
A PRAM and NAND Flash Hybrid Architecture  
for High-Performance Embedded Storage Subsystems 

Jin Kyu Kim1     Hyung Gyu Lee1    Shinho Choi2    Kyoung Il Bahng2
1Samsung Advanced Institute of Technology, CTO, Samsung Electronics Co. LTD  

2Memory division, Semiconductor Business, Samsung Electronics Co. LTD 
South Korea  

{goodjk.kim, hyunggyu.lee, shinho.choi, kybang}@samsung.com
 
 

ABSTRACT 
NAND flash-based storage is widely used in embedded systems 
due to its numerous benefits: low cost, high density, small form 
factor and so on. However, NAND flash-based storage is still 
suffering from serious performance degradation for random or 
small size write access. This degradation mainly comes from the 
physical constraints of NAND flash: erase-before-program and 
different unit size of erase and program operations. To overcome 
these constraints, we propose to use PRAM (Phase-change RAM) 
which supports advanced features: fast byte access capability and 
no requirement for erase-before-program. 

In this paper, we focus on developing a high-performance NAND 
flash-based storage system by maximally exploiting the advanced 
feature of PRAM, in terms of performance and wearing out. To 
do this, we first propose a new hybrid storage architecture which 
consists of PRAM and NAND flash. Second, we devise two novel 
software schemes for the proposed hybrid storage architecture; 
FSMS (File System Metadata Separation) and hFTL (hybrid Flash 
Translation Layer). Finally, we demonstrate that our hybrid 
architecture increases the performance up to 290% and doubles 
the lifespan compared to the existing NAND flash only storage 
systems. 

Categories and Subject Descriptors 
D.4.2 [Operating System]:  Storage Management – Storage 
Hierarchies  

General Terms 
Design, Performance, Experimentation 

Keywords 
PRAM, NAND flash, flash translation layer (FTL), file system 

1. INTRODUCTION 
With a rapid growth of embedded system markets, flash-based 

storage systems are becoming more popular, because their non-
volatility, low-power consumption, small form factor, and high 
reliability are suitable for embedded systems. There exist several 
types of flash memory devices. Among them, NAND flash [1] is 
the most commonly used device for bulk data storage systems, 
due to its high density with low cost. In this paper, we are 
focusing on enhancing the NAND flash-based storage systems. 

Generally, flash memory devices have two main physical 
constraints: erase-before-program requirement and different 
granularity on erase and program operations, which have been 
serious burdens in implementation of flash-based storage systems. 
To overcome these constraints, flash-based storage systems 
require an additional layer between file system and physical 
storage devices called FTL (Flash Translation Layer) [14] that 
abstracts flash-based storage systems into over-writeable block 
devices, like HDDs (Hard Disk Drives).  

The main role of FTL is to redirect a write request to erase-free 
space by keeping the mapping information between logical and 
physical address spaces. Since the performance of flash-based 
storage systems largely depends on this mapping technology, 
many approaches have been tried to develop efficient mapping 
algorithms such as page-level mapping algorithms [16,19], block-
level mapping algorithms [15], and hybrid mapping algorithms 
[5,10,11,12] called log block mapping. Although recent mapping 
algorithms significantly enhance the performance of flash-based 
storage systems with reasonable implementation cost, it is known 
that they are still suffering from the performance degradation for 
random write requests, even in state-of-art research. This low 
performance characteristic for random write requests should be 
clearly problematic in future systems which require more 
complex and frequent random access requests. 

Recently, PRAM (Phase-change RAM) [2,3] device, which 
supports fast byte- or word-access capability without erase-
before-program requirement like normal DRAMs, is introduced as 
an next generation non-volatile memory device and it will be 
commercially announced by the several chip vendors very soon 
[17]. At a first glance, the PRAM may seem to be an ideal non-
volatile storage device which can completely overcome the 
physical constraints of traditional flash memory devices. It surely 
seems that PRAM successfully replaces NOR flash since PRAM 
could support higher density and faster write speed than NOR 
flash while providing similar read performance. However, its 
density, cost and write performance in current technology step are 
not enough to replace NAND flash. DeVoss expects it will take 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA. 
Copyright 2008 ACM  978-1-60558-468-3/08/10...$5.00. 
 

