
Randomized Directed Testing (REDIRECT) for
Simulink/Stateflow Models

Manoranjan Satpathy
GM India Science Lab

manoranjan.satpathy@
gm.com

Anand Yeolekar
GM India Science Lab
anand.yeolekar@

gm.com

S. Ramesh
GM India Science Lab

ramesh.s@
gm.com

ABSTRACT
The Simulink/Stateflow (SL/SF) environment from Math-
works is becoming the de facto standard in industry for
model based development of embedded control systems. Many
commercial tools are available in the market for test case
generation from SL/SF designs; however, we have observed
that these tools do not achieve satisfactory coverage in cases
when designs involve nonlinear blocks and Stateflow blocks
occur deep inside the Simulink blocks.

The recent past has seen the emergence of several novel
techniques for testing large C, C++ and Java programs;
prominent among them are directed automated random test-
ing (DART), hybrid concolic testing and feedback-directed
random testing. We believe that some of these techniques
could be lifted to testing of SL/SF based designs; REDI-
RECT (RandomizEd DIRECted Testing), the proposed test-
ing method of this paper, is an attempt towards this direc-
tion. Specifically, REDIRECT uses a careful combination
of the above techniques, and in addition, the method uses a
set of pattern-guided heuristics for tackling nonlinear blocks.
A prototype tool has been developed and the tool has been
applied to many industrial strength case studies. Our exper-
iments indicate that a careful choice of heuristics and certain
combinations of random and directed testing achieve better
coverages as compared to the existing commercial tools. 1

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; I.6.4 [Simulation and Modeling]: Model
Validation and Analysis

General Terms
Design, Experiments, Measurement, Verification

1The opinions expressed in this paper are those of the au-
thors only and do not reflect the opinion of the Organization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10 ...$5.00.

Keywords
Model Based Testing, Simulink/Stateflow Models, Hybrid
Systems, Coverage

1. INTRODUCTION
The Simulink/Stateflow (SL/SF) environment from The

Mathworks [11] has become the lingua franca in industry for
model based development of embedded control systems, es-
pecially in the automotive and the aerospace domains. This
environment supports hierarchical development of complex
controller designs and provides a rich set of high level and
customizable computational and control blocks suitable for
hybrid control systems. A wide variety of application spe-
cific block-sets available with the SL/SF environment en-
able easy development of control systems in various do-
mains. SL/SF models help in early design exploration, sim-
ulation and automatic code generation for different hard-
ware/software platforms.

Our focus in this work is model based testing using SL/SF
models. In model based testing, the models form the basis
for generating test cases which can be used to check whether
an implementation conforms to its model. The model ele-
ments provide additional notions of coverage over model el-
ements that help in measuring the test adequacy, which is
central to any testing activity. Model coverage along with
coverage over code gives an added confidence.

Many methods have been proposed for automatic gener-
ation of tests from state transition graph models. These
methods usually explore the transition graphs either ran-
domly or use systematic graph exploration techniques or a
combination of these two. Random generation has been the
preferred method when the model is large or infinite as in
the case of SL/SF models. While searching the infinite num-
ber of paths in the model graph, coverage measures on the
model space, like state and transition coverage, are used to
prune the number of paths explored. One issue in explo-
ration is that many of the paths may be invalid. There are
constraints associated with paths which may not be satis-
fiable. So constraint solving is an important task during
exploration of paths. In the SL/SF context, coverage of
the states and the transitions of a Stateflow block could be
highly non-trivial because the Stateflow block may be deeply
embedded within the Simulink blocks. Inputs may have to
pass through a complex network of Simulink blocks to reach
the Stateflow block. Furthermore, such Simulink blocks may
be non-linear which in turn may give rise to non-linear con-
straints for which no satisfactory methods exist for solving
these constraints.

217

Many commercial tools have appeared in the market for
test case generation from SL/SF designs. Some of the promi-
nent tools are: Reactis from Reactis System Inc. [16], STB
from the TNI Software [21], BEACON Tester from Applied
Dynamics International [1], T-VEC tester from the T-VEC
technologies [22] and recently, the Design Verifier from The

Mathworks [12]. Given an SL/SF design model and coverage
goals over the model elements, all these tools generate test
vectors meeting the coverage goals. These tools use powerful
random or constraint solving techniques or a combination
of both. Our experience with these tools shows that they
do not produce satisfactory coverage in cases when the de-
signs involve non-linear blocks and the Stateflow blocks oc-
cur deep inside the Simulink blocks. Coverage of the model
elements in such Stateflow blocks requires careful and sys-
tematic selection of input values. The primary motivation of
this work is to go well beyond the current techniques in con-
straint solving and directed exploration of the SL/SF model
elements.

In the recent past, code based testing has received re-
newed interest and attention with the emergence of several
novel techniques for testing large C, C++ and Java pro-
grams. Prominent among such techniques are: directed au-
tomated random testing (DART)[6], hybrid concolic testing
[10] and feedback-directed random testing [15]. DART mixes
concrete execution with symbolic execution and generates
constraints for uncovered paths from the constraints of al-
ready covered paths. Hybrid concolic testing interleaves ran-
dom testing and DART to cover model elements both depth-
wise and breadth-wise. Feedback directed random testing
uses feedback from concrete executions to generate new in-
put sequences. These techniques have worked remarkably
well for C, C++ and Java programs. We strongly believe
that some of these techniques could be lifted to testing of
SL/SF designs and this paper is our initial attempt towards
this purpose.

