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ABSTRACT

We investigate the problem of specification based testing
with dense sets of inputs and outputs, in particular with
imprecision as they might occur due to errors in measure-
ments, numerical instability or noisy channels. Using quan-
titative transition systems to describe implementations and
specifications, we introduce implementation relations that
capture a notion of correctness “up to ε”, allowing devia-
tions of implementation from the specification of at most ε.
These quantitative implementation relations are described
as Hausdorff distances between certain sets of traces. They
are conservative extensions of the well-known ioco relation.
We develop an on-line and an off-line algorithm to generate
test cases from a requirement specification, modeled as a
quantitative transition system. Both algorithms are shown
to be sound and complete with respect to the quantitative
implementation relations introduced.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging;
D.2.8 [Software Engineering]: Metrics;

General Terms

Reliability, Theory.
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1. INTRODUCTION
Testing is the most popular validation technique for soft-

ware systems used in practice. At the same time, testing
is expensive, taking from 40%-70% of all system develop-
ment costs. Model-driven testing is an innovative technique
that aims at reducing these costs by providing automated
techniques for test case generation, execution and evalua-
tion. Starting point is a formal model representing the sys-
tem requirements specification, usually given as a transition
system of some form. The first model-driven test theories
[14, 6] considered the temporal order in which the events of
the implementation-under-test (IUT) should take place. Re-
cently, several extensions have been developed which surpass
plain functional testing and also take into account quantita-
tive information of the IUT: [3, 1, 10, 12] extend the classical
model-driven test theories with real-time; [7, 8] with data,
and [17] to hybrid systems. These papers provide a solid
formal underpinning of real-time, hybrid and data testing,
together with methods for automatic test case generation,
execution and evaluation.

These theories, however, handle the numerical values con-
tained within the requirement specification and the IUT
with an infinite precision. That is, they do not take into
account deviations from these values due to measurement
errors, numerical instability or noisy channels: e.g., if the
specification requires a response time of 1 second, but the
IUT responds within 1.01 second, a fail verdict is generated,
even though the deviation might be tolerable.

For real-time testing, [11] overcome this problem by ex-
plicitly modeling the tester’s time observation capabilities
through a digital clock. Also in the area of verification, the
realization that real-time models are idealized mathematical
abstractions that may not be implementable in physical real-
ity has led to different, more robust semantics for real-time
models [9, 13, 4]. For systems where the numerical infor-
mation represent different quantities than real-time, such as
resources or physical phenomena, we are not aware of such
theories, neither in testing nor in verification.

This paper presents a model-driven test theory in the pres-
ence of imprecisions: rather than concentrating on one par-
ticular area like timed or hybrid testing, we present a general
theory for testing quantitative systems that works for sys-
tems containing numerical information, no matter how the
numbers are interpreted. This allows us to focus on the
essentials of testing with imprecise information; one can al-
ways specialize our theory to deal with the particularities of
a concrete (real-time, hybrid, probabilistic) data domain.

We set our theory in the context of quantitative transi-
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Figure 1: Testing Scenarios

tion systems (QTS). These are an extension of input/output
transition systems with continuous information: Each ac-
tion in a QTS carries also a value x ∈ [0, 1]. Based on this
model class, we define conformance relations qiocoε , a con-
servative extension of the well-known ioco relation [14] and
parameterized with a tolerance value ε. An implementa-
tion conforms to a specification as long as it is functionally
correct (i.e. delivers only outputs that are expected) and
deviates in the quantitative part by at most ε. The pre-
sented theory relies on so-called distance functions [5], or
distances. These distances, defined on the actions, traces
and QTS, measure how far one action, trace or QTS lies
apart from another. Our testing scenario finds out how far
an IUT is from conforming to the specification: We show
that, if every output generated by the IUT lies closely to a
output one expects, then the distance (formalized by a quan-
titative notion of the conformance relation qiocoε ) will be
small, otherwise it will be large.

We start out from the classical testing framework, as it is
depicted in Figure 1 (a) and formalized in the ioco theory.
The tester has access to the specification, and sends inputs
derived from the specification to the implementation. The
implementation responds with one or more outputs (or no
output at all). The tester checks whether the received (lack
of) output is correct according to specification.

For our quantitative testing framework, we assume that
the specification and implementation can be modeled by
QTS. Inputs are of the form i?(x) and outputs of the form
o!(y)1; i and o indicate the input or output event, and x, y
the quantitative information assigned to it. In Figure 1 (b)
we extend the previous scenario with two boxes which rep-
resent the perturbances inputs and outputs are subjected
to. The sources of the perturbances are not relevant, but
we assume that the perturbances are at most δ: an input
a?(x) sent to the implementation arrive at the IUT as input
a?(x′), where |x′ − x| ≤ δ. Similarly, the implementation
may then produce an output b!(y), that may arrive as b!(y′)
at the tester, where again |y − y′| ≤ δ. The implementation
itself might also be a source of deviation, where an input,
even if unperturbed in transmission, might be interpreted as
a?(x′) with |x − x′| ≤ γ, and an output b!(y) might be sen
out as an output b!(y′) with |y − y′| ≤ γ.

Based on this model and the relation qiocoε , we present
an distance dqioco that measures how far a system imple-
mentation lies from a system specification. We present two
testing algorithms that estimate the dqioco-distance between
an implementation and a specification through testing. The
first approach is on-line, and interleaves the test derivation
and test execution phase. That is, each choice of the tester
(i.e. observing the IUT or providing some input) in per-
formed immediately. The second one is a batch or off-line
approach, where test cases are first generated, and sub-

1We mark inputs with ?, outputs with !.

sequently executed against the IUT. Both approaches are
sound and complete with respect to qiocoε , up to the
perturbations of ε. This means that if ε = γ + δ and
I qiocoε S , then no test case derived from S will report a
distance of more than ε (soundness) and there exist a test
case that gets arbitrary close to ε (completeness).

For space restrictions, the current paper does not contain
proofs, for which we refer the reader to [2].

Structure of the paper.
In Section 2 we give a semi-formal introduction in the ioco

theory. In Section 3 we introduce QTS. In Section 4 we in-
troduce distances on sets of traces. In Section 5 we define
the qiocoε relations and analyze some of their properties.
In Section 6 we introduce the on-the-fly testing algorithm
for qiocoε and prove its soundness and completeness. In
Section 7 we introduce test cases. We conclude with Sec-
tion 8.