31



substantial time for PRAM to replace NAND flash completely 
[6]. So, instead of providing complete replacement scheme of 
NAND flash, we propose a hybrid storage architecture of PRAM 
and NAND flash memory, as shown in Figure 1. PRAM is used 
not only for code storage but also for the part of data storage. We 
expect the enhanced features of PRAM can successfully 
complement the weakness of NAND flash-based storage 
architecture, especially for low performance in random and small 
write requests. Furthermore, it would not incur additional 
hardware implementation cost since we share the remaining space 
of PRAM which is already equipped for code storage.  

To support the proposed PRAM and NAND hybrid storage 
architecture, we first propose a separate allocation of file system 
metadata from the user data (FSMS: File System Metadata 
Separation) by storing the metadata into the PRAM. This idea 
enhances the efficiency of metadata management of file system, 
which reduces the number of random access requests to FTL 
substantially without any significant modification to existing 
storage component. Second we design a page-based mapping 
algorithm supported by the PRAM, which shows high 
performance even for random access requests with reasonable 
implementation cost. Unlike the FSMS, second idea makes FTL 
itself robust to random access pattern in block device driver level 
regardless of file system. Finally, we implement the above two 
ideas based on an existing file system and FTL, and then 
demonstrate the effectiveness of the proposed hybrid architecture 
by comparing them with conventional storage architectures. We 
assume that the system already has PRAM devices for the code 
storage replacing NOR flash memory and we use the remaining 
area of the PRAM device, which means our proposed ideas do not 
accompany with any additional hardware cost. 

The rest of the paper is organized as follows. In the next section, 
we briefly review the related work. Section 3 describes details of 
the FSMS scheme implementation. Section 4 includes the design 
of hybrid FTL. Section 5 compares the proposed hybrid storage 
with existing storage architectures. Conclusions are given in the 
Section 6. 

2. RELATED WORK 
In this section, we revisit the mapping algorithms in NAND flash-
based storage architecture and the related work about hybrid 
storage approaches with next-generation NVRAMs (Non-volatile 
RAMs) [2,3,4], separately. 

2.1 FTLs 
FTL [14] is a software layer to provide HDD-like over-writable 
address space between the flash memory and file system. 
Generally, NAND flash memory consists of blocks. Usually, a 
block is composed of 64 or 128 pages and the size of a page is 
2KB or 4KB. NAND flash needs to perform erase operation 

before program operation. Furthermore, write operation of NAND 
flash is based on a page while erase operation is based on a block. 
To mimic HDD-like storage, it is important to hide these 
constraints of NAND flash. To attain it, FTL should do remapping 
between logical address space and physical NAND address space. 
Since mapping algorithm of FTL has large impact on the 
performance and life span of NAND flash-based storage, lots of 
efforts have been paid to developing FTL mapping algorithms. 
Existing FTL mapping algorithms are roughly categorized into 
three: page mapping [16, 19], block mapping [15] and log block 
mapping [5,10,11,12] according to the granularity of mapping 
unit. 

2.1.1 Page mapping  
In early stage, page mapping scheme [16,19] has been studied, 
because its performance is relatively high while its algorithm is 
simple. In page mapping, logical space to physical space mapping 
is based on a physical page unit of NAND flash. Therefore, write 
request from the file system to FTL can be redirected to any 
physical pages without any constraints. Due to fine grained 
mapping, flexible storage management is possible and it shows 
endurable performance degradation for random access patterns. 
However, it needs to manage large amount of mapping 
information. For example, it requires additional 1MB memory 
space for 512MB NAND flash storage since it must keep physical 
mapping information (usually 4 bytes) for each logical page. 
Generally, a large amount of this mapping information should be 
kept in the main memory space for pursuing high performance, as 
well as NAND storage itself. Furthermore, scanning and 
rebuilding mapping information at start-up may delay booting 
time substantially. 

2.1.2 Block mapping 
In contrast to the page mapping scheme, the basic mapping unit of 
block mapping scheme [15] is a physical block of NAND flash. 
To translate logical address into physical address, logical block 
number and logical page offset within a logical block are 
calculated from logical page address, and then physical block 
number is gained through block mapping information. Since 
logical pages are stored sequentially in physical pages in the same 
order of a logical block, address translation can be done in one 
step. Since block mapping FTL keeps mapping information 
(usually 4 bytes) only for blocks, the size of mapping table is 
relatively small (16KB memory space for 512MB NAND flash 
storage.) However, it incurs so much extra NAND flash operation 
when update requests occur on a part of a block. At every update, 
entire block which includes the updated logical pages must be 
copied to a free block, which results in a significant performance 
degradation. 