REDIRECT (RandomizEd DIRECt Testing), as we call
our method, uses a careful combination of the following tech-
niques: (a) Testing by use of random input sequences, (b)
Directed traversal from a point already reached due to sim-
ulation, (c) Backtracking which means going backward in
a traversed path to cover some more model elements, and
(d) feedback-based random testing in which feedback from
a part of the current run is used in obtaining the future
part of the run. An important highlight is that REDIRECT
uses a set of pattern-guided heuristics for tackling the non-
linear blocks. We have developed a prototype tool based on
REDIRECT and the tool has been applied to many indus-
trial strength case studies. Our experiments indicate that
a careful choice of heuristics and certain combinations of
random and directed testing can achieve better coverages as
compared to the existing commercial tools.

In summary, the main contributions of this paper are:

• A flexible mix of random and systematic testing through
the four components – random, directed, backtrack-
ing and feedback-based testing – of the REDIRECT
approach achieves an improved coverage over SL/SF
models.

• Our method uses a set of smart heuristics to achieve
better coverage of the model elements even when the
transition constraints or the Simulink block functions
are non-linear.

• A prototype tool based on REDIRECT has been de-
veloped and experimented with real designs.

The organization of the paper is as follows. Section 2 dis-
cusses the related work. Section 3 describes in detail the
test case generation algorithm and the heuristics to handle
non-linear constraints. In Section 4, we discuss our proto-
type implementation and our experimental results. Section
5 presents an analysis of our approach, and finally, Section
6 concludes the paper.

2. RELATED WORK
The ETS 300 406 [4], the ETSI standard for Methods for

Testing and Specification, defines: conformance testing is
concerned with the assessment of the extent to which an
implementation or a system conforms to its specification.
Since exhaustive testing is impractical on technical and eco-
nomic grounds, conformance testing cannot guarantee abso-
lute conformance to a specification. This approach to test-
ing is usually associated with a testing criterion which is a
set of requirements on test data which reflects a notion of
adequacy on the testing of a system [18]. A test adequacy
criterion determines whether sufficient testing has already
been done, and in addition, it provides measurements to
obtain the degree of adequacy obtained after testing stops
[23]. A test oracle is a mechanism to determine correctness
of test executions. A test driver (or a test harness) is a tool
which activates a system, provides test inputs and reports
test results.

The Reactis tester from Reactive Systems [3] generates test
cases automatically from SL/SF models. The technique is
primarily random simulation; inputs are selected by Monte
Carlo methods. It also uses the technique of guided simu-
lation [3, 20] under which after a simulation, output values
are examined and then subsequent input values are chosen
so as to guide the simulation to uncovered parts. Reactis
tester can generate test cases based on many coverage cri-
teria over the Simulink and Stateflow blocks including the
MC/DC (Modified Condition/Decision) coverage [14]. For
random and guided simulation, Reactis takes three param-
eters: (i) number of tests meaning the number of random
simulations, (ii) number of steps for each random simula-
tion, and (iii) number of targeted steps for guided simula-
tion. A test case can be viewed as a matrix in which each
row corresponds to the sequence of values of an inport or
an outport and each column corresponds to a single simu-
lation step. After running a test case, the model is brought
back to its initial state so that another test case can be run
[20]. STB (Safety Test Builder) from TNI Software [21] is
another successful testing tool for Simulink/Stateflow mod-
els. Test inputs are primarily random with some heuristics.
STB uses almost the same coverage objectives as that of
Reactis including the MC/DC over Simulink and Stateflow.
BEACON tester from Applied Dynamics International [1]
and T-VEC tester T-VEC technologies [22] are two other
commercial testing tools for SL/SF models. From the very
little documentation that is available, it appears that both
have probably the same capability as those of Reactis and
STB.

Gadkari et al. [5] have discussed test case generation from
SL/SF models by using model checking. Models restricted
to a subset of SL/SF are translated to formal models in the
SAL [19] formal language. Keeping a coverage criterion over

218

the SL/SF model in mind, the SAL model is so instrumented
with trap variables [7] that reachability of a trap variable im-
plies reachability of a model element; traces leading to trap
variables then become the test cases. The ATG tool does
not handle non-linear constraints with the exception of mul-
tiplication; and further, the authors point out that it would
face scalability issues in an industrial setting. When we view
test case generation possibilities, pure random testing is at
one extreme and the model checking approach is at the other
extreme. The REDIRECT method is somewhere in between
as it combines random and systematic exploration.

Recently, The Mathworks has introduced Simulink Design
Verifier [12] whose functions are test case generation, proving
of model properties and generation of counterexamples. In
this tool, model coverage objectives include decision, condi-
tion and MC/DC. Custom test objectives can be directly de-
fined over SL/SF blocks by using design verification blocks.
This tool can also show unreachability of certain model el-
ements. Not much details about the performance of Design
Verifier are available in the literature as it is a recent tool.

Godefroid et al. in [6] discuss the DART (Directed Au-
tomated Random Testing) approach for C programs. The
power of DART comes from a combination of random in-
puts, constraint solving and directed coverage. Given a C
program, first a random input vector is supplied to execute
the program and the symbolic constraint associated with the
covered path is extracted. This symbolic constraint is al-
tered to obtain the path constraint of a path adjacent to the
earlier path. If this path constraint can be solved, then we
have the input vector for the new path. Provided constraints
are solvable, by systematically altering the constraints one
can cover all the paths of finite length. Let X and Z be the
inputs to a program and f(X) = Z be a control condition
in the program. Let f be a library function whose internal
details are not known. Execute this code fragment by giving
random inputs to X and Z, and let control take the right
path. But now the concrete value of f(X) is known with the
current input. The same value of f(X) will be the input of
Z in the next iteration – value of X will remain unchanged
– and thus we can traverse the left path. The constraint
solver faces problems when the constraints are non-linear.
When non-linearity is sparse then heuristics are available to
find path solutions with a certain probability. However, this
probability decreases sharply when a path constraint has too
many non-linear constraints.

