(). The 
LTFTL_freeze() interface is used to build a new state of Flash 
memory at the current time. It returns a state_id, which is used as 
an argument for subsequent LTFTL_unfreeze() and 
LTFTL_revert() requests that are explained next. The 
LTFTL_unfreeze() interface is used to remove a Flash memory 
state. Finally, LTFTL_revert() is used to change from the current 
state to the state specified as an argument.  

A more detailed description of the processing of LTFTL_freeze() 
is as follows: (1) allocate space from the metadata section for 

managing the information of the new state; (2) set the 
‘global_time of the last log entry’ as the epoch time of the state; 
(3) set every subsequently invalidated pages as retractable pages 
related to the state. The LTFTL_unfreeze() interface is 
implemented as follows: (1) set the associated retractable pages of 
the state as invalid pages; (2) remove the log entries for the state if 
they are not needed any more for other states and for generating 
the up-to-date mapping table; (3) free the allocated space for 
managing the state information. Finally, the LTFTL_revert() 
interface is implemented as follows: (1) generate the up-to-date 
mapping table; (2) roll back to the specified state by undoing the 
operation of the log entries backward in time until it reaches the 
epoch time of the state. 

The garbage collection mechanism used by LTFTL to reclaim the 
invalid pages is similar to those for other page-mapping FTLs 
except for the handling of pages with retractable state - when 
there are not enough free pages, the mechanism first selects blocks 
that have higher ratios of invalid pages to the total pages in the 
block and performs block cleaning. Also, we employ a simple 
wear-leveling mechanism that periodically switches blocks among 
the sections. Designing more efficient algorithms for garbage 
collection and wear-leveling for LTFTL are left as future work. 

5. Performance Evaluation 
In this section, we first present the time and space overheads of 
the proposed LTFTL. Then, we present evaluation results to 
assess the impact of LTFTL on the reliability of Flash memory. 

5.1 Overhead Analysis 
We have implemented LTFTL on an embedded system. The 
hardware components of the system include a 400MHz XScale 
PXA CPU, 64MB SDRAM, 64MB NAND Flash memory (page 
size: 512B and block size: 16KB), and embedded controllers such 
as those for LCD, UART and JTAG [22]. The system is running 
the Linux kernel 2.6.21 and our LTFTL is implemented in the 
MTD user module layer. Then, we run the FAT file system on 
LTFTL. For comparison purposes, we also run the FAT file 
system on the existing NFTL.  

 

localhost ~ # mount /dev/ltftla1 mnt 

localhost ~ # echo "It's an original string" > mnt/file 

localhost ~ # ltftl_freeze 

LTFTL freeze: 10 

localhost ~ # echo "It's a modified string" > mnt/file 

localhost ~ # cat mnt/file 

It's a modified string 

... 

localhost ~ # ./ltftl_revert 10 

localhost ~ # cat mnt/file 

It's an original string 

localhost ~ # 

Figure 6. Example of Multiple States 
 
Figure 6 shows an example of time-shifting supported by LTFTL. 
We first create a file whose content is “It’s an original string”, and 
build a state using the ltftl_freeze command. The command 
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invokes the LTFTL_freeze() interface internally to perform the 
requested function. Then, we change the content of the file as “It’s 
a modified string”. Later, we want to restore the original contents 
of the file and issue the ltftl_revert command that calls the 
LTFTL_revert() interface. After the revert operation, we find that 
the image of the file system is actually time-shifted to the state we 
specify. 
To evaluate the overhead of LTFTL, we ran the Postmark 
benchmark [23] and measured the execution time of the 
benchmark as shown in Figure 7 while invoking different 
numbers of the LTFTL_freeze() function. The benchmark creates 
a large number of randomly sized files. It then executes read, 
write, delete, and append transactions on these files. In this 
experiment, we created 1000 files ranging in size from 512byte to 
9.77KB and performed 38000 transactions that made roughly 
32MB of Flash memory as valid pages. In the figure, NFTL 
represents the default FTL of the MTD in the Linux kernel. 
LTFTL(none) represents the case of LTFTL that does not invoke 
the LTFTL_freeze() interface during the benchmark execution, 
while LTFTL(n) represents the case that the interface is invoked n 
times.  
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Figure 7. Execution time for Postmark 
 
