
Compositional Analysis of Deadlock-Freedom for Tree-Like
Component Architectures

Mila Majster-Cederbaum
Department of Computer Science, Universität

Mannheim, Germany
mcb@informatik.uni-mannheim.de

Moritz Martens
Department of Computer Science, Universität

Mannheim, Germany
mmartens@informatik.uni-mannheim.de

ABSTRACT

We study architectural constraints for component systems in
order to be able to guarantee safety-properties. Represent-
ing safety-properties, we investigate deadlock-freedom. We
present a compositional and hence polynomial time condi-
tion for deadlock-freedom for a class of component-systems
whose architecture is tree-like. The architectural constraints
that are developed can be understood as a design pattern
that helps to construct systems satisfying safety-properties
on the one hand. On the other hand, they might help to
draw attention to potentially critical situations in a design.
To model component-systems we use the formalism of inter-
action systems as proposed by Sifakis et al. The ideas can
be transferred to other formal models where subsystems are
cooperating via synchronous communication.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Veri-
fication—Formal methods; F.3.1 [Logics and Meanings

of Programs]: Specifying and Verifying and Reasoning
about Programs—Mechanical verification and specification
techniques

General Terms

Design, Theory, Verification

Keywords

architecture, component-based systems, deadlock-freedom,
design patterns, interaction systems, compositionality

1. INTRODUCTION
Component-based design techniques are an important pa-

radigm for mastering design complexity and enhancing re-
usability of distributed systems. In contrast to the object-
oriented approach where subsystems interact by explicitly
accessing operations of other subsystems in their code, com-
ponents are designed to be as independent as possible from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10 ...$5.00.

their context of use. Ideally a component may be deployed in
any meaningful environment that can use the component’s
functionality. Thus a component may not invoke operations
or data of other components. Instead a component provides
ports which can be used to glue several components together
using some kind of separate gluing mechanism. This view
has lead some authors, e.g., [2, 11, 29], to consider a compo-
nent as a black-box in the sense that only the input/output
behavior at the ports of the component is described explic-
itly. However, if we want to make assertions about the global
behavior of such a system, be it functional, temporal, or
quantitative, knowledge about the components has to be
provided and we have to abandon the black-box point of
view of a component.

There have been different approaches to model the in-
ternal behavior of a component, e.g., Petri-nets [5], process
algebra [1, 30] or channel-based methods [10]. One approach
to investigate generic properties such as deadlock-freedom,
progress, or liveness of component-systems is model-check-
ing, where in general the global state space is analyzed.
Other approaches require certain conditions on the glue-code
and on the components to be composed to ensure desired
properties [1, 3, 21]. A first approach to use architectural
constraints to address the problem of deadlock-freedom can
be found in [7, 8].

The formalism of interaction systems was proposed and
discussed by Sifakis et al. in [17, 18, 20, 33]. We build on this
formalism in order to study component-systems. Interaction
systems have been implemented in the BIP- [6] as well as the
PROMETHEUS-tool [14]. The model is used as a common
formal platform in the EU project SPEEDS [4, 9].

The model is particularly well suited to model component-
systems as it strictly separates the description of the com-
ponents from the way they are glued together. Each com-
ponent i has a static interface description, which is given by
a set Ai of ports. The dynamic behavior of component i is
modeled by a labeled transition system Ti where the labels
are the elements of Ai. Components are glued together via
connectors which constitute an independent layer of descrip-
tion. A connector is a set of ports, such that each component
participates with at most one port, and describes a cooper-
ation among components. The same set of components can
be glued together differently (i.e., with other connectors) for
different applications. The behavior of the global system is
fully determined by the static and dynamic description of
the components and by the connectors.

Theoretical results [26, 27] show that deciding virtually
any important property of interaction systems is PSPACE-

199

complete. In order to deal with this situation one can con-
ceive various strategies:

1. establishing conditions for general component-systems
that ensure the desired properties and can be tested in
polynomial time

2. abstraction

3. exploiting compositionality

4. restricting the architecture of the component-systems

In [16, 15, 24, 23, 25] we took the first approach for gen-
eral interaction systems. First attempts to exploit compo-
sitionality can be found in [24, 21, 3, 1]. In this paper we
consider a combination of the last two strategies and deal
with deadlock-freedom which is an important property in
itself. Moreover checking safety-properties can be reduced
to checking deadlock-freedom [13].

We consider tree-like interaction systems, i.e., the com-
munication structure forms a tree. We present conditions
that only refer to neighbors in the tree but ensure deadlock-
freedom in the global system. A similar approach was taken
in [7, 8]. For example, the basic idea of [8] is that whenever
a component cooperates with an inner node of the tree then
the behavior of this inner node should not be confined by the
cooperation. This is a rather rigid restriction. We present
a criterion that computes an over-approximation of the pro-
jection of the set containing all reachable global states to
any subsystem consisting of two neighbors in the tree. Then
we check a condition which basically ensures that no states
which could be involved in a global deadlock are reachable
in these subsystems.

The paper is structured as follows. In Sect. 2, we formally
introduce interaction systems and the notion of deadlock-
freedom. In Sect. 3, we present the tree-like architecture we
consider. Section 4 contains an example. The main result
and its application to the example can be found in Sect. 5.
In Sect. 6, we shortly discuss the result and compare our
criterion with other results. Section 7 concludes the paper.