Approaches like DART are unlikely to reach deep states
within the state space of the given program. This is because
maintaining and solving symbolic constraints along execu-
tion paths become more and more expensive as the length of
execution grows. The hybrid concolic testing [10] approach
addresses this issue by interleaving DART and random test-
ing. Thus random testing takes care of the depth in the
state space whereas DART takes care of breadth. The au-
thors of this technique point out that this approach is more
suitable for reactive programs which periodically get inputs
from environment.

Pacheco et al. [15] have discussed random testing with
feedback for unit testing of object oriented programs. This
approach incrementally builds test sequences from a set of
previously generated test sequences which are empty to be-
gin with. The process first selects a method m(T1, . . . Tk)
at random. Next, depending on parameter types T1, . . . Tk,
a matching prefix sequence is obtained from the set of se-

[x > y] / k++
 −−

D

 x

 y

 a

 b

P

N

[x ~= y]

M

 / k := 0

[x == y && k == 4]

Figure 1: A simple SL/SF model

quences available which becomes the preamble of the above
method. This new sequence is executed to check its legal-
ity in the context of the given program. The authors of
this method have observed that the results obtained by this
approach are comparable to those of systematic testing.

Alur et al.[2] have presented an analysis technique for
linear hybrid systems which combines numerical simulation
with symbolic analysis. Given a simulation trace of an SL/SF
model, using polyhedra based backward symbolic analysis,
a region of initial state space inducing equivalent behav-
iors in the model is identified. Further simulation is carried
out on the model, starting from initial states outside of this
region and the above step is repeated a finite number of
times to have adequate coverage over the initial states. An-
other method for initial state coverage is proposed by Agung
Julius et al. [9] using bisimulation metrics. Our method is
distinct from these approaches as we focus on structural cov-
erage over the models. Another important difference is that
our models could have varying inputs at different simulation
steps.

3. THE REDIRECT APPROACH
We will introduce the REDIRECT approach with a moti-

vating example. Refer to the SL/SF diagram of Figure 1
in which the Stateflow part consists of three states and the
Simulink part consists of a delay block and a block for an
arithmetic operation. Here, state M is the initial state of the
Stateflow block. We will explain the simulation behavior of
this SL/SF model.

At each time step (either user-given or automatically de-
rived) the model executes all of its blocks (including the
Stateflow block) according to a pre-defined order. In this
example, the delay block D executes first, followed by the
subtraction block, and in the end the Stateflow block (or the
chart) is executed. Assuming that the current active state is
M, the guard of transition MN is checked to see if it holds. If
so, the action k++ associated with the transition is executed
and state N becomes active. Since there are no more active
states – this can occur in case of concurrent Stateflow charts
– the Stateflow block completes its current processing step.
As all the blocks of the SL/SF model have been processed,
the model is now ready to accept its next input vector and
proceed to the next simulation step. This cycle repeats till
the simulation duration ends.

Let us consider the reachability of the state marked P. The
equations for x and y in the above figure are: xn = an − yn

and yn = bn−1 for n ≥ 1, with n being the n-th sampling
step. y1 gets the initial value of the delay block which is user
defined. Assume the Stateflow diagram is unfolded from
the initial state up to a certain depth (refer to Figure 2).

219

M

M N

P

N

M

N

M

P

N

M N

N P

M

M

N P

Subtree for
directed testing

M
N’

Random trace

Figure 2: Coverage by random and directed testing

Each transition can be associated with a constraint, and
the conjunction of all constraints in a path is termed as the
path constraint. For instance, the path constraint of the
transitions leading to P at level 2 (shown within a circle) is:

x2 = y2∧k2 = 4∧x2 = a2−y2∧y2 = b1∧k2 = k1+1∧x1 > y1 . . .

This constraint was fed to the constraint solver yices [19],
and the constraint was found to be unsatisfiable implying
that this P is not reachable. On the other hand, the path
constraint associated with the P at level 8 and shown within
double circles in the figure is:

x8 = y8 ∧ k8 = 4 ∧ x8 = a8 − y8 ∧ y8 = b7 ∧ k8 = k7 + 1 . . .

This constraint was fed to yices, and we got the solution:
[(1, 0.5), (0,−0.5), (0, 0.5), (0,−1), (−1, 0.5), (0,−1), (−1, 0),
(0, 0)]. Thus P was reached by pure directed testing.

The REDIRECT tool reached P by using a combination
of random and directed testing. The random input sequence
[(3, 2), (4, 0), (2,−1), (−1, 3), (6, 4)] was applied and it took
control to state N ; this path has been shown by the bold
line from root to node N ′ in Figure 2. With respect to N ′,
directed testing was applied over the subtree of depth 5,
shown as the triangle with dotted lines. It was found that,
all Ps occurring at depth less than 5 in the subtree were
unreachable. However, the path constraint for reaching P,
shown within double circles, was solved by yices, and we got
the solution: [(9,−0.5), (0, 0.5), (0,−0.5), (0, 0), (0, 0)].

With the aim of reaching the state marked P, we ran Reac-
tis multiple times with very high parameter values; one such
run had parameters: no. of tests = 1000; no. of steps/test
= 1000 and no. of target steps = 100000. However, none
of the runs could reach P. Furthermore, using Reactis, we
could achieve 50% MC/DC coverage of the Stateflow block,
whereas, with REDIRECT, we could achieve 100% MC/DC
coverage.

3.1 Test case generation algorithm
In this paper, we limit coverage objectives to covering the

states and transitions in a Stateflow. We wish to highlight
the power of our method by considering these simpler objec-
tives; however, more complex objectives (e.g. transition-pair

Utree

C

B

A

R

S T

X Y

P Q

M N

Figure 3: The unfolded tree and the coverage ap-
proaches

coverage) can be incorporated to the method and to the tool
without much of difficulty.

