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ABSTRACT
Real-time Garbage Collection (RTGC) has recently advanced to the
point where it is being used in production for financial trading, mil-
itary command-and-control, and telecommunications. However,
among potential users of RTGC, there is enormous diversity in both
application requirements and deployment environments.

Previously described RTGCs tend to work well in a narrow band
of possible environments, leading to fragile systems and limiting
adoption of real-time garbage collection technology.

This paper introduces a collector scheduling methodology called
tax-and-spend and the collector design revisions needed to support
it. Tax-and-spend provides a general mechanism which works well
across a variety of application, machine, and operating system con-
figurations. Tax-and-spend subsumes the predominant pre-existing
RTGC scheduling techniques. It allows different policies to be ap-
plied in different contexts depending on the needs of the applica-
tion. Virtual machines can co-exist compositionally on a single
machine.

We describe the implementation of our system, Metronome-TS,
as an extension of the Metronome collector in IBM’s Real-time J9
virtual machine product, and we evaluate it running on an 8-way
SMP blade with a real-time Linux kernel. Compared to the state-
of-the-art Metronome system on which it is based, implemented in
the identical infrastructure, it achieves almost 3x shorter latencies,
comparable utilization at a 2.5x shorter time window, and mean
throughput improvements of 10-20%.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.3.2 [Programming Languages]:
Java; D.3.4 [Programming Languages]: Processors—Memory man-
agement (garbage collection)
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1. INTRODUCTION
Recent advances in real-time garbage collection have led to its

production use in a number of significant application areas, includ-
ing financial trading, telecommunications, and military command-
and-control. For instance, IBM’s Metronome collector [4] is being
used in the Navy’s Zumwalt-class destroyer.

However, there is a very wide variety of users interested in RTGC
technology, with a wide variety of application characteristics and
operating environments. Real-time applications may be periodic
(e.g. avionics), queued (e.g. telecommunication switches), or in-
teractive (e.g. video games).

Any of these systems may be either “hard” or “soft” real-time.
We have built both helicopter flight control (generally considered
hard real-time) [3] and music synthesis (generally considered soft
real-time) [2] systems as classical periodic real-time systems. Sim-
ilarly, we have worked with customers building both telecommuni-
cations and missile-defense systems as queued real-time systems.

Classical real-time systems typically operate with a certain amount
of slack. If there is no slack, then the system can’t guarantee to
meet its bounds. But interactive systems may become sluggish dur-
ing bursts of other activity on the machine, and in some cases this
is the desired behavior. Queued systems may absorb temporary
load spikes and tolerate a certain fraction of outliers depending on
a service-level agreement. And the use of adaptive algorithms (that
compute successively more precise results until available slack is
exhausted) allows hard real-time systems to saturate the CPU.

Furthermore, there is a great deal of diversity in the operating
environment: the system may be a uni- or multi-processor; the ma-
chine may be dedicated or shared; and the operating system may
have varying levels of real-time support.

Currently, RTGCs only support a limited subset of the poten-
tial application types and operating environments. For instance,
Metronome works best on dedicated uni- or small multi-processor
systems, and it requires a variety of special RTOS features. BEA’s
soft-real-time collector is more widely deployable, but it suffers la-
tencies as much as 100 times worse. Henriksson’s collector [15]
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Figure 1: Mutator and GC interleaving in Metronome. All mu-
tators are paused when the GC runs.
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Figure 2: Mutator and GC interleaving in Metronome-TS. Mu-
tators are individually taxed and GC work is concurrent.

is best-suited to periodic applications and is fragile under overload
conditions.

In this paper we introduce the tax-and-spend scheduling pol-
icy, which subsumes previous approaches to RTGC (time-based,
work-based, and slack-based). A RTGC using tax-and-spend sup-
ports the full range of system and workload requirements detailed
above. Tax-and-spend requires a collector architecture that is both
incremental (breaking collection work into quanta lasting at most
a few hundred microseconds) and concurrent (allowing collection
to occur in parallel with application execution). To exploit multi-
processors efficiently it must also be parallel (allowing collection
work to be done by multiple threads). We implemented tax-and-
spend in a significantly revised version of Metronome called Metronome-
TS. Metronome was a good starting point for this work because it
is already incremental and somewhat parallel.

2. COLLECTOR DESIGN PREREQUISITES
Tax-and-spend requires its collector to be both incremental and

concurrent. A non-concurrent incremental collector (e.g. Metronome)
performs garbage collection with all application (“mutator”) threads
paused for very short intervals, as shown in Figure 1. Tax-and-
spend requires the alternative organization shown in Figure 2. Both
figures show two mutator threads and two dedicated GC threads.
In Metronome all GC work was done on separate threads to facil-
itate fine-grained scheduling. Metronome-TS makes two essential
changes. First, GC work occurs on the GC threads concurrently
with mutator execution. Second, when mutators do need to stop,
they can be taxed by requiring them to perform short quanta of
collector work themselves (but with different mutators doing this
work at different times, concurrently with the execution of other
mutators).

Taxation is needed when the degree of load on the system makes
it essential to steal small quanta of time explicitly from mutator
threads. Concurrent collection by itself is insufficient, since it re-
lies on the operating system to interleave GC activity with mutator
activity, which does not provide enough scheduling precision to
meet real-time guarantees and prevent heap exhaustion. Taxation
also provides robustness to overload, as we will describe below.

Taxation requires frequent checks in the JVM’s code paths for
pending memory management work. Metronome-TS imposes taxa-
tion in the allocation “slow path” (the path taken by a mutator when
it cannot allocate from per-thread data structures and must replen-

ish them from global data structures). This is supplemented when
needed by forcing taxation at safe points, which are places where
mutator stacks and program counters are consistent. To achieve
safe point semantics, threads frequently check a flag in the thread’s
control structure, and if that flag is set, they invoke a safe point call-
back function. In Metronome, this callback mechanism was used
to stop all the threads. In Metronome-TS we use it to ensure that
each thread (individually) is taxed fairly and does critical tasks in a
timely fashion.