2.1.3 Log block mapping 
To exploit the merits of page and block mapping schemes, log 
block mapping schemes have been introduced [5,10,11,12]. In log 
block scheme, blocks are divided into data blocks and log blocks. 
Basically, it uses block mapping for data blocks and page 
mapping for log blocks. In order to overcome disadvantages of 
block mapping, write requests are always performed on a log 
block at first. When a log block runs out of free pages or user 
request is out of range where the log block covers, FTL does 
merge operations on the data block and log block to make one 

 
Figure 1. Embedded storage architecture 

32



data block. Although log block mapping is able to mitigate 
extreme overheads of the block mapping, they are still suffering 
from the poor performance for random access requests, since the 
number of log block is fixed at design time to avoid the large 
main memory consumption. This characteristic will surely be a 
burden in future storage system because embedded system 
applications will require more frequent random write requests as 
the multi-thread and multi-processing environments become more 
popular.  

2.2 Hybrid storage system with NVRAM 
Previous research [7,8] proposed hybrid storage architectures that 
exploit another type of NVRAMs such as MRAMs (Magnetic 
RAMs). They tried to use the MRAM for storing the file system 
metadata. In [9], A.Wang proposed hybrid storage file system 
architecture with battery backup RAM. 

Since they directly touched the file system itself, their approaches 
require large implementation cost. Most of all, their approaches 
may have a compatibility problem with previous storage system 
architecture. In addition, their target architecture is only for a 
HDD-based storage system, which means their goals are mainly 
to enhance the performance by reducing the negative effects of 
mechanical mechanism of HDDs.  

This paper, by contrast, is focusing on NAND flash-based storage. 
Since NAND flash-based storage has different characteristics 
from HDD, different approaches are required to increase the 
storage performance. In addition to performance, increasing the 
life span of storage is also important topic in our study because 
blocks of NAND flash device have limited program/erase cycles 
(usually 15K ~ 100K). For these purposes, we exploit NVRAM 
for file system and FTL. Our approach also reduces the 
implementation cost by using an existing storage software with 
minimal modifications. To the best of our knowledge, this is the 
first work to exploit the PRAM with NAND flash to implement 
an efficient storage system including both file system and FTL. 

3. FILE SYSTEM META DATA 
MANAGEMENT USING PRAM 
In this study, our new ideas are implemented as two parts; 
separate allocation of metadata from user data by storing the 

metadata into the PRAM called FSMS (File System Metadata 
Separation) and redesign of page-mapped FTL called hFTL, for 
enhancing random write performance. This section explains the 
problems of conventional NAND flash-based storage systems and 
describes the details of first idea – FSMS. 

3.1 Problems in conventional embedded 
storage systems  
The conventional NAND flash-based storage software consists of 
two main parts; file system and FTL as shown in Figure 2. 
Generally, file system has two types of data. One is user data and 
the other is metadata. At every file update, metadata (  in Figure 
2) should be updated together with user data (  in Figure 2) and 
this metadata is directly sent to the FTL through general block 
device driver, in the forms of block. In general, the amount of 
metadata to be really updated in a metadata block is much smaller 
than the size of a block 1 . This means that metadata updates 
accompany with unnecessary storage access overhead. This 
inefficient metadata management is surely problematic because 
metadata tends to be updated frequently (around 50% of total 
write requests [13].) 

Our analysis conducted on a FAT-based file system shows the 
distribution of the number of modified words (a word - 2bytes) 
per a metadata block write request as shown in Figure 3. About 
80% of metadata write requests need to modify less than 25 words 
out of 256 words. On the average, the only about 16% of a 
metadata block is actually updated. We expect that similar results 
are found in other various workloads. 

Even worse, the metadata updates occurring between consecutive 
user data updates break sequential access of user data into random 
access. In most file systems, metadata and user data are stored in 
non-contiguous address space. Random access in FTL may 
increase the number of merge operations and garbage collection 
cost, which finally results in serious performance degradation and 
fast worn-out of NAND flash memory. 

 

 

 
                                                                 
1 The block in this context does not mean physical block of flash 

memory but sector in file system – usually 512 bytes.  

 
Figure 3. Distribution of changed words in metadata write 

request (request size = 256 word) 
 

Figure 2.  NAND flash-based storage architecture 

33



3.2 FSMS: File system metadata on PRAM 
We design FSMS, which stores metadata of file system on PRAM 
as shown in Figure 4(b). And then, we implement it on a FAT-
based file system and a log block FTL which are optimized for 
embedded systems. 