The first three components of REDIRECT approach –
Random Testing, Directed Testing and Backtracking – can
be best seen from the diagram of Figure 3. The method
assumes that the states of the Stateflow model are unfolded
up to a pre-defined depth to form a tree with its root rep-
resenting the initial state. Henceforth, this unfolded tree
will be known as Utree. We assume that hierarchical and
parallel Stateflow components are flattened, and thereafter,
the Utree is constructed. Note that the Utree is never con-
structed in full; relevant subtrees within it are constructed
dynamically on a need basis. In the figure, the region RST
represents the Utree. A random input sequence over the
given SL/SF model will give rise to a trace which will be
a path in Utree (assume that the trace does not cross the
boundary RST .) In the figure, R and A are respectively
the start and the end points of such a trace. The trace
RA may have covered some of the model elements within
the coverage objectives, and therefore the latter needs to be
modified after this phase. Generation of random traces may
be performed a number of times. These steps constitute the
Random testing component of REDIRECT.

A subtree of a certain depth with the end-point of the sim-
ulation trace as the root – A in the figure – is marked within
the Utree. All the targets (transition edges) within this sub-
tree are collected and are marked for coverage. In the figure,
AXY is such a subtree. A Stateflow edge may have many
occurrences in the subtree but all of them may not be fea-
sible. Path constraint of a target edge – in relation to the
root of the subtree – is derived and it is fed to the constraint
solver to get a solution. If the path constraint is linear then
a constraint solver can possibly find a solution. However,
if the constraint is non-linear, its pattern is identified and
the heuristics associated with this pattern in a library are
used to generate input sequences with the aim of covering
the said target. This phase constitutes the Directed Test-

ing component of REDIRECT. The choice of the depth of this
subtree is a crucial factor; either it can be supplied as an
input parameter or it can be decided dynamically.

In the Backtracking phase, our method backtracks along
the simulation trace to continue directed testing. In the

220

figure, B is the state after backtracking, and directed test-
ing continues from there by constructing the subtree BPQ.
Once this is over, there can be further backtracking, and in
the figure, C is the next backtracking point. A heuristic can
decide on how many steps to backtrack and how many times
to backtrack.

Inputs:
M : Given SL/SF model.
Utree: Unfolded Stateflow states as a tree
MaxDepth: max depth of Utree.
CO: Coverage objective.
bsteps: max steps to go back while backtracking.
tdepth: From a subtree with end(trace) as root, targets
are selected. tdepth is the max depth of this subtree.

Step1:im←instrument_model(M);
ran_att← 0; //random attempts
itrace ← null; // incremental trace

Step2:iseq←generate_ran_inp_seq(im);
ran_att←ran_att +1;

Step3:trace←simulate(im,root(Utree),iseq);
out_test_sequence(trace);

Step4: // # is the concatenation operator
CO←update_coverage(CO,trace#itrace);
itrace← null;
if (coverage_done(CO,ran_att)=true)
STOP;

Step5:tar←new_target(Utree,trace,CO,tdepth);
if tar=null {

trace ← backtrack(trace,bsteps);
if trace=null goto Step 2
else goto Step 5;

}

Step6:constr←get_constraint(Utree,trace,tar);
if is_non-linear(constr,tar,im)=true {
itrace←nl_solver(tar,constr,trace,im);
if (itrace=null) goto Step 5;
else {
out_test_sequence(trace#itrace);

goto Step 4;}
}

Step7:sol←solve_constr(constr,trace,Utree);
if sol 6= null {
out_test_sequence(trace#sol);

itrace ← sol;
goto Step 4;

} else goto Step 5

Figure 4: Test case generation Algorithm

The test case generation algorithm under REDIRECT which
uses the above three techniques is given in Figure 4. MaxDepth
is the depth of the Utree and CO is the coverage objective.
tdepth is depth of the subtree which is constructed for di-
rected testing, and bsteps is the number of edges to go back
along the simulation trace for backtracking. The entities
like tdepth, bsteps etc. are supplied as input parameters;
however, a tool, for efficiency reasons, may compute these
parameters dynamically.

In the algorithm, routine instrument_model() in Step 1
instruments the model; instrumentation is required to cap-
ture all information associated with a simulation run, this
will be discussed later. In Steps 2 and 3, the model is sim-

nl solver(tar1,constr1,trace1,im1) {
/* constr1: non-linear constraint of transition tar1*/
/* trace1: simulation trace: root to source of tar1*/
/* im1: instrumented SL/SF model */
/* Max_Iter: max trials to cover a non-linear target*/
no_iterations ← 0;
trace_list ← [trace1]; /* singleton list */
while (no_of_iterations ≤ Max_Iter) {
iseq ← heu_inp_seq(trace_list,constr1,im1);
htrace ← simulate(im1,end(trace1),iseq);
if (already_covered(tar1,htrace) = true)

return (htrace);
else {
trace_list←htrace::trace_list/*list constructor*/
no_iterations ← no_iterations +1;

}
}
return (null);
}

Figure 5: Algorithm for handling non-linear con-
straints

ulated by generating a random input sequence. After every
simulation trace, the coverage objective needs to be modified
and this is performed by the routine update_coverage() in
Step 4. The routine new_target() in Step 5 produces
a new target within the subtree meant for directed test-
ing. Routine backtrack() produces a truncated trace to
be used for further directed testing and it returns null if
no further backtracking is possible. When the constraint
is non-linear, the routine nl_solver() in Step 6 tries to
cover the target; more about non-linearity will be discussed
later. The routine solve_constr() in Step 7 solves a linear
path constraint and produces a solution if the constraint is
solvable; otherwise, it returns null. Directed testing always
occurs with respect to a reference point (root of a subtree).
During this phase, the simulation trace augmented with the
non-null solution produced by the constraint solver, is in ef-
fect a trace to reach the current target from the root of the
Utree. Therefore a test case can be generated from the sim-
ulation trace and the non-null solution obtained; this task
is performed by the routine out_test_sequence() of Step
7. Similarly, if the nl solver() covers a target, a test se-
quence is also generated (refer to Step 6). Depending on
the coverage achieved, and the number of random sequences
generated, a decision is taken whether to continue or stop
further testing; this task is performed by the routine cov-

erage_done() (in Step 4).
Let R, D and B respectively stand for Random testing,

Directed testing and backtracking; the algorithm above has
considered the ordering in which each run is of the form
R(DB)+, where + stands for one or more times. This
means, for each run, we perform one R followed by (DB)+,
and there can be several such runs. However, our method
can easily be extended to other orderings like (R|D|B)+ and
R(DB)+(Rm(DB)+)+. The former means, for each run, se-
lect any of the testing approaches non-deterministically and
perform it, and then make another choice to continue the
cycle a number of times. The latter, shown in Figure 6,
means perform R followed by (DB)+ but store in memory a
reachable point in the very first D. Then from this point in