Generally speaking, the tax-and-spend scheduling methodology
requires that a collector is at least both concurrent and highly incre-
mental (with maximum collection quanta well below the WCET of
the intended workload). For good performance on multiprocessors,
even with modest numbers of processors, the capability to perform
collection in parallel is also required. Metronome-TS has all three
properties: it is concurrent, parallel, and highly incremental (down
to a granularity of about 200µs).

Remaining subsections of this section describe some key algo-
rithms that were used to make the already incremental Metronome
into the concurrent Metronome-TS. The treatment is not exhaus-
tive (many engineering changes too diverse to cover in detail were
also required), nor is it prescriptive (there may be other ways of
achieving a collector that is simultaneously incremental, concur-
rent, and parallel and hence schedulable via the tax-and-spend tech-
nique). Aspects of Metronome-TS that are substantially the same
as Metronome are omitted in the interest of space. A description of
the Metronome system is available in [4], and the basic principles
of the Metronome collection algorithm are in [7].

2.1 Global Agreement with Ragged Epochs
In any parallel or concurrent collector there will be a require-

ment for agreement amongst threads, including mutator threads. In
Metronome, agreement was readily achieved (as long as it could be
achieved in a time shorter than the GC quantum) since the collector
had exclusive control when doing GC work and all mutators were
paused at safe points.

Metronome-TS substitutes a ragged epoch protocol in places
where Metronome relied on exclusive control to achieve agree-
ment. The protocol relies on a single global epoch number that can
be (atomically) incremented by any thread, and a per-thread local
epoch number. Each thread updates its local epoch by copying the
global epoch, but it does so only at safe points. Thus, each thread’s
local epoch is always less than or equal to the global one. Any
thread can examine the local epochs of all the other threads and
find the least local epoch value, called the confirmed epoch. The
confirmed epoch is always less than or equal to the global epoch.

Suppose thread A has performed some operation that establishes
a new state of the memory management system (for example, it has
enabled a store barrier that must be honored by all mutator threads
during the next phase of the collection). Thread A then increments
the global epoch and notes the result. Only when the confirmed
epoch equals (or passes) this remembered value can A be certain
that no thread is computing with a too-early view of the state (e.g.,
a view in which the store barrier is not enabled). For hardware
with weak memory ordering, it is necessary for a thread to insert a
memory barrier prior to updating its local epoch.

Implementing this protocol involves one subtlety. Waiting for all
threads’ local epochs to catch up can be delayed indefinitely when
some threads are in I/O waits. However, all such waits occur in
native methods. When the JVM detects that a thread is entering
a native method, it ensures that the thread is at a safe-point and
releases the thread’s VM Access property. Threads without VM
Access do not have access to any JVM data structures and can be
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thought of as potentially up to date with the global epoch (they
will copy it as soon as they reacquire VM Access and before doing
anything to make their view of the memory management system
inconsistent).

Thus, the confirmed epoch is calculated using only threads with
VM Access. There is then a short window during which a thread
may have just regained VM Access but not yet updated its local
epoch. These briefly laggard local epochs are rendered harmless by
remembering the previous confirmed epoch while calculating the
new one and not allowing the confirmed epoch to move backwards.

Threads may also lag due to overload or priority pre-emption.
This is handled by the boosting mechanism described in Section 2.4.

2.2 Phase Agreement Using “Last Man Out”
Garbage collection is inevitably divided into phases like mark-

ing and sweeping. In the architecture described here, there are
more such phases than one might at first think, due to two factors.
First, to achieve incrementality, everything must be broken down
into small steps. A conceptually unified action (such as effecting
the transition from marking to sweeping), gives rise to many dis-
tinct actions. Second, the full Java language has constructs, such as
finalization, weak and soft references, and string interning, which
interact in complex ways with memory management. These con-
structs add phases to the collection cycle: for example, reference
clearing can only be considered once marking is over and it is
known which objects are reachable. In Metronome-TS there are,
in fact, more than thirty phases in the collection cycle.

We require agreement on when one phase of a collection ends
and another begins. Metronome achieved such agreement readily
because all GC work occurred on dedicated threads which could
block briefly as long as enough time remained in the GC quan-
tum. In Metronome-TS, the agreement mechanism must be strictly
non-blocking because some of the work is being done by mutator
threads, each of which can be at a different point within its taxation
quantum. The ragged epoch mechanism was not efficient for this
form of agreement since it did not distinguish threads currently do-
ing GC work from other irrelevant threads. Instead, we employed a
last man out protocol for phase transition agreement. The protocol
works by storing a phase identifier and a worker count in a single
atomically updatable location.

When a mutator thread is potentially eligible for taxation, it atom-
ically increments the worker count, leaving the phase identifier the
same. When a mutator exhausts the work quantum while there
is still work left to do in the phase, it atomically decrements the
worker count, also leaving the phase identifier the same. When
any thread detects that there is (apparently) no more work left in
the phase and also that the current worker count is one, the exiting
worker changes the phase atomically with decrementing the worker
count to zero. This establishes the new phase.

The last man out protocol is a sound basis for phase transition as
long as there is no “invisible work” (that is, there is some global
work queue and any incomplete work is returned to that queue
when a worker exits). Eventually, there will truly be no more work
to do and some thread will end up being the last man out and able
to declare the next phase.

The requirement of making all work visible to the last man out
in a parallel phase is easily met except in one case. This special
case is the termination of the marking phase. The Metronome col-
lectors [7, 4] use Yuasa’s snapshot-at-the-beginning technique [27],
and hence they rely on a write barrier. For that reason, termination
of marking requires coordinated checking of the barrier buffer in
conjunction with the normal work queue. This coordinated check-
ing is difficult to accomplish in a distributed fashion across multiple

worker threads. Consequently, when marking “appears to be over,”
as observed by individual threads, there is a transition to a phase
in which marking is temporarily handled by one thread, which
uses the ragged epoch mechanism to detect whether there is global
agreement that all write buffers are empty. The deciding thread
can declare a false alarm and return to parallel marking. Eventu-
ally termination conditions are met (since snapshot algorithms are
inherently bounded and monotonic) and the single deciding thread
moves to the first post-marking phase.