2. IOCO TESTING
In this section we introduce the basic principles of the

ioco testing theory [14], which are our starting point for the
quantitative testing approach. Specification-based testing à
la ioco is all about sequences of inputs and outputs, the so-
called traces. The most interesting traces are the test execu-
tions, which comprise inputs, as they are sent by the tester,
and outputs, as they are returned by the implementation
(c.f. Figure 1 (a)), in chronological order. It is assumed that
the sets of inputs and outputs, LI , LO , are finite. A test ex-
ecution is thus formally a trace σ ∈ (LI∪LO)∗, which is syn-
thesized by tester and implementation as testing proceeds.
The specification, which serves as input to the tester2, is a
formal object which describes a set of traces T ⊆ (LI∪LO)∗.
These specifications are usually labeled transition systems,
specified by a process algebra or other formalisms. The cor-
rectness criterion which the tester employs is that every test
execution σ must be element of T , σ ∈ T . The tester can
choose between sending an input to the implementation and
waiting for an output from the implementation. If tester
and implementation have already composed test execution
σ and the tester decides to continue testing by sending an
input, it will only choose an input i? such that σ·i? ∈ T .
A specification does not need to be input-enabled, i.e. it is
allowed that {i? | σ·i? ∈ T} ( LI . The implementation
must be input-enabled, i.e. must be able to accept all inputs
at all times. The implementation extends a test execution
σ by returning outputs. If it returns output o! ∈ LO and
σ·o! ∈ T , then testing can continue. If, however, σ·o! 6∈ T ,
then this is considered by the tester as a test-failure, since
the correctness criterion is violated. Testing stops in this
case. This scheme does hinge on the requirement that an
implementation always produces an output eventually, if the
tester waits for one. This is however not realistic: consider
a web server as implementation to be tested. Such a server
would never produce an output after it is freshly started,
before not some request (i.e. an input) for a web page comes
in. The ioco testing approach considers therefore quiescence
of the implementation. That means in practice that, if an
implementation does not produce an output, the tester ex-
tends the test execution σ after a timeout of appropriately
chosen length with a synthetic output δ, which somewhat

2We assume the tester to be a software tool.
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Algorithm 1 ioco testing algorithm

Require: T set of traces of specification, I the implemen-
tation, n ∈ IN .

1: procedure ioco otf(I, T, n)
2: σ ← λ;
3: while |σ| ≤ n do
4: [ σ·i? ∈ T ]→
5: send i? to I
6: σ ← σ·i?;
7: end
8: [true]→ receive output o! from I
9: σ ← σ·o!;

10: if σ 6∈ T return(fail)
11: end
12: end while
13: return(pass)
14: end procedure

paradoxically denotes “lack of output observed”. Therefore
the previous statement that T ⊆ (LI ∪LO)∗ is inaccurate in
the sense that the specification must also specify when quies-
cence is allowed to be observed. The specification must thus
actually define a set of traces T ⊆ (LI ∪ LO ∪ {δ})∗. ioco is
a testing theory, which means that the whole approach in-
formally explained above is actually described in a complete
formal framework. Specifications and implementations are
modeled as labeled transition systems defined on LI ∪ LO ,
and the correctness criterion is formalized as the implemen-
tation relation ioco, which gives the theory its name. On
the formal level it is thus assumed that the set of traces of
the implementation is also known. We assume that I is this
set. The implementation is ioco-conforming to the specifi-
cation, if the following holds. For all σ ∈ T and all o! ∈ LO :
σ·o! ∈ I implies σ·o! ∈ T. The ioco theory has a formal def-
inition of test cases, which can be employed by the testing
tool for offline testing. These test cases are usually described
as deterministic, acyclic labeled transition systems defined
over (LI ∪ LO ∪ {δ}). It can be shown that the set of test
cases is sound and complete. Soundness means that when-
ever a test case that is executed leads to a test failure, the
tested implementation is indeed not ioco-conforming to the
specification. Exhaustiveness means that, if all test cases
are executed an appropriate number of times and report no
failure, then the implementation is ioco-conforming. This is
of course only a theoretical result, since the set of test cases
is usually infinite. Instead of executing pre-fabricated test
cases it is also possible to conduct on-the-fly testing, i.e. to
generate and execute test cases simultaneously. This is de-
picted in Algorithm 1, where procedure ioco otf is called
with parameters I (the implementation), trace set T as the
specification, and the maximal number of test steps n. Local
variable σ denotes the current test execution and is initial-
ized with λ (the empty trace). The while-loop (line 3) is left
either if n test steps have been executed, or a test failure is
observed (line 10). The tester either supplies an input to the
implementation, if one exists (line 4), or receives and output
(line 8). The choice is nondeterministic. In either case, σ is
updated with the new input or output (lines 6 and 9, respec-
tively). If in line 10 the condition σ 6∈ T is true, testing ends
with a failure. If the while-loop is terminated, a pass verdict
is returned. This algorithm is essentially implemented in the
testing-tool TorX [15].

The concepts of implementation relation, on-the-fly test-
ing, test cases and test executions will be extended for quan-
titative testing.

3. QTS
This section introduces quantitative transition systems (ab-
breviated QTS). These are labeled transition systems whose
actions a(x) consist of a label a and a value x ∈ [0, 1]. We
start with some notation.

Let A be any set. Then A∗ is the set of all finite sequences
over A. We write the concatenation of sequences σ, ρ ∈ A∗

by juxtaposition, i.e. as σρ.
For ρ ∈ A∗, we say that σ is a prefix of ρ, if ρ = σσ′ for

some σ′ ∈ A∗. We say that σ is a suffix of ρ, if ρ = σ′σ
for some σ′ ∈ A∗. If σ is a prefix of ρ, we write σ � ρ.
We call σ a proper prefix of ρ, denoted σ ≺ ρ if σ � ρ, but
σ 6= ρ. The empty sequence is denoted by λ. For a sequence
σ = a1a2 . . . an, we write |σ| = n for the length of σ; σi = ai

for ith symbol in σ; last(σ) = an for the last symbol in σ;
and σi = σiσi+1 . . . for the suffix of σ starting at position i.

Definition 3.1 The tuple Q = 〈S, S0, L,→〉 is a quantita-
tive transition system iff (1) S is a (possibly uncountable)
set of states; (2) S0 ⊆ S is a set of initial states; (3) L is
a a set of action labels, which is partitioned into two sets
(LI , LO) of input and output labels respectively. We write
AI = LI × [0, 1], AO = LO × [0, 1] and A = L × [0, 1], for
the sets of input, output and all actions. (4)→⊆ S×A×S
is the transition relation. For states s, s′ ∈ S, α ∈ A, we
write s

α
−→s′ for (s, α, s′) ∈ −→ and s

α
−→, if ∃s′ ∈ S : s

α
−→s′.

We denote by out(s) = {α ∈ AO|s
α
−→} the set output actions

that are enabled in s.
We denote the components of Q by SQ, S0

Q, LQ, AQ, etc.
and omit the subscripts when no confusion arises.

Actions (a, x) ∈ A are denoted as a(x); input labels and
actions as a? and a?(x); and output labels and actions as a!
and a!(x);

In order to make life easier, we assume that all considered
QTS 〈S, S0, L,→〉 to be non-blocking on outputs, i.e. for all
states s ∈ S, out(s) 6= ∅. This relieves us from the duty
to consider quiescence explicitly (c.f. Section 2), since the
δ-label can actually be treated as as output. This is no
restriction. If the need arises to transform a QTS into a
non-blocking one, we can extend LO with a label δ, and
add to every state s ∈ S which is blocking on outputs (i.e.
without any outgoing output-transition) a transition s

δ(0)
−−→s.