Our hybrid approach is implemented in a way to minimize the 
modification of existing file system and FTL so that the approach 
would be easily adopted in real world. Grayed boxes indicate 
modified and added modules to implement FSMS. First, we 
modify the general block device driver to distinguish the metadata 
update from the user data update. Since the FAT file system 
stores metadata into fixed position, the hybrid block device driver 
can easily separate metadata from the user data using file system 
format information. Once write request is identified as a metadata 
write, it is directly sent to the PRAM filter, otherwise it is sent to 
the FTL.  

Second, we add a PRAM filter which is responsible for 
converting block-based write requests into byte-based write 
requests. Since writing entire metadata block on PRAM takes 
more time than writing on NAND flash, the PRAM filter is 
necessary for optimization. When a metadata block write request 
arrives, the PRAM filter pre-reads the entire destination block 
from PRAM and then compares them with write request data as 
shown in Figure 5. Then, only the words to be modified (as 
represented as  in Figure 4) are delivered to the PRAM. Since 
read performance of PRAM is about 125 times faster than its 
write performance, pre-reading and comparison do not make 
much overhead. For read request to PRAM, the request is 
forwarded to the file system without filtering. This filtering layer 
successfully compensate for slow write performance of PRAM for 
metadata writing.  

4.  HYBRID FLASH TRANSLATION 
LAYER 
As embedded systems become more complex, multiple 
simultaneous access requests may frequently occur, which makes 
user data patterns into serious random access patterns. Since our 
FSMS scheme is applicable only to file system metadata 
management, a more novel scheme is required to improve the 
random write performance for the file system user data. Thus, we 
design a new FTL which guarantees high performance even for 

the random access pattern of user data. In this section, we 
describe the details of redesign of page-mapped FTL called hFTL, 
which maximally exploits the enhanced features of PRAM.  

Among the existing mapping algorithms, it is known that the page 
mapping algorithm shows high performance and relatively stable 
performance even for random access pattern. However, the 
demand of large main memory to keep page mapping information 
has been a main hurdle to adopt the page mapping algorithm. In 
our scheme, by keeping the mapping information into the PRAM, 
we avoid excessive consumption of main memory space. 

4.1 hFTL: A page-mapped Hybrid FTL with 
PRAM 
Our hFTL is based on existing page mapping schemes, but we 
optimize it with three advanced features. First, we use the PRAM 
to store the FTL metadata such as page mapping table, physical 
NAND block information, bad block management information, 
and so on. This can significantly reduce the implementation cost 
including main memory footprint. Second, we support logical-
page-delete function for reducing garbage collection cost, which 
is not considered in previous FTLs. Last, we add reserved block 
scheme to prevent frequent merge operations when the utilization 
of storage is high (almost close to 100%).  Reserved block is a 
group of blocks that are not counted for user space although they 
are used to store user data.  

Figure 6 illustrates the mapping scheme of our hFTL and its 
related data structures.  The hFTL stores the FTL metadata such 
as a mapping table, physical page status bitmaps, and physical 
block information on the PRAM rather than NAND flash. NAND 
flash stores only the data from the file system. The blocks of 
NAND flash are divided into data blocks, buffer block, and 
garbage blocks as shown in Figure 7. The hFTL stores the newly 
arrived data only on the buffer block. When a buffer block runs 
out of free page, the hFTL changes the status of current buffer 
block into a data block and tries to allocate a new buffer block 
from garbage blocks. If the number of garbage blocks is below the 
given threshold, it performs merge operation and garbage 
collection by selecting a victim block among the data blocks. In 
current implementation, the number of buffer block is one, but it 
can be changed depending on the optimization policy.  

 
 Figure 5.  PRAM filter layer 

Figure 4. Software architecture of embedded storage 

34



The basic philosophy of hFTL is to store the metadata into the 
PRAM but this may result in performance degradation because 
the write performance of PRAM is relatively low compared with 
a main memory. Thus, we temporarily keep the metadata related 
with current buffer block in the main memory and write them 
back to the PRAM when the buffer block is changed into a data 
block. Details of read and write operations are shown in Figure 8. 
For easy power-failure recovery, hFTL writes logs into the 
PRAM at every PRAM update. The page mapping scheme in our 
hFTL is simple but powerful. However, we found two problems 
which degrade the overall performance.  