2.3 Forcing Per-thread Actions
While most phases of a collection cycle just need enough worker

threads to make progress, some require that something be done
by (or to) every mutator thread. At the start of collection, every
thread’s stack must be scanned. At other times, thread-local caches
must be flushed to make information visible to the collector. To
support this capability, some phases are marked as callback phases.
As soon as there is agreement that the collection is in a callback
phase, a distinct callback protocol takes temporary precedence over
last man out.

In a callback phase, a GC master thread frequently examines all
mutator threads to see whether they have accomplished the required
task. For each thread that has not, a different action is taken de-
pending on whether the thread has VM Access. Threads with VM
Access are requested to call back at their next safe point and to per-
form the required action (stack scanning, cache flushing, etc.) on
themselves. Threads that do not have VM Access are briefly pre-
vented from reacquiring VM Access while the callback action is
performed on their behalf by a GC thread. Thus, the maximum de-
lay imposed on any thread during a callback phase is the time taken
to perform the action, regardless of whether the thread does or does
not have VM Access at the time the phase begins. Threads without
VM Access are often in I/O waits and hence there is a good chance
that the thread will avoid delay entirely.

2.4 Ensuring Progress with Priority Boosting
Progress is a fundamental requirement for a real-time collec-

tor, because it must finish collection before the heap is exhausted.
All three of the protocols we have used in Metronome-TS (ragged
epochs, last man out, and callback) can have their progress im-
paired when a thread that needs to be heard from has a lower pri-
ority than other threads that are monopolizing the available proces-
sors. This problem is a case of the well-known priority inversion
phenomenon, but common solutions such as priority inheritance are
not applicable because garbage collection is a complex global op-
eration lacking a single kernel-managed resource. Instead, we use
the kernel’s manual priority setting mechanism to boost the prior-
ities of threads that are delaying progress and then revert them to
their normal priority as soon as possible thereafter.

Another kind of priority inversion may occur when a mutator
thread has to perform collector work while holding a Java lock; we
describe this in more detail along with a solution in Section 4.

3. TAX-AND-SPEND SCHEDULING
We now present a new approach to scheduling of real-time garbage

collection that is sufficiently flexible and general to handle the vari-
ations in both application types and system configurations that we
described in the introduction.

Our approach provides a clean policy/mechanism separation and
subsumes most of the approaches used previously, including time-,
work-, and slack-based schedulers. It also allows a simple default
configuration which is robust and performs well for the majority of
users.
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3.1 Minimum Mutator Utilization
Collector scheduling in Metronome-TS is based on the Minimum

Mutator Utilization (MMU) metric of Cheng and Blelloch [12].
The MMU of a system at time resolution w, MMU(w), is defined
as the minimum fraction of time available to mutator(s) over any
time window of size w during the entire execution of the system.

Thus if a task with a deadline d and a worst-case execution time
e (where e < d) runs during garbage collection, it will meet its
deadline if MMU(d)≥ e/d.

MMU is simple for users to reason about because they can just
consider the system as running somewhat slower than the native
processor speed until the responsiveness requirements become very
close to the quantization limits of the collector.

As a metric, MMU is superior to maximum pause time, since
it accounts for clustering of individual pauses, which can cause
missed deadlines and pathological slowdowns.

As described below, Metronome-TS uses MMU in a much more
general way than collectors like Metronome [7]: different threads
may run at different MMUs, background threads on spare proces-
sors may be used to obtain very high MMUs on mutator threads,
and the units of time can be either physical or virtual.

3.2 Per-thread Scheduling
A key aspect of our system is that measurement and scheduling

of collector work is driven using per-thread metrics, and collector
quanta may be performed on mutator threads.

This has a number of advantages: first, it allows all collector-
related activity to be tracked and accounted for, even things that of
necessity occur on mutator threads (such as obtaining a new write
buffer, formatting a page, and so on). It may be arguable whether
these operations are part of “garbage collection.” However, they
are memory management operations that perturb mutator execu-
tion and therefore the scheduler should track them so that it avoids
scheduling too much work on that thread.

Secondly, by performing collector quanta on mutator threads, we
avoid perturbations of the scheduler caused by operating system
assumptions about how it should behave when a thread voluntar-
ily yields, particularly when the collector is scheduled at a consid-
erably finer quantum size than the operating system (in our case,
200µs rather than 10ms). For example, say we are attempting to in-
terleave one collector and one mutator thread at 200µs granularity.
In an unloaded system, this generally works well. But in a loaded
system, the operating system will assume that since both threads
“voluntarily” (from its point of view) yielded the CPU, they are
done with their operating system quanta, and it may run some other
unrelated thread for its full 10ms. With round-robin scheduling,
this will lead to the JVM getting only 4% of the CPU, instead of
50%. By interleaving at a fine granularity on the mutator thread,
such effects are avoided and the two schedulers operate in a more
orthogonal and compositional manner.

Thirdly, it allows different threads to run at different utilization
levels, providing flexibility when allocation rates vary greatly be-
tween threads, or when particular threads must be interrupted as
little as possible (for instance, on interrupt handlers).

Finally, it allows quantization overhead to be reduced for threads
with less stringent timing requirements.

3.3 Tax-Based versus Slack-Based Scheduling
The most fundamental distinction between approaches to schedul-

ing real-time collection is between tax-based and slack-based. In
a slack-based scheduler, exemplified by the real-time collector of
Henriksson [15], the collector runs during “slack” periods when
the mutator threads have voluntarily yielded the processor. There

may also be additional low-priority mutator threads that run when
neither collector nor high-priority mutator threads are running.

Slack-based scheduling uses a paradigm familiar to program-
mers of classical periodic real-time systems and works very well
in such an environment. However, it can cause catastrophic fail-
ure in overload situations, and it is thus poorly suited to queued,
adaptive, or soft interactive real-time systems.

On the other hand, tax-based schedulers periodically interrupt
the mutator to perform a certain amount of work on behalf of the
collector. Tax-based schedulers include both the work-based ap-
proach used by Baker [8] and many subsequent incremental and
real-time collectors, as well as the time-based approach as exem-
plified by the Metronome [7] collector.