2. INTERACTION SYSTEMS
We build on a model for component-based systems, called

interaction systems, that was proposed by Sifakis et al. in
[17, 18, 19, 32, 33]. Interface automata [12] and I/O-auto-
mata [22] can be considered as special cases of interaction
systems.

Definition 1. An interaction system is defined by means
of a tuple Sys := (K, {Ai}i∈K , C, {Ti}i∈K

). Here K =
{1, . . . , n} is a finite set of components. Components are re-
ferred to as i ∈ K. The ports or actions of component i are
given by the port set Ai. A connector c describes a possible
cooperation between several components and is a nonempty
set of ports that contains at most one port of every compo-
nent. All allowed cooperations are described by the connec-
tor set C which is a set of connectors such that every port of
every component is contained in at least one connector and
all connectors are maximal with respect to set-inclusion1.
For i ∈ K and c ∈ C we put i (c) = Ai ∩ c. We say that

1Note that even the subclass of interaction systems only
allowing binary communication offers more flexibility than
process calculi (e.g., as CCS) since one port may appear in
various connectors.

i participates in c if i (c) 6= ∅. Finally Ti =
(

Qi, Ai,→i, q
0
i

)

is a transition system describing the local behavior of i ∈ K
where →i⊆ Qi × Ai × Qi and q0

i ∈ Qi is the initial state.

We write qi
ai→i q′i instead of (qi, ai, q

′
i) ∈→i and define

en (qi) := {ai|∃q′i ∈ Qi : qi
ai→i q′i} the set of ports that

are enabled in qi.
The global behavior T =

(

Q, C,→, q0
)

of Sys is obtained
in a straightforward manner. The set of (global) states is
given by Q :=

∏

i∈K
Qi. States are denoted by tuples q :=

(q1, . . . , qn). The (global) initial state is q0 :=
(

q0
1 , . . . , q0

n

)

.
The transition relation →⊆ Q × C × Q for Sys is defined
canonically where for any c ∈ C and any q, q′ ∈ Q we have

q
c
→ q′ if and only if for all i ∈ K we have qi

i(c)
→i q′i if i (c) 6=

∅ and q′i = qi otherwise. A connector c is enabled in q if for
all i that participate in c the port i (c) is enabled in qi.

Remark 1. For better readability we identified singleton
sets with their element in the previous definition. We will
do so throughout the whole paper.

We need a notion of subsystem of Sys with respect to a
subset K′ ⊆ K.

Definition 2. Let Sys be an interaction system as above
and let K′ ⊆ K be a subset of components. The projection
of Sys to K′ is defined by

Sys ↓K′ := (K′, {Ai}i∈K′ , C
[

K′] , {Ti}i∈K′)

where C [K′] := maxel {c ↓K′ |c ∈ C} is the connector set.
Here c ↓K′ := {aj |aj ∈ c ∧ j ∈ K′}, and maxel is the opera-
tor that maps a set S of sets to the set of all sets contained
in S that are maximal with respect to set inclusion.

Next we present the notion of deadlock-freedom for interac-
tion systems.

Definition 3. Let Sys be an interaction system. A state
q is a deadlock state if no c ∈ C is enabled in q. If there are
no reachable (from q0) deadlock states then Sys is called
deadlock-free.

Deadlock-freedom is not only important from the system-
design point of view where it is desirable that a system does
not reach a state that cannot be left any more. Also, the vio-
lation of a safety-property can be modeled as a deadlock [13].
Thus a broad range of properties can be treated when we are
able to handle deadlocks. Checking deadlock-freedom is dif-
ficult. It has been shown that deciding deadlock-freedom for
interaction systems is PSPACE-complete [27]. As explained
in the introduction there are various strategies to address
this problem. Here we exploit compositionality and restrict
the structure of the component-systems.

3. TREE-LIKE ARCHITECTURES
We consider a tree-like architecture for interaction sys-

tems. Tree-like component-systems arise naturally in many
applications (see [7, 8, 31] for example).

Definition 4. Let Sys be an interaction system. Define a
graph G := (K, E) where the set of edges is given by E =
{{i, j} | ∃c ∈ C such that i and j participate in c} . Denote
the set of neighbors of i by nb (i). If G is a tree we say that
Sys is tree-like.

200

Remark 2. For a tree-like system Sys the above definition
implies |c| ≤ 2 for all c ∈ C. For simplicity we assume that
all communications are binary. The results can be easily
adapted to architectures that also allow for connectors c
with |c| = 1.2

The set of ports of component i that are used for communi-
cation with j ∈ nb (i) is introduced as follows.

Definition 5. Let Sys be a tree-like interaction system, let
i ∈ K and j ∈ nb (i) be components. Define comm i (j) :=
{ai ∈ Ai|∃c ∈ C such that j participates in c and i (c) = ai}
the set of ports of i that are used for communication with j.

We now define a requirement about exclusive communica-
tion. This requirement is rather technical. We need it to
derive the reachability of (qi, qj) in Sys ↓{i,j} from the reach-
ability of a global state q in Sys.