221

m

R

D

D

R

D

D

D
D

Rm

D

Figure 6: A possible ordering

memory, perform a random simulation (or simulation by an
input sequence generated by a heuristic) which we denote by
Rm, and thereafter perform a (DB)+ again storing a reach-
able point in the first D of the current (DB)+ in memory.
Next, continue with the Rm(DB)+.

3.2 Handling non-linear constraints
During directed traversal (Step 6 in the algorithm), nl-

solver() of Figure 5 tries to cover a target with non-linear
constraints. The algorithm refers to a library called the
pattern guided heuristic library (PGHL) which contains a set
of patterns and each pattern is associated with a sequence
of ordered heuristics which will be used to generate the next
portion of the input sequence (with respect to the current
state) with the aim of covering the target. In addition, this
phase uses feedback-based testing techniques. Feedback can
be of two kinds. Backward feedback tries to get information
from previous runs and uses it to cover a target, whereas in
forward feedback, we go for one or more dry runs to obtain
information which could be used to cover the desired target;
more about dry runs will be explained later.

The routine heu_inp_seq() either consults the PGHL or
attempts a dry run to obtain the next portion of the input
sequence. Each time an input sequence is obtained, incre-
mental simulation occurs with the end of the current trace
as the starting point. This goes on till the number of it-
erations reaches the max limit (Max_Iter in the algorithm)
or till the target is reached, whichever is earlier. When the
nl_solver() fails to cover a non-linear constraint, it returns
null.

3.3 Pattern Guided Heuristic Library (PGHL)
While attempting to cover a target, REDIRECT attempts

to match non-linear constraints syntactically with some pre-
defined patterns. Patterns commonly encountered in SL/SF
designs are stored in a table and heuristics associated with
each pattern help in generating input vectors. A single pat-
tern may match multiple heuristics; several heuristics may
be combined to generate the next input sequence. Some of
such heuristics have been shown in Table 1. Since we are
dealing with domains like automotive and aerospace, most
of the inputs are associated with physical phenomena, and
therefore can be assumed to be continuous and monotonic
for some duration. The key to non-linear constraint satisfac-
tion using these heuristics is to obtain monotonic behavior
of the constraints and quantities involved.

The table entries need some explanation. The first col-
umn contains the nature of the pattern. The second column
presents a typical example of the pattern; subscripts nl and
l respectively denote a non-linear function and a linear func-
tion respectively. No subscript means the function could be
anything. Usually, we assume a non-linear function to be
uninterpreted and only take its black box view. The third
column outlines the heuristic to handle such a situation.
The first three columns in essence represent the PGHL. The
fourth column states the form of actual constraint that we
have encountered in our case studies. The last column tells
how many times the same heuristic was applied to reach a
solution. While generating an input sequence, we obtain
a sequence of a certain length. Next, suppose we discover
that the input sequence converges towards the solution but
does not meet it; in such a case, we need to generate an
input sequence of greater length, and we may have to do it
repeatedly to reach the constraint. The feedback from the
earlier runs – we call them dry runs – are used to obtain
the next input sequence. The last column tells about this
number of iterations in the case studies.

4. TOOL IMPLEMENTATION AND CASE
STUDIES

User−defined

Instrumentation
Model

Simulator
Model

Generator

PGHL

Solver

Sequence State
Current

reset

InputModel

Model

Input Sequence

Dynamic Traversal Decision Module (DTDM)

Constraint

Test cases

States
unreachable

Criterion
Coverage

SL/SF Model

(Sample time,
depth etc.)

Parameters

Figure 7: The Tool Architecture

4.1 The tool architecture
The architecture of the REDIRECT tool can be seen from

Figure 7. The tool takes a SL/SF model, a coverage crite-
rion and some user-defined parameters like sampling time,
the subtree depth for directed testing etc. The model is first
instrumented and fed to the model simulator and also to the
Dynamic Traversal Decision Module (DTDM). Instrumenta-
tion mainly consists of translating the Simulink functions or
Stateflow guards to elements in a constraint language, and
to capture all information associated with simulation runs.

The DTDM is the major component of this tool. It has
three sub-components: a constraint solver, an input sequence
generator and a pattern-guided heuristic Library (PGHL).
The DTDM feeds an input sequence (either random or heuris-
tic driven) to the simulator which simulates the instrumented
model accordingly. After the end of the simulation, the sim-
ulation trace is supplied back to the DTDM. Based on the

222

Pattern Example Approach Where encountered no. of iterations
Simple non-linear (x ∗ y) ◦ k Hold x constant. Get i/p in some
constraints (x/y) ◦ k sequence of size s contrived