From Figure 7, we find that LTFTL performs comparably with the 
existing NFTL. Although a direct comparison between NFTL and 
LTFTL is unfair since the former employs a block level mapping 
while the latter a page level mapping, the results show that our 
implementation of LTFTL does not incur excessive overheads. A 
more detailed experiment shows that the block chain scheme used 
by NFTL incurs frequent block cleaning for repeated small writes, 
which results in an inferior performance as compared against 
LTFTL. 
As the number n in LTFTL(n) increases, the overhead of LTFTL 
also increases. For example, the execution time of LTFTL(1) is 
460 seconds while that of LTFTL(5) is 526 seconds. This 
additional overhead includes the housekeeping costs for log 
entries and the state information management. Also, it includes 
the increased block cleaning costs due to the keeping of 
retractable pages. As a result, as n increases, the block cleaning is 
performed more frequently since the number of free pages 
reclaimed in each block cleaning is reduced. Such trends are 

evident in Figure 8, which shows the usage patterns of Flash 
memory for each FTL. 
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Figure 8 shows that in NFTL 49.72% of Flash memory is 
occupied by valid pages while 50.17% is occupied by invalid 
pages. The remaining 0.12% is used by metadata, map, and free 
pages. In LTFTL(1), 46.51%, 47.91%, 2.98%, 1.59%, and 0.76% 
of Flash memory are used by valid, invalid, log, map, and 
retractable pages, respectively. In contrast, in LTFTL(5), 46.87%, 
3.53%, 4.77%, 1.59%, and 43.01% of Flash memory are used by 
valid, invalid, log, map, and retractable pages, respectively. In 
LTFTL(5), block cleaning can reclaim only a limited number of 
invalid pages, which makes LTFTL(5) trigger block cleaning 
more frequently. We expect that, in most cases, LTFTL can 
support various fault-resilience mechanisms with only 1 or 2 
revertible states of Flash memory. In such cases, since there are 
still plenty of invalid pages to reclaim, the execution time 
difference is not much (460, 469, and 487 seconds for LTFTL(0), 
LTFTL(1), and LTFTL(2), respectively).  

5.2 Reliability Analysis 
Table 1 investigates the impact of LTFTL on the reliability of 
Flash memory. To measure the reliability, we simulated sudden 
power failures, one of the most common type of faults in battery-
operated mobile embedded systems. More specifically, we 
simulated a sudden power failure for each of 5060 sector writes 
generated by a Postmark benchmark consisting of 100 
transactions to 100 files. The same experiments were performed 
for both NFTL and LTFTL and the reliability was measured in 
two different ways: (1) mount success ratio and (2) fsck (file 
system consistency checker) pass ratio. In the case of LTFTL, we 
performed LTFTL_freeze() when (1) the total amount of storage 
write since the last LTFTL_freeze() exceeds 25 KB and (2) there 
are no file system activities. Also, immediately after the 
LTFTL_freeze(), we performed LTFTL_unfreeze() for the Flash 
memory state created by the LTFTL_freeze() before the current 
one. Thus, at all times there was only one revertible state that was 
guaranteed to be consistent since it was made when there were no 
file system activities and the LTFTL always returned to this state 
at the subsequent reboot time. 
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Table 1. Mount Success Ratio and fsck Pass Ratio 
on a Sudden Power Failure 

 Mount Success Ratio fsck Pass Ratio 

LTFTL 100% (5060/5060) 100% (5060/5060) 

NFTL 99.72% (5046/5060) 56.75% (2872/5060) 

 
Table 1 gives the two reliability measures for LTFTL and NFTL. 
As expected, the LTFTL gives a 100% mount success ratio. Even 
for NFTL, the mount success ratio is very high (99.72%). 
However, in the case of NFTL, even when the mount is successful, 
the file system still contains inconsistencies as we can see from its 
low fsck pass ratio (56.75%). But for LTFTL, the fsck pass ratio is 
also 100% since it always rolls back to a consistent Flash memory 
state on a power-failure recovery. 
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Figure 9 shows the effects of the wear-leveling mechanism used by 
LTFTL. Recall that LTFTL partitions Flash memory into four 
sections as shown in Figure 5. This makes some blocks to be more 
worn out than others. To prevent this problem, after 50 erase 
operations, we select one block from each section (except for the 
metadata section) and perform a swap between them. Figure 9 
shows that in LTFTL without such proactive wear-leveling, the 
erase count of the blocks from 0 to 350 is significantly lower than 
those over 350. We find out that the less worn out blocks are those 
for the mapping table and retractable pages. In LTFTL with wear-
leveling, we can that blocks are evenly worn out since the block 
switching allows for blocks once used for the mapping table and 
retractable pages to be used for data blocks as well at other times. 

6. CONCLUSION 
Two contributions are made in this paper. First, we identify that 
the out-of-place update scheme of Flash memory can be exploited 
usefully to provide lightweight time-shift capability. Second, 
through an implementation study, we demonstrate that the 
lightweight time-shift capability can enhance the reliability of 
Flash memory by providing consistent Flash memory states to 
roll back.  
We are considering two research directions for future work. One 
direction is to implement the time-shift capability in Flash 
memory file systems such as YAFFS [10]. A file system interacts 
with user applications directly, which provides more 

opportunities for the time-shift. Another direction is applying our 
model to LFS (Log-structured File System) [24]. Though LFS is 
a disk-based file system, it uses the out-of-place update scheme. 
We need to investigate how to manage intent logs in large scale 
storage and how to reduce the state transition overheads. 
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