Definition 6. A tree-like interaction system Sys has ex-
clusive communication if it satisfies the following condition
for any components i and j 6= k ∈ nb (i): comm i (j) ∩
comm i (k) = ∅.

Remark 3. For any i that is a leaf in G the condition in
the previous definition is trivially satisfied.

Whenever Sys has exclusive communication, for all i ∈ K we
get a partition of Ai into the sets comm i (j) where j ranges
over the neighbors of i in G. The assumption that a tree-like
interaction system Sys has exclusive communication is in
fact not a restriction after all. It is possible to construct (in
polynomial time) a system that exhibits the same behavior
as Sys and has exclusive communication.

Lemma 1. Let Sys be a tree-like interaction system that
does not have exclusive communication. Then there exists a
tree-like system Sys′ with K′ = K and Q′ = Q such that for
any q, q̄ ∈ Q we have:

∃c ∈ C such that q
c
→ q̄ ⇔ ∃c′ ∈ C′ such that q

c′

→ q̄.

Sys′ has exclusive communication.
There is no exponential blowup in the construction of Sys′.

The basic idea of the construction of Sys′ is as follows. For
all i ∈ K we replace the port ai ∈ Ai by a set of new ports
aj

i where j ranges over those components for which there is
a connector c with ai ∈ c and j (c) 6= ∅. In Ti we substitute
each edge labeled with ai by a set of parallel edges, one for
each aj

i . The connector set C′ is then obtained by replacing

each c = {ai, aj} by c′ = {aj
i , a

i
j}.

Corollary 1. Let Sys be a tree-like interaction system
that does not have exclusive communication and let Sys′ be
defined as above.

1. A state q is reachable in Sys if and only if it is reach-
able in Sys′.

2. A state q ∈ Q is a deadlock state of Sys if and only if
it is a deadlock state of Sys′.

The first part can be shown using Lemma 1 and induction
on the length of a path from q0 to q. The second part fol-
lows directly from the lemma. Thus whenever we investigate
deadlock-freedom of a tree-like system Sys without exclu-
sive communication we may construct and investigate Sys′

instead.
2Connectors of size one can be interpreted as internal ac-
tions.

4. AN EXAMPLE
We present an example that shows how a banking system

which is similar to the banking system described in [7] can
be modeled using the concept of interaction systems. The
example has been chosen as to be somewhat complex and re-
alistic, but still simple enough to verify the results by hand.
The system consists of the following components. There are
m banks represented by components bi for i ∈ {1, . . . , m}.
For each bi there are mi ≥ 1 ATM components atmi

j where
j ∈ {1, . . . , mi}. Finally there is a clearing company cc.
We get Kbank :=

{

cc, bi, atmi
j |1 ≤ i ≤ m, 1 ≤ j ≤ mi

}

. In-
stead of listing the port-sets of the components explicitly
we give the local behavior of each k ∈ Kbank in Fig. 1.
Each ATM can request money from its bank which then
checks the correctness of the PIN delivered with the clear-
ing company. Depending on the reply of the clearing com-
pany, the ATM may disburse money or cancel the transac-
tion. We abstract from the actual values of the PIN and
the money on the accounts, since we only want to model
the communication between the components. Keeping track
of the values could be done by introducing local variables
for the components for example. Alternatively the differ-
ent values could be incorporated into the states and actions
of the components. The following connectors describe the

idlebibi :

checkingbi

waitingbi

okbi
¬okbi

withdrawbi

requestbi

checkbi

correctbi

¬correctbi

pinOKbi

wrongpinbi

disbursebi

cancelbi

idlei
jatmi

j :

waiti
j

withdrawi
j

requesti
j

pinOKi
j

takemoneyi
j

wrongpini
j

cancelij

idlecccc :

checkingcc

checkcccorrectcc ¬correctcc

Figure 1: The local behavior of the components of

Sysbank

allowed interactions between the components. Each bank
bi communicates with the clearing company by means of
the following set of connectors: Ci := {{checkbi

, checkcc},
{¬correctbi

,¬correctcc},{correctbi
, correctcc}}. For every

ATM atmi
j the following set of connectors allow for it to syn-

chronize with its bank: Ci
j :=

{{

wrongpinbi
, wrongpini

j

}

,
{

reqbi
, requesti

j

}

,
{

cancelbi
, cancelij

}

,
{

pinOKbi
, pinOKi

j

}

,
{

disbursebi
, takemoneyi

j

}}

(for limitations of space we set
reqbi

:= requestbi
). Then we define Cbank :=

⋃m

i=1 Ci ∪
⋃m,mi

i=1,j=1 Ci
j . We have now completely specified Sysbank :=

(Kbank, {Ai}i∈Kbank
, Cbank, {Ti}i∈Kbank

). It is tree-like but

201

does not have exclusive communication. For example there
are actions of cc that are used for communication with var-
ious banks. Instead we investigate Sys′bank from Lemma 1.

5. COMPOSITIONAL TESTING OF DEAD-

LOCK-FREEDOM IN TREE-LIKE IN-

TERACTION SYSTEMS
This section contains the sufficient criterion for deadlock-

freedom of tree-like interaction systems. From now on we
assume that for all i ∈ K and all qi ∈ Qi we have en (qi) 6= ∅,
i.e., all local states of all components offer at least one port.
Before stating the criterion we will first motivate and define
step-by-step the concepts needed. These concepts will be
merged in Proposition 1. Exemplarily we will illustrate the
notions and the result by means of Sys′bank defined in the
previous section.