First problem is from garbage collection. In the garbage 
collection, the FTL selects a victim block and then copies valid 
pages in the victim block into new free block. During this process, 
FTL may copy deleted-pages 2  with valid pages because 
conventional FTLs do not support logical-page-delete function. 
This may result in increasing the cost of merge operation 
significantly. To prevent this, we implement logical-page-delete 
function which invalidates deleted-pages in FTL level. Whenever 
the file system deletes a file, it calls logical-page-delete function 
to invalidate the physical pages which belong to the deleted file. 
Logical-page-delete function updates the physical page status 
bitmap as well as the logical page mapping in PMT (Page 
Mapping Table). The example cases are showed in Figure 6. In 

                                                                 
2 In traditional file systems, when unlinking a file, the file system 

only deletes the metadata. So the data pages belonging to the 
deleted file, still exist  in the physical page of NAND flash 
pretending to contain valid data even though the pages has no 
valid data any more logically. We call this page as deleted page. 

step 1, logical pages #0, #10, #11, #12 #120 and #200 have valid 
data, and corresponding bitmaps are set to valid. Step 2 shows the 
changed bitmap status and PMT after deletion of logical page #11 
and updates of logical pages #0 and #10. For the deleted logical 
page #11, corresponding entries of PMT and bitmaps are marked 
as invalid. For the updated logical pages #0 and #10, their 
corresponding entries of PMT are remapped to new physical 
pages #0 and #1 of block #120, and bitmaps corresponding to 
physical pages #0 and #1 of physical block #105 are set to 
invalid. When FTL needs to merge on block #105, it uses bitmap 
information to avoid unnecessary copy of invalid physical pages 
such as pages #0, #1 and #2.  Figure 9 shows the effects of 
logical-page-delete function. It improves our hFTL in every case. 

Second, we found significant performance degradation when the 
storage utilization is almost close to 100%, which means the 
number of garbage or free blocks to be used in merge operation 
goes under the given threshold. Thus, the hFTL tries to perform 
merge operation frequently. To avoid this problem, we set a 
certain number of blocks aside as reserved blocks. These blocks 
are not counted for logical space.  The percentage of reserved 

 
Figure 8. Read/Write operation of hFTL 

 
Figure 6. Page-mapped FTL with PRAM 

 
Figure 7. Type of physical NAND blocks 

35



blocks in total blocks has large impact on the performance. Figure 
9 also shows the performance enhancement according to the 
percentage of reserved blocks. As shown in Figure 9, the 
performance enhancement largely depends on whether the 
logical-page-delete function is supported or not. Even in the case 
of logical-page-delete function support, the performance of 10%-
reserved block is 22% higher than that of 0%-reserved block. Our 
experiment shows that 5%-reserved block seems enough to avoid 
severe performance degradation in normal applications, no matter 
how the file system and FTL support logical-page-delete 
function. So we set the reserved block percentage to 5% for our 
all experiments. For the other miscellaneous functions of the FTL 
such as bad block management and wear-leveling, the hFTL 
follows those of the conventional FTLs. 

5. EVALUATION 

5.1 Experimental setup  
In this section, we evaluate our two proposed schemes with a 
conventional NAND flash-based storage system. For this purpose, 
we developed a test board as shown in Figure 10. It equips an 
S3C2413 (ARM926) microprocessor, one 1GB MLC (Multi-
Level Cell) NAND flash, and one 64MB PRAM. The access 
timing information of each memory device is presented in Table 
1. The read/write access timing includes data transfer time 
between the microprocessor and page register in NAND flash as 
well as transfer time between the page register and NAND flash 
cells. Compared to SLC (Single-Level Cell) NAND flash, MLC 
NAND flash has longer cell operation time but its density is 
double of SLC NAND flash. Due to these merits, MLC NAND 
flash becomes more attractive for data storage in embedded 
systems. However, its poor performance will be a burden for 

system designers. Thus, we choose MLC NAND flash as our 
target device instead of SLC NAND flash. But we note that our 
idea can be also applied to SLC NAND without any modification. 

The evaluation is conducted to show read/write performance, 
NAND flash block erase count which directly affects wearing-out 
of NAND flash storage, and implementation cost focusing on 
required memory space. A log block FTL [5] (LBFTL) and a 
FAT-based file system are chosen as reference FTL and file 
system which are optimized for embedded system including 
power-failure recovery. LBFTL uses 4 log blocks and FAT file 
system uses 2KB sized cluster.  