◦ is a by varying y in one examples
relational operator direction. Change s

x, y are inputs or direction if necessary.
Common i/p on both Hold common inputs
side of constraint fnl(x, y) ◦ g(y) constant. vary f1(brake, throttle)

fnl(x, y, x) ◦ g(x, z) other i/p in both directions. < g1(throttle) 15
rate of growth Estimate slopes from
on both sides fnl(.) ◦ g(.) prior simulations of f & g f2(brake, throttle)

and estimate time steps > g2(brake) 8
to satisfy constraint

i/p generation with Take concrete value of after(TWAIT, tick)
concrete values fnl(x, y) ◦ gl(z) of fnl(x, y) from &&speed ≥ up th

f non-linear; simulation to get C ◦ gl(z); speed is non-linear, 2
g linear solve for z. Assumption: take its concrete value;

f(x, y) does not change much up th is linear
for some duration (lookup table entry)

i/p generation From previous simulations,
from history fnl(x, y) ≥ g(x, u, v) identify i/p sequence with

f increasing & g decreasing;
(similarly for append same i/p seq f3(brake, throttle) 4
fnl(..) ≤ g(..)) to current run. > g3(brake)

Sampling step xn+1 = xn + δ ∗ In sample system
abstraction (e.g. δ: discrete behavior coarsely; after(700,wakeup) 2
integrator blocks); step chosen replace δ by k ∗ δ;
constraint length by user. obtain missing inputs
is too long by interpolation

Table 1: Pattern-heuristic mapping in PGHL

feedback received, the DTDM may output a test vector, or,
it may decide on the next input sequence, and if necessary,
resets the model for a fresh traversal. The heuristic library
is used when the constraint is non-linear and the solver is
not able to solve it.

4.2 Tool implementation
We will first discuss the implementation of instrumenta-

tion steps. For the Simulink part of the model, we attach
observers to the outputs (or inputs) of state-based blocks,
such as integrators and delays. This is performed by attach-
ing To-Workspace blocks to the Simulink model and enabling
data-recording for each discrete simulation step. This is im-
plemented by a Matlab script which uses Matlab api calls for
attaching new blocks and setting block properties through
call-back functions. For Stateflow blocks, additional Mat-
lab code is appended to every state entry, during and exit
actions, and to condition/transition actions of every transi-
tion; this is again achieved by parsing the Stateflow charts
using Matlab api function calls. As the simulation pro-
gresses, a data structure in the workspace, usually a cell
array, records inputs given to the model, data values of the
state-based variables and activity within the Stateflow chart.
This can be analyzed post-simulation by the test generation
algorithm.

Next, we parse the model – by a parser similar to the one
used in [5] – for generating constraints in the language of
yices [19] which is our constraint solver. Blocks in Simulink
are translated to their semantic-equivalent constraints. For
instance, in Figure 1, the delay block is translated into

yn = bn−1 and the transition guard [x > y]/k + + is trans-
lated into xn > yn∧kn+1 = kn+1∧xn = an−yn∧yn = bn−1

with n > 0.We thus have timed copies of the variables cor-
responding to the discrete time steps. Where a semantic-
equivalent linear translation is unavailable – such as mul-
tiplication/division, transfer function, library calls, masks,
etc – we substitute those with uninterpreted function calls
with inputs as parameters (black-box view). During actual
constraint-solving process, the calls, if required, are replaced
with their concrete values obtained from simulation. Since,
we usually require a multi-step solution, a Matlab script con-
trols the generation of these constraints for a given number
of time-steps.

For the simulation component, we use the Matlab sim-
ulation engine [11], invoked using the sim command. It
accepts an instrumented model and an input sequence, and
simulates the model to produce a trace.

The DTDM stores previous simulation runs to learn about
the black-box (i.e. non-linear) function behavior. The PGHL
stores a set of ordered heuristics against each pattern; each
heuristic enables the generation of an input sequence. Con-
sider a constraint pattern of the form: f(x, y) > g(y) with
f non-linear and g linear. The first heuristic for this pat-
tern suggests to keep y – the common variable – constant
and to vary x. The first learning input sequence is gener-
ated as follows: given current x (xc), maximum value of x
(xmax), current y (yc), incremental step for x (δx) and input
sequence length (hlength), the input values are:
for j = 1 . . . hlength, y[j]← yc

for j = 1 . . . hlength, x[j]← min(xc + (j − 1) ∗ δx, xmax)

223

This is the input sequence from the current state. If incre-
mental simulation of this input sequence converges towards
the solution, then either we hit the target or if necessary,
we next generate a longer input sequence. In case of diver-
gence, input sequence is generated in which x is gradually
decreased. If this heuristic fails, then DTDM applies the
next heuristic, and this continues till the target is hit or the
process is aborted.

4.3 Case Studies
In addition to performing studies over a number of smaller

models, we have evaluated our REDIRECT tool over five
SL/SF models: four in the automotive domain and one in
the aerospace domain. Table 2 tabulates the coverage re-
sults both from Reactis and REDIRECT. Reactis was run
with very high parameter values and the table entries show
the best results which were compared with the best results
of REDIRECT. The first column contains the names of the
applications and the sizes of their SL/SF models. Note from
the table that REDIRECT always achieves same or higher
state/transition coverage in relation to the Reactis results.
Though Reactis was given the opportunity with high param-
eter values (refer to column 1 under the heading Reactis),
it missed some targets deep down in the tree. REDIRECT
achieves better coverage because complicated targets, in par-
ticular targets with non-linear constraints, benefit a lot from
the use of heuristics and feedback-based testing. Coverage
metrics in the ATC and the Power Window Controller ap-
plications demonstrate that. The last row shows the results
of the Missile Guidance controller (MGC) model which con-
tains some non-trivial Simulink blocks like continuous trans-
fer functions and continuous integrators. Reactis does not
support such Simulink blocks as of now, and therefore, could
not handle this model as such. However, REDIRECT did
not face any problem while handling this model since such
blocks were treated as uninterpreted functions.

In the following, we will discuss a case study in detail and
present short descriptions of the rest. All such case studies
are available as demo examples in Matlab 7.0.