This is analogous to constructing a suspension-automaton
(c.f. [14]).

Definition 3.2 (Determinism) A QTS Q is said to be
deterministic if for s, s′, s′′ ∈ S, α ∈ A: s

α
−→s′ and s

α
−→s′′

implies s′ = s′′; Q is input-enabled iff for all s ∈ S, α? ∈ AI

we have s
α?
−→.

Definition 3.3 (Traces) An execution fragment of Q is a
finite sequence ν = s0α1s1α2s2 . . . sn such that si−1

αi−→si

for all 1 ≤ i ≤ n. The trace of ν is obtained by removing
all states in ν, i.e. trace(ν) = α1α2 · · ·αn. We then write
s0

α1α2···αn−−−−−−→sn. We denote by tr(Q) ⊆ A∗ the set of all
traces σ of Q starting in some starting state of Q.
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4. METRICS FOR QTS

4.1 Distances and Hausdorff distances
Let X be a set. A distance on X is a function d : X×X →

R≥0
∞ , such that d(x, x) = 0 and d(x, y) + d(y, z) ≥ d(x, z)

(triangle inequality).
We can lift any distance d on X to a distance to sets via

the Hausdorff distance hd : P (X)×P (X) → R≥0
∞ , which is

defined as hd(Y, Z) = supy∈Y infz∈Z d(y, z) for all Y, Z ⊆ X.
Thus, for every y ∈ Y , infz∈Z d(y, z) yields the distance to
the element in Z that is close to y (if there is such element,
otherwise the infimum is taken). Then, supy∈Y infz∈Z d(y, z)
describes the the largest minimal distance of elements y ∈ Y
to elements z ∈ Z. Note that the Hausdorff distance hd is in
general not symmetric, even if d is. To cover empty sets, we
define for f a function, supx∈∅ f(x) = 0 and infx∈∅ f(x) =
∞.

Remark 4.1 Rather than being metrics, the distances we
use here are quasi-pseudo metrics: we do not require sym-
metry (i.e. d(x, y) 6= d(y, x)), and distinct elements may
have distance 0 (i.e. d(x, y) = 0 6=⇒ x = y). We use the
word distance for simplicity.

Our metrics are not symmetric for the following reason.
For a distance function d between a system implementation
I and its specification S, a distance d(I,S) ≤ x expresses
that for all behaviors σ of I, there is a behavior σ of S at
distance at most x; i.e. deviations of at most x are allowed.
It is not reasonable to expect that d(S ,I) ≤ x as well, since S
may allow implementation freedom that has been resolved in
I. (Note that here, the distance between S and I is obtained
as a Hausdorff distance on behaviors.)

Similarly it is reasonable that two different QTSs Q and Q′

are at distance 0: if Q and Q′ are isomorphic, then Q 6= Q′,
but we should have d(Q,Q′) = 0 since the behaviors of Q
and Q′ are the same.

Given a distance function d on X and a set Y ⊆ X, the ε-
ball Bd(Y, ε) around Y contains all elements within distance
ε from some element in Y . Formally, we define Bd(Y, ε) =
{x ∈ X | ∃y ∈ Y : d(x, y) ≤ ε}. For Y, Z ⊆ X, set inclusion
can be expressed as Y ⊆ Z = ∀y ∈ Y : ∃z ∈ Z : y = z.
A natural generalization of set inclusion is Y ⊆d

ε Z=̂∀y ∈
Y : ∃z ∈ Z : d(y, z) ≤ ε. It is straightforward to show
that Y ⊆d

ε Z if and only if hd(Y, Z) ≤ ε. The following
lemma gives a characterization of ⊆d

ε in terms of (ordinary)
set inclusion.

Lemma 4.2 Let d : X2 → IR be a distance and Y, Z ⊆ X.
Then Y ⊆d

ε Z if and only if Y ⊆ Bd(Z, ε).

4.2 Action and trace distances
The distances we will use in the following are action dis-

tances, trace distances, and their generalization to Hausdorff
distances.

Figure 1 (b) allows for different approaches to testing a
quantitative systems.

One view is to see the implementation together with the
perturbances inside a black box, which makes it impossible
to know how large γ and δ are. However, the testing objec-
tive here is to find out if the complete black box conforms,
i.e. if the deviations seen in output are within the tolerated
limits. In this scenario the tester would send inputs that are

correct according to the specification, observe outputs that
are sent back, measure the deviation of the received to the
expected outputs according to the specification, and base its
verdict on these deviations.

Another scenario is to assume that the tester has actually
unperturbed access to the implementation itself. However,
the implementation might be deployed in an environment in
which inputs and outputs are perturbed by δ. The testing
objective might then be to find out how the implementation
reacts to perturbations in the input. This would require that
the tester sends inputs to the implementation that are de-
liberately perturbed and deviate from the inputs prescribed
by the specification. By testing it could then, for example,
be established that a perturbation of inputs by at most δ
causes the implementation to produce outputs that are de-
viating by more than δ (which could be seen as a reason to
fail the test).

We show that both scenarios can be described in a single
theory, and it is the choice of the trace distance [5] which
makes the difference. For that reason we keep the definition
of qiocoε parametric, i.e. define a qiocoD

ε , where D is the
trace distance used to measure deviations in quantitative
information. In the following we introduce two distances,
corresponding to the two scenarios sketched above.

For our purposes, distances take values x ∈ [0, 1]∞ :=
[0, 1]∪∞. The∞ element is used to express incomparability
between actions. To define the trace distances, we define
first distances on (sets of) actions and lift these on the set
of traces. In general, the distance between sets that we use
here are Hausdorff distances.

Definition 4.3 (Action Distances) We define action dis-
tances ad I , adO , ad I

c , and adO
c . Let † ∈ {I, O}. Then

1. ad† is defined as

ad†(a(x), b(y)) =

8

>

<

>

:

|x− y| if a = b and {a, b} ⊆ L†,

0 if a = b and {a, b} 6⊆ L†

∞ otherwise.

2. ad†
c (the constrained action distance), is defined as

ad†
c (a(x), b(y)) =

8

>

<

>

:

|x− y| if a = b and {a, b} ⊆ L†,

0 if a(x) = b(y),

∞ otherwise.

All distances derived from ad†
c are marked with sub-

script ·c.

3. For d ∈ {ad†, ad†
c }, E, E′ ⊆ A:

d(E,E′) = supa∈E infb∈E′ d(a, b).

The action distance adO and adO
c measure the distances

between output actions: for o(x), o(y) ∈ AO:

adO(o(x), o(y)) = adO

c (o(x), o(y)) = |x− y|.