Our goal is to infer deadlock-freedom from conditions that
can be checked on subsystems of the form Sys ↓{i,j} where
{i, j} ∈ E. In each of these subsystems we want to de-
tect those states that might contribute to a reachable global
deadlock. To be able to pinpoint these states, for every
i ∈ K and every local state qi we distinguish those neigh-
bors of i in G, that are possible communication partners for
qi from those that are not.

Definition 7. Let Sys be a tree-like interaction system
that has exclusive communication. For i ∈ K and qi ∈ Qi

we denote the set of components one of which is needed for
cooperation by i in state qi by

need (qi) := {j ∈ nb (i) |en (qi) ∩ comm i (j) 6= ∅} .

Note that in order for i to be able to participate in a con-
nector in qi it suffices if one of the components in need (qi)
enables one of the required actions. Further note that i /∈
need (qi), and need (qi) 6= ∅ because of our assumptions
|c| = 2 and en (qi) 6= ∅. In Sys′bank from Sect. 4 all states qcc

satisfy need (qcc) = {b1, . . . , bm} and for any qatmi
j

we have

need(qatmi
j
) = {bi} since bi is the only neighbor of atmi

j .

On the other hand for bi we get need (checkingbi
) = {cc}

whereas need (idlebi
) =

{

atmi
1, . . . , atmi

mi

}

, for example.
Going back to Sys ↓{i,j} it is clear that any reachable

state (qi, qj), where a connector c = {ai, aj} ∈ C [{i, j}] is
enabled, can never be part of a global deadlock state be-
cause the same connector c will be enabled in any global
state whose entries for components i and j coincide with
(qi, qj). Further we may conclude that a state (qi, qj) where
at least one of the two components is not a possible com-
munication partner for the other (i.e., j /∈ need (qi) or vice
versa) is also not problematic at least from the point of view
of components i and j. This does not mean that this kind
of a state will never be part of a global deadlock state, but
if it is we will have to detect this global deadlock by look-
ing at a different pair of components. Conversely whenever
there is a reachable state (qi, qj) where i ∈ need (qj) and
j ∈ need (qi) but no connector from C [{i, j}] involving both
components is enabled we know that this state can possibly
be part of a reachable global deadlock. This means that a
sufficient condition for deadlock-freedom that only investi-
gates the subsystems Sys ↓{i,j} for {i, j} ∈ E must detect
these kinds of states. First we want to state more precisely
when a local state of component j is problematic with re-
spect to qi ∈ Qi.

Definition 8. Let Sys be a tree-like interaction system
that has exclusive communication. For i ∈ K, qi ∈ Qi,
and j ∈ need (qi) we define the set of states of j that are
problematic with respect to qi:

PSj (qi) := {qj |i ∈ need (qj) and (qi, qj) is

reachable in Sys ↓{i,j}, but no c ∈ C [{i, j}]

involving i and j is enabled in (qi, qj)}

As motivated above a state qj is problematic with respect
to qi if in these states both components are ready to coop-
erate with each other but no cooperation is possible because
the suitable ports are not available. Note that this char-
acterization is symmetric. The same holds for the above
formal definition and thus we have qj ∈ PSj (qi) if and only
if qi ∈ PSi (qj). When we consider the state idlecc and
some bi in Sys′bank we see that PSbi

(idlecc) = {waitingbi
}

because the only other state of bi for which cc is a possible
communication partner is checkingbi

. But for this state the
connector {checkcc, checkbi

} is possible.
Given a component i, a global state q = (q1, . . . , qn) such

that qj ∈ PSj (qi) for all j ∈ need (qi) might be a reachable
deadlock state. This is clear, because all possible communi-
cation partners of i do not offer any action that can be used
for cooperation by component i. If such a state is globally
reachable, then its projection must be reachable consistently
in all subsystems that consist of i and some j ∈ need (qi).
This suggests the following strategy. For qi and j ∈ need (qi)
given, we determine the set of actions of i that can be used
to enter a state (qi, qj) where qj is problematic with respect
to qi. Then we compare these actions to the corresponding
sets of actions when qi is observed in Sys ↓{i,k} for the other
components k ∈ need (qi). If the intersection of these sets
of actions is empty we know that qi can never be part of
a reachable global state where all possible communication
partners of qi are in a state where they want to cooperate
with i but are not able to do so. The idea of Corollary 2 on
the following page is to ensure this for the local states of all
components. The proposition we state requires a more gen-
eral condition. By considering subsystems Sys ↓{i,j} with
j ∈ need (qi) for a given qi we are not able to confine the
availability of those actions of i that are used for commu-
nication with components that are not in need (qi). Thus
whenever we reach a state (q′i, qj) in Sys ↓{i,j} where qi is
reachable from q′i in Ti without performing any port that
is for communication with a component from need (qi) we
must assume that (qi, qj) is also reachable. This leads to the
following notion of backward-search.