4.3.1 Automatic Transmission Controller (ATC)
The ATC system is a controller for a 4-gear automatic

transmission based on two primary inputs: brake and throt-
tle. As shown in Figure 8, this system has five subsystems:
Vehicle, Engine, Gear-shift logic, Threshold calculation and
Transmission. The gear-shift logic is modeled in Stateflow
(Figure 9) and the rest are modeled in Simulink. The State-
flow model has nine states altogether and is hierarchical.
It has also parallel-AND and exclusive-OR modes. The
Simulink blocks contain integrators, gains, look-up tables
and feedback loops. The constraints of the transitions in
the Stateflow model have non-linear components.

The controller implements logic for shifting gears based
on upshift and downshift thresholds, specified as lookup ta-
bles. A gear is shifted upwards (downwards) if current speed
continues to violate threshold for a given amount of time as
indicated by the two transitions from upshifting (down-
shifting) to steady state. The engine subsystem models
the engine behavior which takes the throttle value as input
and outputs the rpm. The transmission subsystem takes gear
value and the rpm as inputs and outputs a torque estimate
to the vehicle subsystem. The vehicle subsystem calculates
the speed based on the brake applied and the torque.

torque

Engine

Threshold
Calculation logic (SF)

Gear shift

Transmission

vehicle

Throttle

Brake

rpm

threshold

gear position

vehicle

speed

Figure 8: The Automatic Transmission Controller

Reactis was not able to fully cover the Stateflow as shown
in Table 2. REDIRECT applied random testing, directed
testing and four heuristics from the PGHL and achieved
full coverage. We will illustrate the application of one such
heuristic here. For the transition guard [speed > up th],
speed is a non-linear function of brake and throttle, and
up th is linear in throttle. Thus the heuristic of second entry
in Table 1 is applicable here. throttle being the common
variable was fixed and brake was varied. It was observed
that speed increased monotonically with increasing value of
brake. The generated input sequence covered the transition.
For the transition [after(TWAIT, tick)&&speed > up th],
current concrete value of speed was used to find a solution
for throttle. Thus heuristic of the fourth entry in Table 1
was used, and the input sequence generated by this heuristic
covered the above transition.

4.3.2 Other case studies
The Power Window controller (PWC) (this is a variant of

the PWC in Matlab demo) is for controlling the glass move-
ments in the vehicle windows. The input to the system is
driver command, which may be 1 for moving the window up,
0 for downward movement and 2 for neutral. The controller
outputs appropriate values to the plant, modeled using a
discrete integrator. An internal variable hit tracks when the
window hits the top or the bottom threshold. A special
state CycleDone is entered on completing a movement from
the top to bottom position or vice-versa. Reactis could not
achieve full coverage; REDIRECT covered it by using di-
rected testing, followed by backtracking and then another
round of directed testing.

The Cruise Controller (CC) allows a car to cruise au-
tomatically at a set speed. The system senses the brake,
accelerator pedal, and other cruise activation controls from
the environment. The controller can be in active mode only
if no brake, accelerator or cancel command is issued and the
current speed is above a threshold. Reactis could achieve
full coverage for this example. REDIRECT achieved full
coverage by using a combination of random and directed
testing.

The Adaptive Cruise Controller (ACC) is responsible for
determining the host vehicle’s speed on a continual basis.
It takes driver’s input and environment information which

224

Figure 9: SF chart of ATC

includes current speed, leader’s presence/absence and the
gap between the host and the leading vehicles. A combi-
nation of directed testing, random testing and backtracking
was used by REDIRECT to cover all but two states. All
heuristics failed to cover these two states and the associated
transitions.

The missile Guidance Controller (MGC) takes the target
and missile positions and direction as input and decides by
what amount the trajectory should change. The Stateflow
block (two parallel Stateflow charts) defines all mode transi-
tions during normal and unusual situations. This model has
a large number of non-linear blocks which mainly model the
non-linear rigid body dynamics. Let us consider a particular
constraint which contains the predicate after(700, wakeup);
this is to be satisfied to cover a transition. The number of in-
puts required is at least 700, which may involve a lot of com-
putation for the heuristic input generator (or the constraint
solver, in case of linear constraints). So we have applied
the sampling time abstraction technique (last row in Table
1) two times to solve this constraint. We consider inputs
at wider sampling intervals and in the process, generate a
much shorter input sequence. The missing intermediate in-
put values are next obtained automatically by interpolation.

5. DISCUSSION

• From our experiments, we can infer that a careful
combination of random testing, directed testing, back-
tracking and feedback based testing is a powerful tech-
nique for testing of Simulink/Stateflow models. In
other words, we have integrated interesting aspects
of DART, hybrid concolic testing and feedback based
testing into REDIRECT. Since directed testing is lo-
calized – we generate constraints for transitions in a
subtree of relatively smaller depth – scalability is never
an issue. Some ideas about feedback based testing
from previous runs has been mentioned in [15]; how-
ever, REDIRECT considers both backward and for-
ward feedbacks for covering targets.

• If a state has many outgoing transitions, they can be
assigned probabilities of occurrence; for example, a
target with an equality is less probable to occur in

a random simulation. When a transition probability
is less, then directed testing is the choice, and when
probability is more then random testing is the choice.
Thus probabilities can also be associated with a path.
Keeping these probabilities in mind, for a model, a
plan can be made about the way to cover the coverage
objectives. Thus the ordering (R|D|B)+ can further
be refined to exploit this fact. Furthermore, probabil-
ity analysis of paths can determine the depths of the
subtrees which would be used for directed testing.