They differ in the way how input actions are compared: for
i(x), i(y) ∈ AI , we set adO(i(x), i(y)) = 0, regardless of
the values of x, y. The distance adO

c is more constrained
(thus the name): adO

c (i(x), i(y)) = 0 only if x = y, and ∞
otherwise. The same holds dually for ad I and ad I

c . Note
that all action distances result in∞ if the labels of the com-
pared actions differ. For Y = {o(x), i(y)}, Z = {o(x′), i(y′)}
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with y 6= y′ it holds that adO (Y, Z) = |x − y|, whereas
adO

c (Y, Z) =∞.
We extend action distances to trace distances as follows.

Definition 4.4 (Trace Distances)

1. For traces σ=α1 · · ·αn, ρ=β1 · · ·βm, and † ∈ {I, O},
we define

td†(σ, ρ) =

(

max1≤i≤n ad†(αi, βi) n = m

∞ otherwise.

Moreover, td(σ, ρ) = max{td I (σ, ρ), tdO (σ, ρ)}.

2. For d ∈ {td I , tdO , td}, and P, Q QTS,

d(P, Q) = sup
σ∈tr(P )

inf
ρ∈tr(Q)

d(σ, ρ).

3. The constrained trace distances, td†
c and tdc , are de-

fined like td† and td, respectively, with ad†
c taking the

place of ad†.

The trace distances which we will consider in this paper
are td and tdO

c , where tdO
c does correspond to the first sce-

nario described above, and td the second. We will let the
variable D range over {td , tdO

c }, if not indicated otherwise.
The relation between these two distances is established in
the following lemma.

Lemma 4.5 Let σ, ρ ∈ A∗. Then tdO (σ, ρ)≤ε∧ td I (σ, ρ)≤0
iff tdO

c (σ, ρ) ≤ ε.

We define the set of states that can be reached from a
starting state with a trace that lies within distance ε from
a given trace σ. The definition is generic for D ∈ {td , tdO

c }.

Definition 4.6 Let Q = 〈S, S0, L,→〉 be a QTS, and D ∈
{td , tdO

c }. Then, for s ∈ S, σ ∈ A∗ and ε ∈ [0, 1]. We
define

s afterDε σ = {s′ | ∃ρ ∈ A∗ : s
ρ→ s′ ∧ D(σ, ρ) ≤ ε}.

For S′ ⊆ S we set S′ afterDε σ =
S

s∈S′ s afterDε σ. We

define Q afterDε σ := S0 afterDε σ.

5. IMPLEMENTATION RELATIONS

5.1 Fuzzy trace inclusion
A frequently used formal correctness criterion for an im-

plementation w.r.t. to a specification is to demand that every
trace of the implementation is also a trace of the specifica-
tion. Implementation relations for non-quantitative tran-
sition systems with inputs and outputs (a la ioconf, ioco
and the I/O refusal relation) can all be formulated in terms
trace inclusion. A natural adaption of this idea to quanti-
tative systems is to replace strict set inclusion, ⊆, with the
quantitative version defined in Section 4.1. This idea leads
to the following definition.

Definition 5.1 We assume a QTS S as specification and
a QTS I as implementation. We assume both I,S being
input-enabled. For 0 ≤ ε ≤ 1 and D ∈ {td , tdO

c }, we define
I ⊑D

ε S iff D(I,S) ≤ ε.

I S

o!(0.0)

i?(0.0)

i?0.0 i?(0.0, 0.2] i?(0.2, 0.4] i?(0.4, 0.6] i?(0.6, 0.8] i?(0.8, 1.0]

o!0.0 o!0.2 o!0.4 o!0.6 o!0.8 o!1.0

Figure 2: Example 5.4

Thus, we define I ⊑D
ε S as tr(I) ⊆D

ε tr(S), and we obtain
by Lemma 4.2 that I ⊑D

ε S iff tr(I) ⊆ BD(tr(S), ε). If
ε = 0, then ⊑D

ε reduces to trace inclusion. Note that ⊑D
ε for

ε 6= 0 is not a preorder, since transitivity does not hold: from
P ⊑D

ε Q and Q ⊑D
ε R we can not conclude that P ⊑D

ε R.
However, the triangle inequality that holds for D allows us
to conclude that P ⊑D

2ε R.
With the following lemma we get a different characteriza-

tion of ⊑D
ε .

Lemma 5.2 Let S ,I be two input-enabled QTS and D ∈
{td , tdO

c }. Then I ⊑D
ε S iff for all σ ∈ A∗ :

out(I afterD0 σ) ⊆D
ε out(S afterDε σ)

5.2 qiocoD
ε

The formulation of ⊑D
ε in terms of out-sets of implemen-

tation and specification allows us now to define a relation
on QTS which corresponds to the ioco relation in the non-
quantitative case. We assume again QTS S and I, with
I input-enabled.The classical way to define the qualitative
ioco relation is to require inclusion of out sets not for all
possible words σ ∈ A∗, but only for traces of the specifica-
tion. In the quantitative case, this restriction is too sharp.
Since the idea is to cut the implementation some slack (ε,
to be exact), it is necessary to consider also traces that are
at most ε off from the set of traces of the specification. The
idea is that a tester sends inputs that are prescribed by the
specification to the IUT, and receives outputs that may or
may not be off from the expected output in the specifica-
tion. We will therefore restrict the set of considered traces
to BD(tr(S), ε), i.e. to the traces that are at most ε off from
the trace-set of the specification.

Definition 5.3 I qiocoD
ε S iff ∀σ ∈ BD(tr(S), ε):

out(I afterD0 σ) ⊆D
ε out(S afterDε σ).

Example 5.4 In Figure 2, we see I, the implementation,
and S, the specification3. From the starting state, we have
outgoing transitions, all labeled with i?. After input i?(0.0),
specification S indicates that only output o!(0.0) is correct:
tr(S) = {i?(0.0)·o!(0.0)}. The implementation I yields af-
ter inputs i?(x) with x ∈ (y − 0.2, y] output o!(y), for y =
0.2, 0.4, 0.6, 0.8, 1.0.

3For the sake of simplicity we do not bother to make I
input-complete and non-blocking on outputs.
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We have I qioco
td

O

c
ε S for all ε ∈ [0, 1], because the only

trace of length 1 in Btd
O
c (tr(S), ε) is i?(0). We then have

out(I afterD0 i?(0)) = {o!(0.0)} = out(S afterD0 i?(0)), i.e.
the delivered output coincides exactly with the expected one.
However, I qiocotd

ε S only for ε ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.
The reason for this is that Btd(tr(S), ε) contains {i?(x) | x ∈
[0, ε]}, and for, e.g. ε = 0.1 and i?(0.05) ∈ Btd(tr(S), 0.1),
out(I afterD0 i?(0.05)) = {o!(0.2)}. td(o!(0.2), o!(0.0)) =
0.2 > ε, which implies that conformance is not given. Only
for the six given values that deviation allowed in inputs match-
es the maximal deviation in outputs.