Definition 9. Let Sys be a tree-like interaction system
that has exclusive communication, and let i ∈ K a com-
ponent. For qi ∈ Qi we define

BWS (qi) := {q′i|∃q′i
a0

i→ . . .
am

i→ qi in Ti, where

∀l : al
i /∈

⋃

k∈need(qi)

comm i (k)}

the set of states of i from which qi can be reached by only
performing actions that belong to components that are not
in need (qi).

For Q′
i ⊆ Qi we set BWS (Q′

i) :=
⋃

qi∈Q′

i
BWS (qi).

All banks are in need (idlecc) and thus BWS (idlecc) =
{idlecc}. In a similar way we obtain BWS (PSbi

(idlecc)) =

202

BWS (waitingbi
) = {waitingbi

}. On the other hand for bi

we get BWS (okbi
) = {okbi

, waitingbi
, checkingbi

}. For qi

and component j ∈ need (qi) as above we are now able to
state precisely which actions of i are problematic with re-
spect to qi and j in the sense that in Sys ↓{i,j} they can
lead to a state from {qi} × PSj (qi).

Definition 10. Let Sys be a tree-like interaction system
that has exclusive communication, i ∈ K a component and
qi ∈ Qi. For j ∈ need (qi) we define

PA (qi, j) := {ai ∈
⋃

k∈need(qi)

comm i (k) |∃c ∈ C [{i, j}]

such that ai ∈ c and ∃
(

q′i, q
′
j

)

∈ BWS (qi)×

BWS (PSj (qi)) , ∃
(

q′′i , q′′j
)

that is reachable

from
(

q0
i , q0

j

)

such that
(

q′′i , q′′j
) c
→

(

q′i, q
′
j

)

}

the set of ports of i that can be used to enter BWS (qi) ×
BWS (PSj (qi)) when i is observed in parallel with j.

Note that the previous definition uses the definition of BWS
once in the context of i and once in the context of j. As mo-
tivated above we have to assume that it is possible to reach
a state in {qi} × PSj (qi) once Sys ↓{i,j} is in BWS (qi) ×
BWS (PSj (qi)). Thus the comparison of the sets PA (qi, j)
indicates whether it may be possible to reach a deadlock-
state that coincides with qi in the entry for component i. In
order to calculate PA (idlecc, bi) for some bank bi we have to
determine which actions of cc can be used in Sys′bank ↓{cc,bi}

to enter a state in BWS (idlecc) × BWS (PSbi
(idlecc)) =

{(idlecc, waitingbi
)}. Now the only two transitions of cc in

Sysbank entering idlecc are labeled correctcc and ¬correctcc

respectively. Passing over to Sys′bank the possible candidates

for PA (idlecc, bi) are the ports correct
bk
cc and ¬correct

bk
cc

where 1 ≤ k ≤ m. For k = i it can be seen that neither
of these two ports can be used to enter (idlecc, waitingbi

)
because these ports can only be performed in the connectors
{

correctbi
, correctbi

cc

}

respectively
{

¬correctbi
,¬correctbi

cc

}

.
Looking at the local transition systems it is easy to see that
these connectors will never lead to (idlecc, waitingbi

). Fi-
nally we can formulate our criterion. Note that the tree-like
architecture of the system that is investigated is incorpo-
rated in the proposition as follows. All conditions that have
to be checked in the two requirements only involve the anal-
ysis of those Sys ↓{i,j} where {i, j} is an edge of G. This
is not surprising because the assumption about the tree-like
architecture was made to ensure that deadlock-freedom can
be deduced from only comparing pairs of neighboring com-
ponents.

Proposition 1. Let Sys be a tree-like interaction system
that has exclusive communication. If the following two con-
ditions hold then Sys is deadlock-free.

1. ∀i ∀qi : q0
i /∈ BWS (qi)∨∃j ∈ need (qi) such that q0

j /∈
BWS (PSj (qi))

2. ∀c ∈ C ∃i ∈ K such that i (c) 6= ∅ and ∀qi ∈ Qi :

i (c) /∈
⋂

k∈need(qi)

PA (qi, k)

The conditions can be checked in time polynomial in the size
of the input.

Checking deadlock-freedom directly from the definition in-
volves a global state space analysis. The size of the global

state space is in O
(

|Tmax|
|K|

)

where Tmax is the largest lo-

cal transition system. In order to check the conditions of the
proposition we only investigate |K|−1 subsystems Sys ↓{i,j}

for {i, j} ∈ E whose sizes are in O
(

|Tmax|
2). Note that the

ideas and conditions used in the proposition and the pre-
ceding definitions can be transferred to other formal models
where subsystems are cooperating via synchronous commu-
nication.

We state two of a series of corollaries that can be inferred
from this result. The first can be used to show that Sysbank

is deadlock-free.

Corollary 2. Let Sys be a tree-like interaction system
that has exclusive communication. If the following two con-
ditions hold then Sys is deadlock-free.