• Handling non-linear constraints both in Stateflow and
in Simulink – by use of smart heuristics from the heuris-
tic library and feedback based techniques – is a major
contribution of our approach. Our experiments sug-
gest that Reactis does not perform well when faced
with non-linearity. One important aspect of Reactis
coverage is worth mentioning. For the ATC case study,
we have run Reactis 25 times to generate test cases. On
two occasions, the coverage was 100% but for the re-
maining 23 times the coverage was low. This is because
of the role of Random testing on Reactis coverage; ev-
ery time the coverage measures can be different (In
Table 2 we have shown the average measures). This
corroborates the observations made by Miller et al.
[13]. From our experiments, we can infer that REDI-
RECT avoids this unreliability in quality but reaps the
benefits of random testing.

• Currently, our method flattens parallel Stateflow charts
for covering the states and transitions. This blows up
the number of states and transitions. We are exploring
the use of special traversal techniques that explore the
states concurrently in different charts to avoid flatten-
ing. This is a part of our future work.

6. CONCLUSIONS AND FUTURE WORK
Random and Systematic testing techniques have their own

strengths and weaknesses. We have used an effective mix
of randomness and directed coverage in our REDIRECT
approach and developed a prototype tool. We have per-
formed several case studies over medium-sized SL/SF mod-
els and achieved better structural coverage on these case

225

Applications Reactis REDIRECT

params % State % Tr. No. of Avg length % State % Tr. No. of Avg length
cover cover testcases of testcases cover cover testcases of testcases

Cruise Controller 1K, 100 100 31 2.5 100 100 1 57
(5 states, 7 Tr. 1K
23 SL blocks) 20K

ATC 1K, 83 71 4 460 100 100 3 336
(9 states, 14 Tr. 1K,
26 SL blocks) 1000K

ACC 1K, 90 75 10 354 90 75 2 44
(10 states, 16 Tr. 1K,
65 SL blocks) 200K

Power Window
controller 1K, 80 81 9 9 100 100 2 65
(5 states, 11 Tr. 1K,
4 SL blocks) 100K

MGC
(7 states, 9 Tr., × × × × × 100 100 3 100
140 SL blocks)

Table 2: Coverage measures of SL/SF models (4 automotive and 1 aerospace)

studies than some commercial tools. Handling non-linear
constraints using heuristic and feedback techniques is an im-
portant contribution of our research.

7. REFERENCES
[1] Applied Dynamics International. BEACON for

Simulink/Stateflow, http://www.adi.com

[2] R. Alur, A.Kanade, S.Ramesh, and K.C. Shashidhar.
Symbolic Analysis for Improving Coverage of
Simulink/Stateflow Models, In EMSOFT (this
Proceedings), ACM, 2008.

[3] R. Cleaveland, S.A. Smolka, and S.T. Sims. An
Instrumentation-Based Approach to Controller Model
Validation, In Automotive Software Workshop, San
Diego, Available at
http://aswsd.ucsd.edu/2006/pdfs/smolka-vm-
slides.pdf

[4] ETSI. ETS 300 406: Methods for Testing and
Specification (MTS); Protocol and profile conformance
testing specifications; Standardization Methodology,
European Telecommunication Standard, 1995.

[5] A. Gadkari, A. Yeolekar, J. Suresh, S. Ramesh, S.
Mohalik, and K.C. Shashidhar. AutoMOTGen:
Automatic Model Oriented Test Generator for
Embedded Control Systems, In Proc. of the CAV’08,
LNCS Volume 5123, pages 204-208, 2008.

[6] P. Godefroid, N. Klarlund, and K. DART: Directed
Automated Random Testing, In Proc. of the PLDI’05,
Chicago, pp. 213-223, 2005.

[7] G. Hamon, L. de Moura, and J. Rushby. Automated
Test Generation with SAL, CSL Technical Note,
January 2005.

[8] ISO. OSI Conformance Testing Methodology and
Framework– ISO 9646, 1998.

[9] A. Agung Julius, G. Fainekos, M. Anand, I. Lee, and
G.J. Pappas. Robust test generation and coverage for
hybrid systems, In LNCS Volume 4416, Springer,
pages 329-342, 2007.

[10] R. Majumdar, and K. Sen. Hybrid Concolic Testing,
In Proc. of the ICSE, Minneapolis, pages 416-426,
2007.

[11] The Mathworks, http://www.mathworks.com

[12] The Mathworks, Simulink Design verifier,
http://www.mathworks.com

[13] S.P Miller, E.A. Anderson, L.G. Wagner, M.W.
Whalen, and M.P.E. Heimdahl. Formal Verification of
Flight Control Software, In Proc. of the AIAA
Guidance, Navigation and Control Conference and
Exhibit, San Francisco, pages 1-16, August 2005.

[14] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann.
Generating Test Data from State Based Specifications,
Software Testing, Verification and Reliability, John
Wiley, 13(1): 25-53, March 2003.

[15] C. Pacheco, S.K. Lahiri, M. Ernst, T. Ball.
Feedback-directed Random Test Generation, In Proc.
of the ICSE, Minneapolis, pages75-84, 2007.

[16] Reactis: http://www.reactive-systems.com

[17] Reactive Systems. Model Based Testing and
Validation with Reactis, Reactive Systems Inc.,
http://www.reactive-systems.com

[18] D.J. Richardson, A. Leif Aha, T.O. O’Malley.
Specification-based Test Oracles for Reactive Systems,
In Proc. of ICSE, Melbourne, pages 105-118, 1992.

[19] SRI International. SAL home page
http://sal.csl.sri.com

[20] S. Sims, and D.C DuVarney. Experience Report: The
Reactis Validation Tool, In Proc. of the ACM
International Conference on Functional Programming,
Freiburg, pages 137-139, October 2007.

[21] STB. Safety Test Builder, Automatic Test Generation
for Simulink/Stateflow, TIN Software.

[22] T-Vec. T-Vec Tester for Simulink,
http://www.t-vec.com

[23] H. Zhu, P.A.V. Hall, and J.H.R. May. Software Unit
Test Coverage and Adequacy ACM Computing
Surveys, 29(4):366-427, 1997.

226