In a work-based system, a certain amount of collector work is
performed every time the mutator performs a certain number of
memory-related operations (allocation, read barriers, or write bar-
riers). The amount of collector work is chosen to be proportional
to the mutator work such that collection will finish before memory
is exhausted.

Work-based scheduling is relatively simple to implement and
does not rely on real-time operating facilities such as high-precision
timers. However, it often suffers from poor MMU and considerable
variation in pause times (in one study, Bacon et al. showed that the
MMU of a work-based schedule did not exceed 50% until the time
window reached half a second [7]). Thus work-based scheduling is
unsuitable for any but the “softest” of real-time systems.

Time-based scheduling taxes the mutator thread based on the
passage of physical time by directly honoring an MMU require-
ment (MMU(w) = u) and interleaving mutator and collector activ-
ity for given amounts of physical time.

Time-based scheduling allows simple but reliable reasoning about
the timing behavior of the system. It works well for queued, peri-
odic, and interactive real-time systems and is robust in the pres-
ence of overload because taxes continue to be assessed. Reasoning
about timely completion is simpler than with a slack-based sched-
uler, but somewhat more complex than with a work-based collector
(although in practice we have found that the vast majority of appli-
cations work with an MMU of 70%). However, in a system with
slack, it introduces more jitter than a slack-based collector, since
collection may occur at any point so long as MMU requirements
are obeyed. It also requires high-precision timing facilities.

3.4 Unifying Tax and Slack Scheduling
Since both tax-based and slack-based scheduling have desirable

properties, we would like to unify them in a single mechanism that
combines their advantages and allows the application of various
policies.

We unify the two mechanisms using an economic analogy: each
mutator thread is subject to a tax rate, which determines how much
collection work it must perform for a given amount of execution.
This is expressed as a per-thread MMU. Dedicated background GC
threads at low or idle priority can run during slack periods and ac-
cumulate credits for the work they perform. In our system, credits
are deposited in a single centralized bank account, but more flexible
(and complex) policies could make use of multiple bank accounts.

Each thread has its own tax rate (MMU), and the aggregate tax
must be sufficient for the garbage collector to finish garbage col-
lection before the system runs out of memory. While the mecha-
nism allows each thread to have an individual MMU, by default all
threads have the same MMU, and so far we have found that this
works for the majority of applications. However, our music syn-
thesizer [2] required a different MMU for concurrent threads with
a very high allocation rate.
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3.4.1 Using Slack: Background Threads
The system has some number of collector background threads,

usually not more than the number of processors. In practice, back-
ground threads are often run at idle priority or are otherwise con-
figured to only run when a CPU is idle. In this way they naturally
run during slack periods in the overall system execution.

Background threads execute collector work in a series of work
quanta. For each quantum that the background thread executes, it
adds the corresponding amount of credit to the bank account.

In the operating system currently targeted by Metronome-TS (the
RHEL5 MRG real-time Linux kernel), it is desirable to assign a
low real-time priority to the background threads rather than run-
ning them at Linux’s SCHED_OTHER priority. This causes them to be
scheduled with a quantum similar to that used by other threads and
allows them to exploit idle processors more efficiently. When run
at real-time priority, the background threads periodically sleep for
a small amount of time. This has a minimal effect on the progress
of the collector but makes it possible for ordinary (SCHED_OTHER)
processes to make progress even when collection within the JVM
might otherwise saturate the machine. This is particularly impor-
tant since it makes it possible for users to log on and kill runaway
real-time processes.

3.4.2 Paying Tax: Mutator Threads
The MMU of each mutator thread specifies its maximum tax rate

and the granularity at which the rate is applied. Note that the MMU
does two things. On the one hand, it ensures that the application can
meet its real-time requirements by guaranteeing that the mutator
can make sufficient progress in a time window. On the other hand,
it allows for the collector to make sufficient progress so that it can
complete on time.

The most straightforward approach is for the thread to pay its
own tax as it goes, as in a classic tax-based system: it alternately
performs mutator work and collector quanta. However, under the
tax-and-spend discipline, when a mutator thread is running and the
time comes to assess garbage collection tax, it first attempts to with-
draw a quantum’s worth of credit from the bank. If this operation
succeeds, the collector is “ahead” and the mutator can skip its col-
lection quantum and return immediately to the mutator. Thus the
mutator only pays tax when there is insufficient collection being
performed during slack periods. More generally, if only a partial
quantum’s worth of credit is available, it can perform a smaller col-
lection quantum and return to the mutator more quickly. The result
is that, in the presence of slack, the mutator runs with both higher
throughput and lower latencies but without the danger of the col-
lector falling behind. Furthermore, it can also take advantage of
partial slack.

Tax-and-spend also allows us to treat slack in a uniprocessor and
excess capacity in a multiprocessor in a uniform way. If there are
four processors and three mutator threads, then a collector thread
can run on the fourth processor and bank enough credits that the
three threads never have to perform work on behalf of the collector.

But if the tax rate does not divide evenly into the number of pro-
cessors (for example, a 70% MMU on four processors would re-
quire 1 1

5 collector processors), a small amount of collection work
will be imposed on the threads running on the other three proces-
sors. However, they will still be taxed in such a way that their
MMU requirements are met.

3.5 Unifying Time and Work Scheduling
So far we have described the taxation in terms of MMU over

time, thus implementing time-based scheduling. However, we can
unify both time- and work-based scheduling simply by treating

work as a different way of measuring time. Thus time is virtu-
alized and can be measured in absolute physical time, per-thread
CPU time, bytes allocated, safe points executed, and so on. Dif-
ferent choices of virtual time axes yield schedules with different
tradeoffs in terms of timing precision, overhead, and stringency of
requirements on the hardware and operating system.