1. ∀i ∀qi : q0
i /∈ BWS (qi)∨∃j ∈ need (qi) such that q0

j /∈
BWS (PSj (qi))

2. ∀i ∈ K ∀qi ∈ Qi :
⋂

k∈need(qi)

PA (qi, k) = ∅

We have already explained for all 1 ≤ i ≤ m that correctbi
cc,

¬correctbi
cc /∈ PA (idlecc, bi). This means that we obtain

⋂

bk∈need(idlecc) PA (idlecc, bk) = ∅. An analogous statement
can be shown for the other states. The first condition is also
true and deadlock-freedom of the bank system follows from
the corollary. Corollary 2 can often be applied to systems
where groups of components that compete for cooperation
with i ∈ K in the sense that i has a state where it has
the choice between these components exhibit very similar
or even the same behavior. Then the conditions are often
satisfied. The intersections in the second condition are in
fact empty because whenever we observe i in parallel with
j the actions from comm i (j) will not lead to a problematic
state. If they did this could be interpreted as an indicator
that the system has not been specified correctly. Sysbank

has the above property. All communication partners of cc
(the banks) are essentially the same up to nomenclature and
all communication partners of bank bi but one - namely
cc which never competes (in the sense described above) for
cooperation with any of the ATMs - also behave in the same
way.

Corollary 3 is very basic. It shows that under further
assumptions checking global deadlock-freedom boils down
to checking deadlock-freedom of the subsystems Sys ↓{i,j}

for {i, j} ∈ E.

Corollary 3. Let Sys be a tree-like interaction system
that has exclusive communication and let |need (qi)| = 1 for
all i ∈ K and for all qi. If Sys ↓{i,j} is deadlock-free for all
{i, j} ∈ E then Sys is deadlock-free.

If G is simply a star with center i ∈ K then for all j ∈ nb (i)
and all qj the condition of the corollary is satisfied, because
i is the only possible partner for communication of qj . For i
the condition implies that it cannot choose between different
communication partners in any of its states. It may offer
different choices to this communication partner, though. If
this is the case a deadlock can only occur if i reaches a
state where it needs j while j does not offer the needed
ports. This possibility can be excluded by looking at the
subsystems only.

203

6. COMPARISON WITH OTHER COMPO-

SITIONALITY RESULTS AND DISCUS-

SION
Subsequently to the present paper we have developed an

adaptation of the notion of tree-like interaction systems such
that connectors of size greater than two can be treated as
well [28]. The critical point was to make sure that it is still
possible to reduce the check for deadlock-freedom to the
analysis of subsystems of size two on the one hand and to
avoid cyclic structures in the way the components commu-
nicate on the other hand. For this purpose we introduced
graphs with two sorts of nodes, one of which representing the
components and the other one representing the connectors.
We presented a sufficient criterion for deadlock-freedom of
such systems that only investigates subsystems of pairs of
components.

Next we compare our criterion to the sufficient condition
for deadlock-freedom from [24] mentioned above that can
be applied to general interaction systems. Both conditions
make use of an over-approximation of the projection of the
set of globally reachable states to subsystems. In our case
these subsystems are of size two whereas the subsystems in-
vestigated in [24] are of size smaller than or equal to three.
Both approaches then check a condition on the computed
over-approximation. The criterion from [24] fails whenever
the investigated subsystem contains a reachable state such
that in this state component i waits for component j and
component j waits in turn for component k. It is easy to
see that this kind of situation may arise in Sysbank. This
shows that there are tree-like systems that can be shown
to be deadlock-free using our criterion whereas the crite-
rion from [24] fails. Having said that, we are also interested
in the opposite direction. Therefore we examine a tree-like
interaction system for which the criterion from [24] yields
deadlock-freedom. As stated above this means that for no
subsystem a state was reached where component i waits for
j and j waits for k. Since our criterion only checks pairs of
neighboring components we are only interested in those sub-
systems where i = k and i and j are neighboring components
in G. But for these subsystems the above statement simply
means, that all sets of problematic states are empty. Then it
is clear that our criterion also yields deadlock-freedom. This
means, that our criterion is more powerful than the one from
[24] as far as tree-like interaction systems as considered in
this paper are concerned.

We also mention [7] which investigated deadlock-freedom
in a setting that assumes architectural constraints. Note
that [7] only considers systems composed of three compo-
nents at most.

At last we compare our approach to another one that also
deals with tree-like architectures. In [8] a process algebra
based abstract description language, called PADL, for con-
current systems is developed, and a criterion for deadlock-
freedom of tree-like systems is presented. This condition
basically ensures that no component is confined by any co-
operation with one of its neighbors in the tree. A simple
example shows that our criterion can be applied to cases
where the test from [8] fails to prove deadlock-freedom: The
system we consider consists of three components. We have
K = {1, 2, 3}. The Ti are given in Fig. 2. We define
C = {{a1, a2} , {b1, b2} , {a1, a3} , {b1, b3}}. The system is
tree-like. Passing over to Sys′, Corollary 2 shows that the

3:
a3

b3

1: 2:
a1

b1 b1

a1 a2

b2

Figure 2: 1 is restricted by 2 respectively 3

system is deadlock-free. Nonetheless T1 is constrained by
the cooperation with 2 or 3, i.e., Sys′ ↓{1,i} restricted to
A1 is not weakly bisimular to T ′

1 for i = 2, 3 (here T ′
1 de-

notes the adapted transition system constructed in the proof
of Lemma 1). This means that the condition for deadlock-
freedom from [8] is violated. On the other hand it is possible
to show that every deterministic tree-like system that can
be proven to be deadlock-free using the condition from [8]
can also be treated in a slightly more general version of our
Proposition 1.