5.3 qiocoD expressed as trace inclusion
It is a folklore result that ioco-conformance coincides with

trace inclusion if, apart from the implementation I , also the
specification Q is input enabled. The same is true in the
quantitative case.

Theorem 5.5 Let I and S be input-enabled QTSs with the
same action signature. Then I qiocoD

ε S iff D(I,S) ≤ ǫ.

This result allows us to express qiocoD in terms of trace
inclusion, based on demonic completion. Following [16], the
idea is to manipulate the specifications such that they be-
come input-enabled, yet retaining basically all the informa-
tion w.r.t. their under-specification. For this to work we
must assume that the considered QTS have a certain struc-
ture (are “well-formed”).

Definition 5.6 (well-formedness) Let Q = 〈S, S0, L,→〉
be a QTS (not necessarily input-complete). We say that Q
is well-formed, iff ∀σ ∈ A∗ : s, s′ ∈ Q afterD0 σ implies

∀a ∈ AI : s a→ iff s′ a→.

Note that a well-formed QTS is not necessarily determin-
istic. Obviously, all deterministic QTS are well-formed.

Definition 5.7 (Γ-Closure) Let Q = 〈S, S0, L,→〉 be a
well-formed QTS. We define the Γ-closure of Q as the QTS
Γ(Q) = 〈S′, S0, L,→′〉, where S′ = S ∪ {sΓ}, sΓ 6∈ S, and

→′= {(s, α, sΓ) | α ∈ AI , s
α
−−→6 } ∪ {(sΓ, a, sΓ) | a ∈ A}.

We call Γ(Q) the Γ-closure of Q, and call sΓ the garbage
collector (thus the Γ). Note that Γ(Q) is input-enabled.

The definition of qiocoD
ε uses the set BD(tr(S), ε). To

express qiocoD
ε in terms of trace inclusion, we must as-

sume the existence of a QTS BD
ε (S) such that tr(BD

ε (S)) =
BD(tr(S), ε).

Definition 5.8 Let Q = 〈S, S0, L,→〉 be a QTS. Then we
denote by BD

ε (Q) the QTS (S, S0, L,→′), where −→′ ⊆ S′ ×
A × S′ is the smallest set fulfilling the following property:
s

α
−→s′ implies s

β
−→′s′ for all β ∈ A with D(α, β) ≤ ε.

Lemma 5.9 tr(BD
ε (S)) = BD(tr(S), ε).

Now we can characterize qiocoD
ε in terms of trace inclusion.

Theorem 5.10 Let I be an input-enabled QTS and S a
well-formed one. Then

I qiocoD
ε S ⇐⇒ tr(I) ⊆ tr(Γ(BD

ε (S))).

5.4 The qiocoD distance
The definition of the qiocoD

ε relation in Section 5.2 is
dissatisfactory in the sense that, for given I the implemen-
tation and S the specification, it lacks an indication of the
minimal ε such that I qiocoD

ε S . It would be desirable to
have a distance function dD

qioco which actually measures the
distance between I and S . This function can be defined
readily enough.

Definition 5.11 (dD
qioco) Let I be an input-enabled QTS

and S a QTS. Then we define:

dD
qioco(I,S) = inf{ε ∈ [0, 1]∞ | I qiocoD

ε S}.

The following result extends Theorem 5.5 to the ioco-
distance.

Theorem 5.12 Let I and S be input-enabled QTSs with
the same action signature. Then dD

qioco(I,S) = D(I,S).

A different formulation of the above definition sheds light
on how we can approximate dD

qioco by means of testing. An-

other way to formulate dD
qioco is as follows:

dD
qioco(I,S) = sup{ ε ∈ [0, 1]∞ | ∀ε

′ < ε : I qiocoD
ε′/ S}.

Using Lemma 5.10, this can be transformed to

sup{ ε ∈ [0, 1]∞ | ∀ε
′ < ε : tr(I) ∩ tr(Γ(BD

ε′
(S))) 6= ∅}.

Thus for all ε < dD
qioco(I,S), tr(I) ∩ tr(Γ(BD

ε (S))) 6= ∅, i.e.

∃σ ∈ tr(I) which is not element of tr(Γ(BD
ε (S))). A testing

approach to approximate dD
qioco(I,S) is then the following:

we start with ε = 0 and begin to synthesize a trace of the
implementation by exchanging inputs and outputs between
tester and implementation. Whenever we encounter a trace
σ ∈ tr(I) with σ 6∈ tr(Γ(BD

ε (S))) we can conclude that
the chosen ε was too small. We must then derive an ε′ >
ε from σ such that σ ∈ tr(Γ(BD

ε′ (S))). With this new ε′

we start testing from the beginning and synthesize another
trace σ′, which gives us an ε′′, and so on. In this way we
approximate dD

qioco(I,S). In the next section we will show
how this general idea can be formulated in an on-the-fly
testing algorithm.

6. ON-LINE TESTING
In this section we present a on-the-fly testing algorithm to

approximate the qiocoD
ε distance between an input-enabled

QTS I and a QTS S by means of testing.

6.1 Stepwise distance measuring
To make the behavior of the implementation more acces-

sible, we introduce the concept of trace functions.

Definition 6.1 (Trace function) Let I be a QTS, input-
enabled. A trace function i of I is a function i : tr(I)→ AO

with the property i(σ) = α! implies σ · α! ∈ tr(I). The set
of all trace functions of I is denoted as TF (I).

If σ ∈ tr(I), and i ∈ TF(I), then i(σ) ∈ out(I afterD0 σ).
A trace function thus picks one output from several and
thus resolves the nondeterminism in outputs of I after the
execution of σ. Different executions of I are described by
different trace functions. Since I is non-blocking on outputs,
i is total.
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In the following, we will use the trace functions i ∈ TF (I)
to represent the behavior of I. The following definition de-
scribes a way to express the distance of trace σ = α1α2 · · ·αn,
D(σ, tr(S)), stepwise in terms of α1, α2, . . . , αn.

Definition 6.2 Let S = 〈S, S0, L,→〉 be a QTS, i ∈ TF (I)
and D ∈ {td , tdO

c }. We define for S and i a family of
functions, curr dist

D
σ : S → [0, 1]∞ with σ ∈ A∗, i(σ) ↓

as follows. (1) curr dist
D
λ (s) = 0 if s ∈ S0, and ∞ oth-

erwise; (2) for α = i(σ) or α ∈ AI: curr dist
D
σ·a(s) =

inf
s′

b
−−→s

max{curr dist
D
σ (s′),D(a, b)}.

Then curr dist
D
σ (s) is the minimal trace distance w.r.t. D of

a trace σ from the set of traces {ρ ∈ A∗ | ∃s0 ∈ S0 : s0
ρ→ s},

as is stated in Theorem 6.3.

Theorem 6.3 curr dist
D
σ (s) = D(σ, {ρ | ∃s0 ∈ S0 : s0

ρ→
s}).

Corollary 6.4 infs∈S curr dist
D
σ (s) = D(σ, tr(S)).