In fact, even in time-based mode, Metronome-TS uses per-thread
CPU time rather than absolute physical time. There are two reasons
for this. First of all, since we are performing per-thread scheduling,
global time will not work reliably in overload situations and may
make the feasibility analysis complex if portions of the system are
delayed for non-deterministic amounts of time in blocking system
calls (such as I/O waits). Second, and more importantly, it allows
users to reason more compositionally about the scheduling behav-
ior of the operating system versus the scheduling behavior of the
Java virtual machine.

Since both the standard Linux (RHEL5) and real-time Linux
(RHEL5 MRG) environments in which we have implemented the
system provide high-precision per-thread timing, we have not im-
plemented some of these more “virtualized” time axes, since they
provide far worse timing behavior and are primarily of use in en-
vironments like the Windows operating system, which provides no
real-time guarantees.

3.6 Oversampling
The original Metronome collector, when given an MMU require-

ment of MMU(w) = u, would schedule one collector quantum of
size w · (1− u) every w time units. However, this has three dis-
advantages. First, any small amount of jitter or overshoot in the
scheduler quantum will cause an immediate MMU failure. Second,
if the system is capable of using smaller quanta, then users will not
receive the improved average-case latency at shorter time scales
that may have significant benefits for applications like queued real-
time systems. And third, it requires more careful consideration of
MMU requirements, complicating the interface for naïve users.

Thus Metronome-TS, like later versions of Metronome, makes
use of oversampling [6], a technique from audio processing, in
which higher fidelity is achieved by using a higher frequency for
digital processing than the final output frequency requirement.

Oversampling provides both more accurate MMU at the chosen
time window as well as higher (albeit not as tightly guaranteed)
MMU at shorter time windows, and it allows much more broadly
applicable default settings for the collector.

4. LOCK DEFERRAL
The combination of oversampling and per-thread MMU based

scheduling gives Metronome-TS the opportunity to dynamically
adjust how GC work is scheduled to be sensitive to application crit-
ical sections. The basic scheduling algorithm can be extended as
described below to reduce the worst-case execution time of critical
sections in certain types of real-time programs by briefly deferring
GC work. This is similar in spirit to work on avoiding preemption
when operating system locks are held [17].

For this extension to be applicable, the work of the application
must be composed of critical and non-critical sections. It works
well when the critical sections are short (shorter or similar in length
to a GC quantum) and at the time scale of a GC scheduling window
there must be sufficient flexibility (due either to idle time or non-
critical section work) to make it feasible to schedule the required
GC work outside of the critical sections.

The key observation is that oversampling divides an MMU time
window into a number of smaller units at which GC operations
are scheduled. For example, a 4ms MMU window with 200us GC

249



GCs MMU% Physical Pause Times (µs) Memory Memory Work (%) Boosted Ragged
Benchmark @4ms Max Avg StDev Load (%) Alloc Mutator Background (%) (per GC)

DaCapo (no background GC threads)
antlr 9 68.17 359.22 15.12 47.08 10.49 29.86 63.1 7.04 0.09 42.1
bloat 43 67.85 363.29 18.96 52.58 18.11 26.58 68.08 5.34 0.1 50.2
chart 40 66.7 359.46 26.61 62.23 9.45 21.54 67.8 10.66 0.0 110
eclipse 163 67.37 328.41 30.51 66.98 21.12 11.99 81.18 6.84 0.12 64.6
fop 3 68.91 390.68 23.53 62.46 8.55 20.26 71.02 8.72 0.03 100.7
jython 39 66.51 364.06 22.86 57.51 17.87 22.89 69.79 7.32 0.17 82.3
luindex 19 68.59 333.82 12.32 41.31 9.75 34.87 58.74 6.39 0.05 44.3
pmd 24 67.37 377.53 33.91 73.33 19.67 16.65 77.48 5.87 0.04 147.7
hsqldb 3 67.41 382.46 41.84 73.29 9.3 18.63 77.28 4.1 0.19 282.7
lusearch 55 60.78 9623.63 139.99 442.29 58.24 2.87 96.69 0.44 0.91 8.7
xalan 32 66.95 7297.89 29.19 83.86 13.41 14.38 82.83 2.79 0.59 12.1

SPECjvm98 and SPECjbb2000 (no background GC threads)
compress 8 70.09 337.94 26.47 71.01 1.61 7.82 60.74 31.45 0.05 51.8
db 10 68.13 310.05 29.48 70.88 5.06 14.68 69.66 15.66 0.07 210.3
jack 7 68.75 344.67 8.8 31.88 7.83 48.07 48.4 3.53 0.03 40.6
javac 13 68.07 341.15 26.26 66.71 19.7 17.17 77.95 4.88 0.04 65.5
jess 16 67.91 354.47 11.4 39.25 9.58 38.99 57.24 3.77 0.03 49.9
mpegaudio 1 89.95 350.55 29.77 78.29 0.21 2.96 59.71 37.33 0.002901 42
mtrt 9 67.23 369.49 25.91 58.87 22.1 28.32 67.9 3.78 0.07 89.2
jbb 133 72.03 381.18 29.28 63.35 13.29 17.03 80.29 2.68 0.0 109.3

DaCapo (2 background GC threads)
antlr 9 76.99 128.51 8.12 6.1 14.7 17.21 0.3 82.5 0.16 2.2
bloat 44 83.14 232 8 6.59 24.48 16.25 0.44 83.3 0.13 4.9
chart 43 76.09 231.71 8.92 6.34 12.6 11.84 0.18 87.98 0.0 7.8
eclipse 196 68.61 207.29 7.06 5.89 30.73 7.67 0.2 92.13 0.13 7
fop 2 81.36 103.56 8.34 6.19 10.98 15.05 0.11 84.84 0.08 7.5
jython 56 67.91 279.16 9.59 7.3 28.97 13.54 0.25 86.21 0.2 8.3
luindex 19 81.89 131.2 8.13 5.47 12.78 18.73 0.2 81.07 0.07 3.6
pmd 59 74.24 245.38 9.12 7.74 41.95 5.51 0.31 94.19 0.17 9.7
hsqldb 7 80.76 868.39 21.59 48.99 27.66 2.38 4.07 93.55 0.01343 83.9
lusearch 48 57.23 10268.38 127.98 419.83 60.58 3.34 80.75 15.91 0.88 9.5
xalan 36 67.78 1861 19.66 56.53 25.32 7.27 16.16 76.57 0.42 9.9