Having spoken about the applicability of our approach
there are of course deadlock-free interaction systems that
cannot be shown to be deadlock-free using Proposition 1.
This is not surprising though, because the complexity results
mentioned in Sect. 1 show that we cannot expect to find a
characterization of deadlock-freedom that can be checked ef-
ficiently for all systems. We shortly want to take a closer
look at the limitations of our approach. First of all it is
clear that there is a large class of interaction systems that
our criterion is not even capable of dealing with because we
confine the interaction systems we investigate by demand-
ing that they be tree-like. But even in the class of tree-like
interaction systems there are deadlock-free systems where
our criterion fails. There are two main reasons for this phe-
nomenon. First of all for every edge {i, j} of G we compute
an over-approximation of the projection of the reachable
global states to Sys ↓{i,j}. This means that we may find
pairs of states which are problematic with respect to each
other even though these states can never be globally reached
in this combination. Note that keeping track of the actions
that lead to problematic states, as we do, helps to make
the over-approximation more precise. Secondly, the suffi-
cient condition we check makes sure that no component can
ever reach a state where all possible communication part-
ners do not offer the required actions. Of course there can
be a global state q, where the system is not in a deadlock,
even though there is a set K′ of components for which the
possible communication partners block each other. This is
because other components that are independent (in q) from
the components in K′ may be able to proceed. Note that it
is not possible to distinguish this kind of state from a real
deadlock-state when we only look at subsystems, because
we obviously loose the information by projecting Sys to a
subset of components.

7. CONCLUSION AND FUTURE WORK
We presented a criterion that ensures deadlock-freedom

for the important class of tree-like component-systems, i.e.,
systems where the communication structure forms a tree.
The criterion exploits compositionality in the sense that a
condition is locally checked on pairs of neighboring compo-
nents. If the condition is satisfied we can derive the global
property of deadlock-freedom. The criterion can be tested
efficiently. Since the violation of a safety-property can be
modeled as a deadlock our criterion can also help to an-
alyze other safety-properties apart from deadlock-freedom.

204

As a simple application we discussed a system consisting
of banks, ATMs, and a clearing company. By means of
the example, we explained that the strength of the crite-
rion can be pinpointed for systems where whenever several
components (e.g., the ATMs) compete for interaction with
one component (the corresponding bank) then they exhibit
analogous behavior. In such a setting Corollary 2 is often ap-
plicable. We shortly discussed other approaches that exploit
compositionality. Further work considering other classes of
architectures is in progress. In particular we generalized the
approach in order to be able to admit connectors of size
greater than two, as well [28]. Thus we want to be able to
exhibit a range of design patterns that can be followed to
obtain component-systems that are correct by construction.

We want to address attention to the fact that the reacha-
bility analysis we use in order to over-approximate the glob-
ally reachable state-space not only compares the reachable
states of different systems. It also compares the actions that
can be used to enter problematic states to ensure that states
that indicate a possible global deadlock are only interpreted
as problematic if the actions they can be entered through
are consistent.

Interaction systems can easily be extended to account for
variables and value-passing. Also, it is an interesting ques-
tion to consider systems with protocols. Here a component
i that may communicate with other components does so by
providing a communication protocol cpj

i for every partner j
(who does so analogously). The protocols must be “compat-
ible” with the behavior of i in a sense to be made precise.
The question is under what restrictions it is sufficient to an-
alyze pairs of protocols in order to derive information on the
global system.

8. REFERENCES

[1] R. Allen and D. Garlan. A Formal Basis for
Architectural Connection. ACM Trans. Softw. Eng.
Methodol., 6(3):213–249, 1997.

[2] F. Arbab. Abstract Behavior Types: A Foundation
Model for Components and Their Composition. In
Proceedings of FMCO’02, volume 2852 of LNCS, pages
339–360, 2003.

[3] P. Attie and H. Chockler. Efficiently Verifiable
Conditions for Deadlock-Freedom of Large Concurrent
Programs. In Proceedings of VMCAI’05, volume 3385
of LNCS, pages 465–481, 2005.

[4] E. Badouel, A. Benveniste, M. Bozga, B. Caillaud,
O.Constant, B. Josko, Q. Ma, R. Passerone, and
M. Skipper. SPEEDS Metamodel Syntax and Draft
Semantics, January 2007. Deliverable D2.1c.

[5] R. Bastide and E. Barboni. Software Components: A
Formal Semantics Based on Coloured Petri Nets. In
Proceedings of FACS’05, ENTCS, 2005.

[6] A. Basu, M. Bozga, and J. Sifakis. Modeling
Heterogeneous Real-Time Components in BIP. In
Proceedings of SEFM’06, pages 3–12. IEEE Computer
Society, 2006.

[7] H. Baumeister, F. Hacklinger, R. Hennicker,
A. Knapp, and M. Wirsing. A Component Model for
Architectural Programming. In Proceedings of
FACS’05, volume 160 of ENTCS, pages 75–96.
Elsevier, 2006.

[8] M. Bernardo, P. Ciancarini, and L. Donatiello.