For a more convenient construction of the curr dist functions
in the algorithm to come, we introduce the operator C : (S →
[0, 1]∞)× A× {td , tdO

c } → (S → [0, 1]∞) as follows:

C(c, α,D) = s 7→ inf
s′

β
−−→s

max{c(s′),D(α, β)}).

Clearly, C(curr dist
D
σ , α,D) = curr dist

D
σ·α.

6.2 The algorithm
The algorithm for on-the-fly testing of QTS has two parts.

The first is the actual testing algorithm which synthesizes
a trace of the implementation and measures the distance of
this trace to the specification. The second algorithm uses
the first to approximate dD

qioco. Again we assume that I
is an input-enabled QTS representing the specification, and
S = 〈S, S0, L,→〉 is a QTS representing the specification.

The first algorithm is Algorithm 2. This depicts a non-
deterministic procedure mqotf, which takes five parame-
ters, i,S , n,D, ε. i ∈ TF (I) is a trace function represent-
ing the behavior of the implementation in this particular
test run. n is the maximal number of test steps to be
executed, and is chosen arbitrarily. D ∈ {td , tdO

c } is the
distance function to be used. Finally, ε ∈ [0, 1] is a toler-
ance parameter which has influence on the inputs to be cho-
sen to trigger the implementation. mqotf returns a tuple
(cd, σ), where σ ∈ tr(I) is the trace which was generated
during testing, and cd ∈ [0, 1]∞. Later we will show that
cd = max{ε,D(σ, tr(S))}. The main purpose of mqotf is
to construct the function curr dist

D
σ step-by-step, where σ is

the trace synthesized during testing.
In lines 2–5, several local variables are initialized: σ is the
trace observed so far, and is initialized with λ. cd keeps track
of the lower bound of the distance of the observed trace to
tr(S) and is initialized with parameter ε. curr dist is the
current curr distσ function and is initialized with curr distλ.
M is the so-called menu, the set of states of S which can be
reached with traces ρ ∈ tr(S) such that D(σ, ρ) ≤ cd. M is
initialized with the initial states of S .

Lines 6 to 18 cover the main loop of mqotf, which is
terminated if cd = ∞ or |σ| > n. The body of the while-
loop is a nondeterministic algorithm: execution starts either
on line 7 or 12. On line 7, an input α? ∈ AI is chosen such

Algorithm 2 The distance measuring algorithm

Require: S = 〈S,S0, L,→〉 is a QTS, i is a trace function
of the IUT, n ∈ IN, D ∈ {td , tdO

c }, ε ∈ [0, 1].
1: procedure mqotf(i,S , n,D, ε)
2: σ ← λ
3: cd← ε
4: curr dist = curr dist

D
λ

5: M ← S0

6: while cd <∞∧ |σ| ≤ n do
7: [ α? ∈ AI and M afterDε α? 6= ∅]→
8: curr dist ← C(curr dist , α?,D)
9: M ← {s | curr dist(s) ≤ cd}

10: σ ← σ · α?
11: end
12: [true]→ α!← i(σ)
13: curr dist ← C(curr dist , α!,D)
14: cd← max{cd, infs∈S curr dist(s)}
15: M ← {s | curr dist(s) ≤ cd}
16: σ ← σ · α!
17: end
18: end while
19: return(cd, σ)
20: end procedure

that M afterDcd α? 6= ∅. If such an α? exists, curr dist is
updated, new menu M is defined, and α? is appended to
σ (lines 8–10). Note that cd is not updated, since σ · α?
has the same trace distance to tr(S) as σ. This is ensured
by the condition on the choice of α? on line 7. If execution
continues with line 12, rather than 7, the output i(σ) is
used to update curr dist , cd, M and σ. Note that cd is only
increased if D(σ ·α!, tr(S)) is larger than ε. Once the while-
loop terminates, line 19 is reached. The computed distance
cd, together with σ is then returned.

mqotf returns (cd, σ), i.e. the trace distance of one trace
only. Assuming that cd ≥ D(σ, tr(S)) (this is shown in Sec-
tion 6.3), mqotf can be used to approximate dD

qioco(I,S),
as it has been sketched in Section 5.4 and is worked out in
Algorithm 3. There, we have again a number n ∈ IN, which
bounds the number of test runs to be executed and which
is chosen arbitrarily. Moreover, we have the usual S ,I and
D. The approximation takes place in the while-loop between
lines 5 and 7. In each run through the loop, an m ∈ IN is
chosen, which is used to restrict the length of the test run.
Moreover, a trace function i ∈ TF(I) is chosen nondeter-
ministically from TF (I). This choice reflects the fact that
in each test run the implementation I might actually be-
have differently from a previous test run, even if the same
inputs are applied. mqotf is called with the current value
of cd as tolerance parameter, initially 0. The value of cd is
constantly updated with the distance computed by mqotf.

6.3 Soundness and completeness of mqotf

Algorithm 2 is sound w.r.t. qiocoD
ε , for D ∈ {td , tdO

c }.
Soundness means that, whenever I qiocoD

ε S than for all
n ∈ IN, i ∈ TF(I) and possible return values (cd, σ) from
mqotf(i,S , n,D, ε), cd = ε holds. The algorithm is also
complete, i.e. if I qiocoD

ε/ S , then there is a trace function
i ∈ TF(I) and a run procedure mqotf(i,S , n,D, ε) with
return value (cd, σ) such that cd > ε.

Integral part of a soundness proof is to show that the fol-
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Algorithm 3 Approximating dD
qioco(I,S)

Require: S = 〈S, S0, L,→〉 is a QTS, I an input-enabled
QTS, n ∈ IN, D ∈ {td , tdO

c }.
1: n′ ← 0
2: cd← 0
3: σ ← λ
4: while n′ ≤ n and cd <∞ do
5: [true]→ let i ∈ TF(I), m ∈ IN in
6: (cd, σ)← mqotf(i,S ,m,D, cd)
7: n′ ← n′ + 1
8: end
9: end while

lowing property of Algorithm 2 holds: whenever execution
reaches line 6 it holds: (1) curr dist = curr dist

D
σ ; (2) cd =

max{D(σ, tr(S)), ε} ; (3) M = {s | curr dist(s) ≤ cd};
(4) |σ| ≤ n + 1.

These conditions are easily verified when line 6 is entered
for the first time. Then σ = λ, cd = ε (D(λ, tr(S)) = 0),
curr dist = curr dist

D
λ , M = S0 = {s | curr dist(s) = 0},

and |σ| = 0. If we assume that all four condition hold
and additionally M 6= ∅ and |σ| 6= n + 1, the loop body
is entered, and a non-deterministic choice has to be made
on either to continue with line 7 or line 12. If the pre-
condition of line 7 holds and the line is nondeterministi-
cally chosen, then action α? ∈ AI is the input selected to
be sent to the implementations (which is only implicitly
done by appending α? to σ). In line 8, curr dist is up-
dated. From the definition of C it is easy to see that then
curr dist = curr dist

D
σ·α? on line 9. Important to note is

that in lines 8–10 the value of cd is not updated. The reason
is that in fact infs∈S curr dist

D
σ·α?(s) = infs∈S curr dist

D
σ (s),

since the input α? is chosen to not deviate more than ε ≤ cd
from the specified inputs. The trace distance of σ · α? to S
is therefore equal to that of σ. When we return from line 10
to line 6, the four conditions are thus still satisfied.