SPECjvm98 and SPECjbb2000 (2 background GC threads)
compress 7 86.39 93.86 9.81 11.91 1.48 1.41 0.43 98.16 0.03 2.3
db 11 87.99 256.98 9.71 6.57 5.95 7.97 0.24 91.79 0.03 8.7
jack 7 87.03 138.21 9.18 5.31 11.83 22.84 0.17 76.99 0.03 6
javac 11 75.61 209.55 7.69 6.02 25.24 13.17 0.26 86.57 0.05 8.6
jess 16 85.34 198 8.67 5.95 13.92 21.28 0.25 78.47 0.05 6.1
mpegaudio 1 89.37 98.67 8.39 12.28 0.43 3.61 1.5 94.89 0.02 3
mtrt 11 87.07 128 10.32 7.17 34.07 16.48 0.19 83.33 0.17 11
jbb 154 80.39 272.14 10.62 7.52 17.25 13.83 0.47 85.7 0.0 35

Table 1: Summary statistics for Metronome-TS on DaCapo, SPECjvm98 and SPECjbb2000 benchmarks

quanta can be divided into 20 scheduling units. With a 70% MMU
target, the system should schedule GC work in 6 of these units and
allow the thread to execute unperturbed in the other 14. As long as
the MMU-derived scheduling constraints are met (both in this win-
dow and in the nearby windows), there is flexibility in scheduling
the GC work. In particular, if the thread is in a short critical sec-
tion when the system decides to schedule GC work on the thread,
the work could instead be deferred until immediately after the criti-
cal section without significantly changing the thread’s MMU or the
GC’s forward progress.

The key implementation issue is to dynamically balance the com-
peting goals of avoiding GC work in critical sections, thus improv-
ing the predictability of the application, and scheduling sufficient
GC work on the thread, thus ensuring that the GC completes in a
timely fashion. We again do this by applying a banking model.
Each thread has a private critical section deferral account that is
initialized to a GC quantum worth of credits (using the example
values above: 200). If the thread is in a critical section when it is
asked to perform GC work and it has a positive credit balance, then
it is marked as having deferred GC work and is allowed to resume
normal execution. When it exits the critical section, its balance is
debited by the time the GC work was deferred and it immediately
fulfills its GC obligation. If the critical section is long, the thread is

asked to perform GC work again before it exits the critical section.
If, after deducting the time since it initially deferred the work, its
balance is no longer positive then the deferral is canceled. Each
time the thread performs GC work, it receives a small credit to its
critical section balance. In our implementation we bound the al-
lowable values of the critical section balance to be within 1 GC
quantum of zero and give credits at a rate such that an entire GC
quantum of credit can be earned in a scheduling window. Using the
numbers above, the balance is bounded between -200 and 200 and
each time the thread does a quantum of GC work it gets a credit of
33 (200/6).

For the evaluation in section 5.4, we used the simple heuristic
that critical sections are indicated by the thread holding a Java-level
monitor. The JVM’s monitorenter/exit sequences were augmented
to increment/decrement a per-thread nesting count and to call into
the GC when a thread that was marked as having deferred GC work
exits its outermost locked region.

5. EVALUATION
We have implemented Metronome-TS in the IBM production J9

Java virtual machine. The implementation began with a develop-
ment version of the implementation of the Metronome collector in
the IBM WebSphere Real Time product [4], which is a parallel (but
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non-concurrent) version of the original [7] Metronome algorithm.
This code base fully supports all Java 5 language features including
finalization, class unloading, and weak, soft, and phantom refer-
ences. However, for our experiments we have disabled RTSJ (JSR-
1) support in the JVM and therefore the Metronome performance
results are not comparable to the WebSphere Real Time product.

Both Metronome and Metronome-TS are implemented in the ex-
act same base JVM, and share much of the common GC code and
data structures. Thus, comparisons between the two algorithms are
made on a level playing field with the only differences in the sys-
tems being the GC algorithms themselves.

For Metronome-TS, we use per-thread CPU consumption as re-
ported by the operating system as the virtual time axis to compute
its per-thread MMU. Metronome uses physical time and a global
MMU.

For all measurements we set a utilization target of MMU(4ms)=70%
and use a nominal collector quantum of 400µs for Metronome and
200µs for Metronome-TS. The flexibility of the tax-and-spend schedul-
ing module enables smaller quanta for Metronome-TS than are fea-
sible with the more rigid scheduling of Metronome.

5.1 Experimental Environment
Experiments were performed on an 8-processor IBM LS41 Blade

containing four dual-core 2.4 GHz AMD Opteron 8216 proces-
sors, each of which has a 1MB unified L2 cache. The total sys-
tem memory was 16 GB. For experimental purposes, one processor
was dedicated to collection of trace data to minimize interference
from measurement. We also reserved 4 GB of memory as a RAM
disk (/dev/shm) to avoid perturbation by I/O due to trace collec-
tion. Thus we effectively used a 7-processor machine with 12 GB
of memory for the evaluations.

The operating system was Red Hat Enterprise Linux 5 Real Time
edition (RHEL5 MRG). RHEL5 MRG is a 2.6.24 Linux SMP ker-
nel with the PREEMPT RT patch set, running in 64-bit mode.

Evaluations were performed using a combination of well-known
Java benchmarks: DaCapo, SPECjvm98, and SPECjbb20001. To
factor out interference and variation due to the JIT compilation,
each run involved multiple iterations of the benchmark. During the
warmup iterations, JIT compilation happened normally. The har-
ness then invoked Compiler.disable() to turn off the JIT com-
piler, thus ensuring that in the measurement period no further JIT
compilation occurred.

In addition, we evaluated a complete application: the control
program for the JAviator quad-rotor helicopter [3] (10 KLOC). For
this evaluation, the control program did not use the Exotasks system
but was reorganized to depend only on real-time garbage collection
for its low-latency scheduling requirements. The application was
run on the same hardware as the other benchmarks, using a simu-
lated helicopter running on a separate processor.