Architecting Families of Software Systems with
Process Algebras. ACM Trans. on Software
Engineering and Methodology, 11:386 – 426, October
2002.

[9] M. Bozga, O.Constant, B. Josko, Q. Ma, and
M. Skipper. SPEEDS Metamodel Syntax and Static
Semantics, February 2007. Deliverable D2.1b.

[10] M. Broy. Towards a Logical Basis of Software
Engineering. In M. Broy and R. Steinbrüggen, editors,
Calculational System Design, IOS 1999, volume 158 of
NATO ASI Series, Series F: Computer and System
Sciences, pages 101 – 131. 1999.

[11] S. Chouali, M. Heisel, and J. Souquières. Proving
Component Interoperability with B Refinement. In
Proceedings of FACS 05, volume 160 of ENTCS, pages
67–84, 2006.

[12] L. de Alfaro and T. A. Henzinger. Interface Automata.
In Proceedings of the Ninth Annual Symposium on
Foundations of Software Engineering (FSE 01), pages
109–120, 2001.

[13] P. Godefroid and P. Wolper. Using Partial Orders for
the Efficient Verification of Deadlock Freedom and
Safety Properties. Form. Methods Syst. Des.,
2(2):149–164, 1993.

[14] G. Gössler. Component-based Design of
Heterogeneous Reactive Systems in Prometheus.
Technical report 6057, INRIA, December 2006.

[15] G. Gössler, S. Graf, M. Majster-Cederbaum,
M. Martens, and J. Sifakis. An Approach to Modelling
and Verification of Component Based Systems. In
Proceedings of SOFSEM 07, volume 4362 of LNCS,
pages 295–308, 2007.

[16] G. Gössler, S. Graf, M. Majster-Cederbaum,
M. Martens, and J. Sifakis. Ensuring Properties of
Interaction Systems. In Program Analysis and
Computation, Theory and Practice, volume 4444 of
LNCS, pages 201–224, 2007.

[17] G. Gössler and J. Sifakis. Component-Based
Construction of Deadlock-Free Systems. In
Proceedings of FSTTCS’03, volume 2914 of LNCS,
pages 420–433, 2003.

[18] G. Gössler and J. Sifakis. Composition for
Component-Based Modeling. In Proceedings of FMCO
02, volume 2852 of LNCS, pages 443–466, 2003.

[19] G. Gössler and J. Sifakis. Priority Systems. In
Proceedings of FMCO’03), volume 3188 of LNCS,
pages 314–329, 2004.

[20] G. Gössler and J. Sifakis. Composition for
component-based modeling. Sci. Comput. Program.,
55(1-3):161–183, 2005.

[21] P. Inverardi and S. Uchitel. Proving Deadlock Freedom
in Component-Based Programming. In Proceedings of
FASE’01, volume 2029 of LNCS, pages 60–75, 2001.

[22] N. A. Lynch and M. R. Tuttle. An Introduction to
Input/Output Automata. CWI-Quarterly,
2(3):219–246, Sept. 1989.

[23] M. Majster-Cederbaum and M. Martens. Robustness
in Interaction Systems. In Proceedings of FORTE’07,
volume 4574 of LNCS, pages 325–340, 2007.

[24] M. Majster-Cederbaum, M. Martens, and
C. Minnameier. A Polynomial-Time-Checkable

205

Sufficient Condition for Deadlock-freeness of
Component Based Systems. In Proceedings of
SOFSEM 07, volume 4362 of LNCS, pages 888–899,
2007.

[25] M. Majster-Cederbaum, M. Martens, and
C. Minnameier. Liveness in Interaction Systems. In
Proceedings of FACS’07, ENTCS, 2007.

[26] M. Majster-Cederbaum and C. Minnameier. Deriving
Complexity Results for Interaction Systems from
1-safe Petri Nets. In Proceedings of SOFSEM’08,
volume 4910 of LNCS, pages 352–363. Springer, 2008.

[27] M. Majster-Cederbaum and C. Minnameier.
Everything is PSPACE-complete in Interaction
Systems, 2008. Accepted for Publication at ICTAC’08.

[28] M. Martens and M. Majster-Cederbaum.
Deadlock-Freedom for Acyclic Component
Architectures with Multiway Cooperation, 2008.
submitted for publication.

[29] S. Moschoyiannis and M. Shields. Component-Based
Design: Towards Guided Composition. In Proceedings
ACSD’03, pages 122–131. IEEE Computer Society,
2003.

[30] O. Nierstrasz and F. Achermann. A Calculus for
Modeling Software Components. In Proceedings of
FMCO’02, volume 2852 of LNCS, pages 339–360,
2003.

[31] P. Parizek and F. Plasil. Modeling Environment for
Component Model Checking from Hierarchical
Architecture. In Proceedings of FACS’06, volume 182
of ENTCS, pages 139–153. Elsevier, 2007.

[32] J. Sifakis. Modeling Real-time Systems. In Proceedings
of RTSS’04, pages 5–6. IEEE Computer Society, 2004.

[33] J. Sifakis. A Framework for Component-Based
Construction. In Proceedings of SEFM’05, pages 293 –
300. IEEE Computer Society, 2005.

206