If line 12 is chosen, output α! is received from the imple-
mentation (symbolized by consulting the trace function). In
line 13, curr dist is updated from curr dist

D
σ to curr dist

D
σ·α!.

In line 13, cd is updated. By the precondition and Theo-
rem 6.3, then cd = max{max{ε,D(σ, tr(S)),D(σ·α!, tr(S))}}
= max{ε,D(σ · α!, tr(S))}. In the remaining lines until
line 16, the remaining variables are updated. Clearly, on
return to line 6, the four conditions hold again.

The fact that these conditions hold also once line 19 is
reached allows the conclusion that, once mqotf returns a
result (cd, σ), then cd = max{ε,D(σ, tr(S))}.

To prove now soundness, we assume that I qiocoD
ε S , but

that a run of mqotf(i,S , n,D, ε) for i ∈ TF (I) returns
(cd, σ) with cd > ε. We know then that cd = D(σ, tr(S)).
Then there is also a prefix σ′·α! of σ such thatD(σ′, tr(S)) ≤
ε, but D(σ′ · α!, tr(S)) > ε (only outputs can increase the
distance of a trace to tr(S)). Then σ′ ∈ BD(tr(S), ε),
and α! ∈ out(I afterD0 σ′). However, this implies also that

out(I afterD0 σ′) 6⊆D
ε out(S afterD0 σ′), a contradiction to

the assumption I qiocoD
ε S .

To show completeness we have to prove that, if I qiocoD
ε/ S ,

then there is a trace function i ∈ TF (I) and a run of pro-
cedure mqotf(i,S , n,D, ε) with return value (cd, σ) such
that cd > ε. I qiocoD

ε/ S implies according to the defi-
nition of qiocoD

ε that there is a σ ∈ BD(tr(S), ε) with

out(I afterD0 σ) 6⊆D
ε out(S afterDε σ). There is thus an out-

put α! ∈ out(I afterD0 σ) with D({α!}, out(S afterDε σ)) >
ε, and moreover, D(σ·α!, tr(S)) > ε. This implies that {σ, σ·
α!} ⊆ tr(I), i.e. there is also a trace function i ∈ TF (I)
with i(σ) = α!. Let n = |σ|. Since σ ∈ BD(tr(S), ε), we
can assume that there is a run through mqotf(i,S , n,D, ε)
such that we enter line 7 of Algorithm 2 with the following
conditions fulfilled: (1) curr dist = curr dist

D
σ ; (2) cd = ε ≥

D(σ, tr(S)) ; (3) M = {s | curr dist(s) ≤ ε}; (4) n′ = n. If
the algorithm proceeds then to line 12, trace function i will
return output α!, curr dist will be updated to curr dist

D
σ·α!

and cd to max{ε, infs∈S curr dist(s)} == D(σ · α!, tr(S)).
Thus cd > ε. Since n′ will be updated to n+1, the algorithm
will terminate and return with (cd, σ ·o), where cd > ε. This
was to be shown.

7. OFF-LINE TESTING
This section presents an off-line approach to quantitative

testing. That is, we explain how one can derive test cases
from a QTS, how these test are executed on an IUT and
how the results are evaluated. We show that the off-line
framework is sound and complete and present the connection
with the on-the-fly approach from the previous section.

It turns out that defining test cases for input-enabled spec-
ifications is possible in a remarkably effortless way. However,
we only consider input-enabled specifications; leaving the
extension to specifications that are not input-enabled for fu-
ture research. Also, we only consider the trace distance td ,
i.e. we take D = td . Since dtd

qioco and the trace distance td
coincide for input-enabled systems, we will work td as the
implementation relation.

7.1 Test cases
We consider test cases that are adaptive, i.e. the next

action to be performed (observe the IUT, stimulate the IUT
or stop the test) may depend on the test history, that is, the
trace observed so far. If, after a trace σ, the tester decides
to stimulate the IUT with an action α?, then the new test
history becomes σα?; in case of an observation, the test
accounts for all possible continuations σβ! with β! ∈ LO an
output action. ioco theory requires that tests are ”fail fast”,
i.e. stop after the discovery of the first failure, and never fail
immediately after an input. Formally, a test case t consists
of the set of all possible test histories obtained in this way.
Alternatively, we can represent each test case as a QTS St,
which in each state either selects one input action, or enables
all output actions.

Definition 7.1 A test case (or test) t for S is a prefix-
closed subset of A∗ such that, (1) if σα? ∈ t, then σβ /∈ t
for any β ∈ A with α? 6= β, (2) if σα! ∈ t, then σβ! ∈ t for
all β! ∈ AO, (3) if σ /∈ tr(S), then last(σ) ∈ AO and σ is no
proper prefix of any σ′ ∈ t, and (4) t does not contain any
strictly increasing chain σ0 ≺ σ1 ≺ σ2 ≺ . . ..

The leaves of t, denoted leaves(t), are those σ ∈ t which
are not a proper prefix to any σ′ ∈ t. We denote the set of
all tests for S by TESTS(S).

The following lemma states that every behavior of the
specification S can be tested.

Lemma 7.2 For all σ ∈ tr(S), there is a test t ∈ TESTS(S)
such that σ ∈ t.
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stren?(x) stren?(x)

coff!(0.5)coff!(x)

qs! qs!(y)

Scoff Icoff

Figure 3: Coffee Machine Specification Scoff and Im-
plementation Icoff

Any test case can be represented by a deterministic, tree-
shaped QTS, whose traces are exactly the traces of t. By
abuse of notation, we often write t for St.

Definition 7.3 Let t be a test for QTS S. The QTS-re-
presentation of t is the QTS St = 〈St, S

0
t , Lt,→t〉 given as

follows. The states are all traces in t, i.e. St = t; the initial
state is the empty trace, i.e. S0

t = {λ}; its labels are exactly
the labels of S, i.e. Lt = L; and the transition relation
→t⊆ St ×At × St is given by {(σ, α, σα) | σα ∈ t}.

It immediately follows that tr(St) = t.

Example 7.4 Figure 3 shows the specification Scoff of a
coffee machine, where the user inputs the strength of the
coffee (in [0, 1]) and then should get a coffee of the desired
strength. Note that the picture only shows a skeleton of an
infinite QTS, the idea being that x ∈ [0, 1] and that stren?(x)
is followed by a coff!(x). In reality there are thus uncount-
ably many states and transitions. To make the QTS output-
complete, we add a label qs!, which represents quiescence,
i.e. absence of outputs. The set t = {stren?(0.8)coff!(x)) |
x ∈ [0, 1]}∪{stren?(0.8)qs!(y)) | y ∈ [0, 1]}. The verdict of a
trace stren?(0.8)coff!(x) is given by v(stren?(0.8)coff!(x)) =
|0.8−x|; the verdict of trace stren?(0.8)qs!(x) is v(stren?(0.8)
coff!(x)) =∞.