5.2 Performance evaluation 
We measure the performance in two layers: FTL and file system. 
Before the performance evaluation, we measure the LLD 
performance which indicates the maximum read/write 
performance that the hardware can provide. LLD write 
performance is 1.73MB/s and read performance is 4.24MB/s. 
These values seem to be lower than the maximum performance 
that can be calculated using Table 1. This is mainly because the 
NAND controller of the test board is not fully optimized for MLC 
NAND flash. However, this does not matter since all 
configurations are evaluated on the same test board and we use 
their relative differences as performance metrics. Figure 11 
depicts the performance comparison of LBFTL and hFTL. Due to 
the FTL overhead, overall performance is lower than LLD level 
performance. In order to show the performance degradations, we 
also present LLD level read/write performance as dashed lines in 
the figure. The performance of both FTLs reaches LLD level 
performance for sequential access patterns. For random write 
access patterns, our hFTL always shows stable performance while 
LBFTL shows poor performance for random access patterns. The 
performance of LBFTL is getting lower as the I/O request unit 
size is getting smaller. The reason is that the LBFTL is based on 

Microprocessor

NAND Flash

PRAM

NOR Flash

Microprocessor
NAND Flash

PRAM
DRAM

Samsung S3C2413 – 200MHz
Samsung K9G8G08UOM – 1GB

Samsung KPS1215EZM – 64MB
Samsung K4S51163PF – 64MB

(1 channel, 1 way)
NOR Flash Intel JS28F128 – 16MB

 
Figure 10.  Prototype implementation 

Figure 9.  Performance enhancement of logical delete and 
reserved block 

Table 1. Access timing for MLC NAND and PRAM 
[21,22] 

Access time Memory 
device Read Write Erase 

MLC 
NAND 

121us 
(page) 

861us 
(page) 

1.5ms 
(block) 

PRAM 80ns 
(word) 

10us 
(word) N/A 

36



log block mapping scheme where the smaller size of I/O request 
unit increases the number of merge operations, while our hFTL is 
based on page mapping scheme where the number of merge 
operation is not affected by I/O request unit size. As a result, it 
shows up to 42 times better performance than that of LBFTL at 
the 8KB I/O request unit size. Figure 12 presents the file system 
level performance of four schemes; log block FTL (LBFTL) as a 
baseline configuration, log block FTL with FSMS (LBFTL-
FSMS), hFTL (hFTL) and hFTL with FSMS (hFTL-FSMS). 
Again, we note that the FAT-based file system is layered on top 
of the FTL for all configurations. We use IOZone file system 
benchmarking software [18] which is widely used for evaluating 
the file system performance. We set test storage capacity to 1GB 
and I/O request unit size varies from 8KB to 2MB. 

For sequential read patterns, the performances of proposed hFTL 
and hFTL-FSMS are slightly higher than those of LBFTL and 
LBFTL-FSMS. For random read patterns, LBFTL-FSMS and 
hFTL-FSMS slightly outperform LBFTL and hFTL. This is 
mainly because the seek operation of file system for random read 
requires frequent metadata read, and the FSMS scheme can save 
time in reading metadata due to the fast read performance of  
PRAM. Similarly, we observe that the performances of LBFTL-
FSMS and hFTL-FSMS are higher than those of LBFTL and 
hFTL for sequential write access. Even though the test workload 
has a sequential pattern, the file system makes a lot of metadata 
writes, which makes sequential workload pattern into random 
access pattern in the view of FTL, as we pointed out in Section 3. 
If the FSMS scheme is applied, the sequential access pattern of 
test workload is delivered to the FTL as it is. So FSMS brings 
great benefits in this case. We expected that performance of hFTL 
should be better than that of LBFTL for sequential access since 
file system metadata makes access pattern to FTL into random 
access pattern. However, they show almost same performance 
because of the simple access pattern which means the number of 
accessed spots in logical address space is small For this simple 
access pattern, LBFTL is already optimized using enough log 
blocks to absorb its negative effects. LBFTL-FSMS and hFTL-
FSMS show better performance than LBFTL and hFTL by up to 
63%. 
For random write on which we mainly focused, the hFTL-FSMS 
shows the highest performance for the all I/O request unit sizes 
since our proposed FSMS and hFTL take effects orthogonally. 