5.1.1 Data Collection
To fully understand and evaluate the performance of the com-

plete system, we gathered traces from the operating system, JVM,
and application with the TuningFork [5, 26] system. TuningFork
provides trace collection facilities which we used to instrument the
JVM and the applications. It also includes a facility for gathering
Linux traces via the System Tap [22] facility.

The TuningFork infrastructure allows us to collect highly de-
tailed yet compact traces that show all collector-related activity in
the JVM and all scheduling decisions by the operating system. We

1The reported results do not directly or indirectly represent a SPEC
metric as the benchmarks were run with modified harnesses to en-
able the detailed collection of GC and application metrics.
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Figure 3: Speedup over Metronome of Metronome-TS with and
without background threads.

use this to compute statistics that are based on the physical times
when processes are running, not counting such things as operating
system interrupt handlers.

5.2 Collector Performance
To begin with, we examine basic metrics for real-time collection

across the standard benchmarks from the DaCapo and SPECjvm98
suites, as shown in Table 1. We evaluate mutator utilization, pause
times, distribution of memory system work (both allocation and
collection), and the effects of priority boosting.

For each set of benchmarks, we show results with no background
GC threads and with two background GC threads. Without back-
ground threads, the mutators are being taxed to perform all collec-
tion work, regardless of whether spare CPU capacity exists. With
background threads, collection work should move to the spare pro-
cessors, except in the presence of overload. The contrast sheds light
on how the system performs when CPU resources either do or do
not exceed the multiprogramming level.

The system maintains per-thread mutator utilizations that include
all work done in support of the memory system by the mutator.
This includes collector quanta when they are being performed by
the mutator (as when there are no background threads) as well as
stack snapshots (when collection begins), write barrier buffer man-
agement, and asynchronous operations for the ragged epochs. We
also charge all allocation-related activity (other than simple list de-
queue operations) against the MMU of the mutator. Previous work
on garbage collection has tended to ignore the MMU effect on mu-
tators caused by allocation and auxiliary work; thus our MMU re-
sults are significantly more stringent than those of previous work.

Three of the DaCapo benchmarks (hsqldb, lusearch, xalan)
have more than 7 concurrent threads, and they therefore ran in
overload conditions. The lusearch benchmark has 32 simultane-
ous threads at the same priority and allocates at an extremely high
rate (about 150 MB/s). Thus these three benchmarks can not really
achieve real-time behavior, and we will treat them separately.

In the absence of overload, all programs achieve an MMU of
at least 66% at a 4ms time window. For comparison, Metronome
requires a 10ms time window to achieve a comparable MMU. Only
lusearch misses its target significantly, with an MMU of 57%.

The next three columns in Table 1 show the duration of pause
times in physical time: that is, wall clock time from the beginning
of a collector quantum until its end. In the absence of overload
this is the maximum time the application is interrupted by the col-
lector. Without background threads the maximum pause is 391µs;
with background threads the mutator threads do far less collector-
related work, and the maximum pause drops to 279µs. Note that
with background threads the average pause time and the standard
deviation also drop considerably.
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Generational Concurrent Opt Average Pause Metronome

Table 2: SPECjbb2000 transactions time distributions for three different J9 garbage collectors. Note that the y-axis is logarithmic
and the x-axis range on each graph is from 0 to 100 milliseconds..

In the presence of overload, physical time pauses are as much as
10.3ms. However, this is simply due to the fact that the operating
system deschedules the process in the midst of a collector quantum
in order to allow other eligible threads at the same priority a share
of the CPUs.

The next column gives the memory load—that is, the percentage
of total CPU time spent in either allocation or garbage collection.
The following 3 columns show the component parts of the memory
load: mutator allocation, mutator collection, and background col-
lection. The memory load varies greatly across applications. How-
ever, with background threads the mutator threads always spend
less than 1.5% of their time performing collector work, although
they may still spend significant amounts of time on allocation. On
the other hand, the total memory load increases with background
threads because the collector runs more frequently, using the spare
cycles to keep memory utilization low.

The last two columns of Table 1 relate to the need for priority
boosting to ensure that lack of global progress by the collector does
not create a meta-level priority inversion. In the absence of over-
load, mutator threads never spend more than 0.2% of their time at
a boosted priority, since they generally reach “safe points” quickly
and allow the collector to make progress through its phases, as con-
trolled by the ragged epochs. However, in the presence of overload,
threads spend as much as 0.91% of their time boosted, since the
collector must occasionally force threads to “roll forward”. Never-
theless, this is still a modest fraction of the total time.

Figure 3 shows the throughput performance of Metronome-TS
relative to that of Metronome. Overall, not only are the applica-
tions achieving significantly better real-time behavior (and with a
more stringent definition of GC work in the MMU computation),
but throughput is improved as well. The mean speedup is 11%
with no background threads and 20% when background threads are
used to exploit excess CPU capacity by offloading GC work. The
only slowdowns are 8% on compress and 1% on db with back-
ground threads. These two benchmarks are the only ones in our
suite where a significant fraction of the GC work is scheduled via
safe points instead of allocation slow paths. We speculate that the
slowdowns could be reduced by fine tuning this mechanism.

5.3 SPECjbb2000 Case Study
This section presents an in-depth analysis of the SPECjbb2000

benchmark to illustrate how Metronome-TS performs on a simpli-
fied transaction processing workload. To gather the data, we added
TuningFork instrumentation to jbb to time individual transactions.

Figure 2 and Table 3 show the distribution of individual trans-
action times for a 4 minute, 4 warehouse run of jbb using three
different J9 garbage collectors. The two non-realtime collectors

Garbage Transaction Times (microseconds)
Collector Median 99.9% 99.99% 99.999% Max
GenCon 39 1,081 31,654 41,550 55,462
OptAvgPause 38 1,491 9,781 15,434 86,093
Metronome 114 893 997 1,098 1,756
Metronome-TS 113 601 649 694 762
Metronome-TS(2 bg) 109 384 437 565 733

Table 3: SPECjbb2000 Transaction Times

are generational and non-generational concurrent mark/sweep col-
lectors (IBM SDK J2SE Java 5 SR 5). They have excellent average
case performance, but suffer from very large outliers. Note that the
y-axis is logarithmic to make the outliers observable. In contrast,
average case performance on Metronome is 3x lower, but worse
case behavior is 1-2 orders of magnitude better than the other col-
lectors.