We interpret a test case quantitatively, i.e. rather than
a pass or a fail, our verdict function assigns a number in
[0, 1]∞ to each leaf of a test case.

Definition 7.5 Let t be a test for QTS S. The quantitative
verdict function vS for S is the function vS : leaves(t) →
[0, 1]∞, with vS(σ) = td(σ, tr(S)). We call the pair qt =
(t, vS) a evaluated test for S, and ET (S) the set of all eval-
uated tests.

The following result shows that one can test any behavior
with a finite distance to a specification.

Lemma 7.6 For all σ with td(σ,S) = δ ≤ 1, there exists an
evaluated test (t, v) ∈ ET (S) such that σ ∈ t and v(σ) = δ.

7.2 Test execution
As in the qualitative case, tests are executed by composing
them in parallel with the IUT. To accommodate impreci-
sion, we employ an imprecise parallel composition operator.
The idea is as follows. Tests describe the intended, precise
behavior. However, due to imprecisions, deviations from the
desired behavior may occur when we execute the test case
on an IUT: we may want to stimulate the IUT with action

a?(0.50), but in practice, stimulus a?(0.51) occurs. Simi-
larly, the IUT may produce an output b!(0.30), but due to
measurement imprecisions, we read it off as b!(0.29). Thus,
when we execute t on I with imprecision δ, an action a in
t may synchronize with any action b in I within action dis-
tance δ.

This is formalized by the imprecise parallel composition
operator ‖δ .

Definition 7.7 For two QTSs Q and P be two QTSs with
the same action signatures. Let δ ≥ 0. We define the parallel
composition with tolerance δ, denoted Q‖δP , as the QTSs
〈S, S0, L,→〉 given by SQ‖δP = SQ×SP and S0

Q‖δP = S0
Q×

S0
P , and

• LQ‖δP = (LI
Q, LO

Q),

• →Q‖δP = {(s, u)
α
−→Q‖δP (s′, u′) | s

α
−→Qs′ ∧ u

α
−→δ

P u′}.

Here, −→δ
P denotes the δ-transition relation given by s

α
−→δ

P s′

iff there exists an α ∈ AP with ad(α, β) ≤ δ and s
β
−→P s′.

Note that ‖δ is not symmetric since only the right component
is allowed to deviate.

Suppose we run, with an imprecision of at most δ, a test
case t on implementation I . Then the set of all possible
executions are exactly the traces of St‖δI .

Definition 7.8 Let t = (t, v) ∈ ET (S) be an evaluated test
for S and T ⊆ ET (S) be a evaluated test suite for S. Let
δ > 0. The set of test executions is given by execδ(t, I) =
tr(St‖δI).

7.3 Test evaluation
In the qualitative case, an implementation fails a test case

if at least one of the executions leads to a fail verdict; the
implementation fails a test suite if at least one of the test
cases fails. We also employ this worse case scenario: the
quantitative verdict is the largest deviation that we may
encounter during test execution.

Definition 7.9 Let t = (t, v) ∈ ET (S) be an evaluated
test for S and T ⊆ ET (S) be a evaluated test suite for
S. Let δ ≥ 0. The verdict of vδ

t (I) is given by vδ
t (I) =

supσ∈execδ(t,I) vt(σ), and the verdict of vT (I) is given by

vδ
T (I) = supt∈T vδ

t (I).

Example 7.10 Figure 3 depicts an implementation Icoff of
a coffee machine, where the user always gets a coffee of
strength 0.5. Note that td(Icoff ,Scoff) = 0.5. However, if
we run the Icoff against test t, then we obtain for δ = 0.1
that exec(t,Icoff ) = {stren?(y)coff!(x) | y ∈ [0.7, 0.9], x ∈
[0.5, 0.6]}. Thus, vδ

t (Icoff) = 0.4, which is witnessed by the
trace stren?(0.9)· coff!(0.5).

The following lemma is instrumental in proving the sound-
ness and completeness result below.

Lemma 7.11 Let t = (t, v) be an evaluated test for QTS S
and let δ ≥ 0.

1. exec(t, I) = leaves(t) ∩Bδ(tr(I)).

2. vδ
t (I) = td(t‖δI,S).
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7.4 Correctness of off-line testing
Soundness and completeness express the key correctness

of the test framework: in the qualitative case, it shows that,
for a specification S any conforming implementation passes
all tests derived from S (soundness) and that for any non-
conforming implementation, there is at least one test that
exhibits the error, i.e. yields a fail (completeness). In the
quantitative case, we prove that the worse case verdict that
we obtain when we run all tests from TESTS(S) against
an implementation I is exactly the trace distance, corrected
with the imprecision δ. Let γ = td(I,S).

Theorem 7.12 (soundness & completeness)

vδ
TESTS(S)(I) = γ + δ.

We show in the following the connection of the on-the-fly
algorithm mqotf to the test execution of test cases. We
need for that the following definition.

Definition 7.13 Let Q = 〈S, S0, L,→〉 be a QTS, and δ ∈
[0, 1]. We define Qδ as QTS 〈S, S0, L,→δ〉, where s α→δ s′

iff either s α→ s′and α ∈ AI , or s α′

→ s′ and α′ ∈ AO with
ad(α′, α) ≤ δ.

Theorem 7.14 Let I,S be input-enabled QTSs with the
same action signature. Then

sup{cd | (cd, σ) ∈
[

i,n

mqotf(i,S , n, td , 0)} = γ + δ.

Here i ranges over the trace functions of Iδ (c.f. Defini-
tion 7.13), and n over the natural numbers.

8. CONCLUSIONS AND FURTHER WORK
We introduced an ioco-based metric on QTSs, which mea-

sures how far a system implementation lies from its speci-
fication. We also presented on-line and off-line test case
derivation algorithms, which were shown to be sound and
complete with respect to the metric. Working in a com-
pletely quantitative setting, also the test verdict is quan-
titative: rather than giving a pass/fail answer, the verdict
estimates the distance (given by our metric) from the UIT
to its specification.

Our framework lies down the semantical foundations for
quantitative testing. For the algorithms to be effectively im-
plementable, one needs to find finite, symbolic methods for
representing and manipulating in efficient way the various
objects playing a role in the testing process. In particu-
lar, we need finite representations for test cases, the func-
tion curr dist and efficient methods to compute the function
· afterD ·.

The numerical information in the developed theory in un-
interpreted. Thus, our theory is independent from any con-
crete semantic domain. An important topic to be addressed
is therefore to integrate it into existing testing theories with
concrete quantitative elements, like timed testing [1, 3] or
hybrid testing [17].
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