The hFTL-FSMS increase the throughput up to 290% compared 
to LBFTL. Even without FSMS, hFTL shows higher performance 
than LBFTL-FSMS up to 130% because the benefit of hFTL 
originally designed to be robust for random access at FTL level, is 
greater than that of FSMS in random write. Although the 
performance gain becomes smaller as the I/O request unit size 
becomes larger, we note that our approach is effective for normal 
embedded systems whose I/O request unit size usually ranges 
from 4KB to 32KB. It shows much better performance than that 
of LBFTL at these ranges.  

We also perform the evaluation with TIObench [20] benchmark 
but do not present them in this paper because the results are 
almost similar to those of IOZone benchmark. We expect more 
performance enhancement with hFTL if we separate the hot data  
from cold data in FTL level. This will be easily implemented in 
hFTL by increasing the number of current buffer block more than 
two. 

5.3 Life span evaluation  
In performing the evaluation of life span for storage system, test 
workload should reflect the dynamic behavior of the embedded 
systems. Since the workload of benchmark has limitation for this 
purpose, we collect the traces from our test systems. The traces 
reflect small/large size file creation/deletion, random read/write 
and sequential read/write which accumulate about 2GB write 
operations for NAND flash. And we run those traces on our test 
board and count the number of block erase operation for each 
scheme. As shown in Figure 13, both of FSMS and hFTL reduce 
the block erase count dramatically. The efficient metadata 

Th
ro

ug
hp

ut
 (K

B
/s

)

 
Figure 11. Performance evaluation in FTL level 

Th
ro

ug
hp

ut
 (K

B
/s

)
Th

ro
ug

hp
ut

 (K
B

/s
)

 
Figure 12. Performance evaluation in file system level 

37



management in FSMS contributes to reduce the number of merge 
operations. The mapping algorithm of hFTL also contributes to 
decrease the number of merge operations. Basically, the buffer 
block in hFTL is changed to the data block when there is no free 
page in it, which means the utilization of the buffer block is 
always 100%. However, in LBFTL, the limited number of log 
blocks lowers the utilization of log blocks when the access pattern 
is random [10], which causes frequent merge operations. 

5.4 Implementation cost  
Finally we evaluate our schemes with previous storage systems in 
terms of implementation cost. Figure 14 shows the 
implementation cost for each scheme. The code size of hFTL is 
reduced to 40% of LBFTL. The main reason is that the use of 
PRAM significantly reduces the efforts to manage the metadata 
and to handle the power-failure recovery. Compared to hFTL, the 
code size of hFTL-FSMS is slightly increased due to the code for 
separating the file system metadata. Although it is not always true 
that the small code size consumes less CPU computation, we 
observed that the hFTL requires less CPU computation power in 
run time. In addition, the hFTL keeps the most data structures on 
the PRAM rather than the main memory. As a result, the hFTL 
requires less amount of main memory. Depending on the storage 
capacity and configuration, the hFTL and hFTL-FSMS may 
require large amount of PRAM, and this may be a burden for 
system designer. In our experiment, LBFTL does not require 
PRAM while LBFTL+FSMS, hFTL and hFTL+FSMS require 
5.47MB, 2.17MB, 7.64MB of PRAM respectively. However, it 
does not increase hardware implementation cost since our 
schemes assume to exploit the remaining space of the PRAM 
which is already equipped in the systems for the code storage. If 
the size of PRAM used for hFTL is bigger than the remaining size 
of PRAM, we can increase the logical page size into double or 
quadruple, which decreases the demand of PRAM by half or a 
quarter. In this case, there should be side effects in terms of 
performance, and the decision is a due of system designers.  

6. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a NAND and PRAM hybrid storage 
solution and devised two approaches to exploit the hybrid storage 
architecture. First, we implement a file system metadata 
separation (FSMS) scheme to minimize the number of random 
write requests caused by inefficient metadata management. 
Second, we devised an efficient page mapping FTL (hFTL) 
exploiting the advanced features of PRAM, to enhance the 

random write performance. Finally, our performance evaluation 
using conventional benchmark tools demonstrates that the 
proposed hybrid architecture increase the performance up to 
290% at file system level and reduce the number of erase 
operations up to 50% which directly contributes to increase the 
life span of NAND flash. 

Our study contributes to verify the feasibility of PRAM as data 
storage as well as code storage and shows that the enhanced 
features of PRAM successfully complement the weakness of the 
conventional NAND flash-based storage systems. For future 
research, we are planning to design demand paging mechanism 
between NAND and PRAM to solve the scalability problem when 
the size of PRAM is not enough to hold entire metadata of file 
system and FTL. 