Figure 4 compares Metronome (top graph) and various configu-
rations of Metronome-TS. The Metronome data is identical to the
bottom graph of Figure 2, but shown at a 50x finer scale. The
“humps” in the Metronome graph are caused by transactions that
overlap with its non-concurrent 400µs GC quantum. The second
and third graph show Metronome-TS with zero and two background
threads respectively. Even without background threads, Metronome-
TS does significantly better than Metronome. Both the shorter
quantum (200 µs) and the more precise tracking of MMU to in-
clude allocation and write barrier slow path operations as GC work
contribute to the improvement. Since there is spare capacity in
this scenario, Metronome-TS is able to off-load virtually all GC
work to the background threads and achieve the smooth distribu-
tion shown in the third graph. Metronome-TS is able to obtain sig-
nificantly better real-time behavior than Metronome and also sig-
nificant throughput improvements: 19% better without background
threads and 36% with them.

The fourth and fifth graphs of Figure 4 show transaction times
when the system is loaded with additional CPU-bounded processes
running at normal priority and at a real-time priority between that
of the background threads and the jbb warehouse threads. The key
observation is that, under normal load, the background threads con-
tinue to function (as shown by the similarity of third and fourth
graphs), but under real-time load the background threads smoothly
get out of the way (shown by the similarity of the second and fifth
graphs).

5.4 Effectiveness of Lock Deferral
To isolate the potential benefits of deferring GC work units when

application threads are in short critical sections, we wrote a sim-
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Metronome

Metronome-TS

Metronome-TS with background GC threads

Metronome-TS with background threads and SCHED_OTHER load

Metronome-TS with background threads and real-time load

Table 4: SPECjbb2000 transactions time distributions with
real-time collectors. The y-axis is logarithmic while the x-axis
ranges from 0 to 2000 microseconds. The Metronome graph
shows the same data as Figure 2, but at a 50-times finer scale.

Critical Section Length (microseconds)
Median Std Dev 99% 99.9% Max

Deferral Enabled 224 15.1 271 290 363
Deferral Disabled 221 56.1 735 807 854

Table 5: Impact of GC Work Deferral in Critical Sections.

ple synthetic workload in which worker threads spend 5% of their
time executing in critical sections. They perform the same basic
computation in both critical and non-critical sections: allocating
memory at a rate of 1.8MB/sec, mutating the heap, and otherwise
computing. The critical sections are sized to be the same order of
magnitude as the GC quantum (250 microseconds).

Table 5 reports the impact of GC work deferral on critical sec-
tion length. The program was run for 5 minutes with and without
deferral. In both runs, over 63,000 critical sections were completed
and 190 GC cycles occurred. Overall throughput, median critical
section length, MMU, and peak and average memory usage were
virtually identical between the two runs. The only significant dif-
ference can be seen in the greatly reduced standard deviation, 99%,
99.99%, and max values of the critical section lengths acheived
when deferral was enabled. These improvements in predictability
are enabled by relatively small variations in the scheduling of GC
work: work was only actually deferred out of 1.2% of the executed
critical sections.

5.5 The JAviator Control Application
We ran the JAviator control application on both Metronome and

Metronome-TS, measuring the times between successive readings
of the gyro sensor data. For optimal performance of the control,
these readings needed to occur 20ms apart. There is a certain
amount of natural jitter in this application due to the behavior of the
simulated sensor and the fact that the simulation was running on a
separate machine (the same jitter occurs in the real JAviator due to
communication delays from the actual gyro). Thus, the differences
in the mean and standard deviation between the two runs were not
dramatic: mean=20.028, std.dev=0.368 for Metronome-TS, as op-
posed to mean=20.059, std.dev=0.448 for Metronome. However,
the maximum was only 20.059ms for Metronome-TS as opposed
to 23.739ms for Metronome, and the several larger outliers in the
latter coincided with garbage collection quanta. Thus, we have di-
rect evidence that the difference between these algorithms can have
a direct impact on a real application where timing differences can
directly affect the stability of a device under control.

6. RELATED WORK
Real-time garbage collection was first explored by Baker [8], fol-

lowed by numerous others [19, 14, 1, 24, 27, 15]. The minimum
mutator utilization metric was introduced by Cheng [11] and ex-
ploited by Metronome [7], which also had a strict bound on mem-
ory consumption. Although the implementation of Metronome-TS
evaluated in this paper did not include compaction, suitable ap-
proaches have been proposed [18, 20]. A commercial implemen-
tation of the Metronome algorithm is part of the IBM WebSphere
Real Time VM [4]. Azul [13] and BEA [9] are production systems
that also provide significantly reduced pause times. Ovm [21] is
a research prototype that includes a collector based on Metronome
but does not implement the complete Java specification.

The tax-and-spend approach that Metronome-TS uses to sched-
ule collector work is an example of an economic model. Such mod-
els are becoming common in distributed systems (e.g. [10]) where
the actors in the model economy have analogs in the real money

253



economy. They have also been used in a less externalized way
(e.g. in databases [25]) as a way of managing complex cost/benefit
tradeoffs. Here, we have specialized this technique for the problem
of integrating slack-based and tax-based scheduling in a garbage
collector.

Metronome-TS uses priority boosting to ensure progress when
there is significant competition for processor resources, overcom-
ing a form of priority inversion. This phenomenon was first rec-
ognized as a problematic behavior of monitors in the presence of
priority scheduling [16]. The technique of priority inheritance [23]
was developed as one solution. Priority boosting achieves the ef-
fects of priority inheritance manually, which is needed in the case
of Metronome-TS since it lacks a concrete single resource required
to activate kernel-assisted mechanisms.
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