7. REFERENCES 
[1]   R. Bez, E. Camerlenghi, A. Modelli and A. Visconti, , 2003. 

Introduction to Flash Memory, Proceeding of the IEEE, Vol 
91, No 4, 2003 

[2]   G.H. Koh and et el., 2004. PRAM Process Technology. 
Proceeding of the IEEE International Conference on 
Integrated Circuit Design and Technology, 2004. 

[3]   Kinam Kim and G.H. Koh, 2004. Future Memory 
Technology including Emerging New Memories. 
Proceedings of 24th International Conference on 
Microelectronics, NIS, Serbia and Montenegro, May, 2004. 

[4]   Mun-Kyu Choi and et el., 2002. A 0.25um 3.0V 1T1C 32Mb 
Nonvolatile Ferroelectric RAM with Address Transition 
Detector and Current Forcing Latch Sense Amplifier Scheme. 
IEEE Journal of Solid-State Circuits 37, 2002. 

[5]   J. Kim, J. M. Kim, S. Noh, S. L. Min, and Y.Cho, 2007. A 
space-efficient flash translation layer for CompactFlash 
systems, IEEE Transactions on Consumer Electronics, 48(2), 
pp. 366-375 (2002).  

[6]   Mark DeVoss, 2007. The Winds of Phase Change are 
Blowing. Market Brief, iSuppli, May 2007. 

[7]   Ethan L. Miller, Scott A. Brandt and Darrell D. E. Long, 
2001. HeRMES: High-Performance Reliable MRAM-
Enabled Storage. in Proceedings of 8th IEEE Workshop on 
Hot Topics in Operating Systems (HotOS-VIII), Schloss 
Elmau, Germany, pp. 83-87, May (2001). 

LBFTL LBFTL-FSMS hFTL hFTL-FSMS

0

10

20

30

40

50

60

Code size RW Data size

Si
ze

 (K
B

)

 
Figure 14. Memory requirement 

 
Figure 13. Block erase operation count  

38



[8]   Nathan K. Edel, Ethan L. Miller, Karl S. Brandt and Scott A. 
Brandt, 2004. Measuring the Compressibility of Metadata 
and Small Files for Disk/NVRAM Hybrid Storage Systems. 
in Proceedings of the International Symposium on 
Performance Evaluation of Computer and 
Telecommunication Systems(SPECTS’04), San Jose, CA, 
July (2004). 

[9]   An-I A. Wang and et el., 2002. Conquest: Better 
Performance Through A Disk/Persistent-RAM Hybrid File 
System. in proceedings of the 2002 USENIX Annual 
Technical Conference, Monterey, June, 2002. 

[10]  S. Lee, and et el., 2007. A Log Buffer-Based Flash 
Translation Layer Using Fully-Associative Sector 
Translation. ACM Transactions on Embedded Computing 
Systems, Vol. 6, No 3, July 2007. 

[11] J.U. Kang, H. Jo, J.S. Kim and J.W. Lee, 2006. A 
Superblock-based Flash Translation Layer for NAND Flash 
Memory.  EMSOFT’06 , Seoul Korea, October, 2006. 

[12] Chin-Hsien Wu and Tei-Wei Kuo, 2006. An Adaptive Two-
Level Management for the Flash Translation Layer in 
Embedded Systems. International Conference on Computer 
Aided Design (ICCAD’06), San Jose CA, November 2006. 

[13] D. Roselli, J. Lorch, and T. Anderson, 2000. A Comparison 
of File System Workloads. USENIX Technical Conference, 
2000. 

[14] Intel Corporation, 1998. Understanding the flash translation 
layer (FTL) specification. http://developer.intel.com, 1998. 

[15] A. Ban. Flash file system. United States Patent, No. 
5,404,485, April (1995). 

[16] C. Association, http://www.compactflash.org.  
[17] EETIMES, Samsung introduces working prototype of PRAM 

http://www.eetimes.com (2006/9/11). 
[18] IOZone benchmark, http://www.iozone.org. 
[19] A. Birrel, M. Isard, C. Thancker, and T. Wobber, 2007. A 

design for High-Performance Flash Disks. ACM SIGOPS 
Operating Systems Review, Vol. 41(2), April 2007. 

[20] Threaded I/O benchmark, http://sourceforge.net/projects 
/tiobench 

[21] Samsung Electronics, Datasheet K9G8G08UOM, 2006.   
[22] Samsung Electronics, Datasheet KPS1215EZM, 2006. 

 

39


