
A Generalized Static Data Flow Clustering Algorithm for
MPSoC Scheduling of Multimedia Applications

Joachim Falk, Joachim Keinert,
Christian Haubelt, Jürgen Teich

Hardware/Software Co-Design
Department of Computer Science
University of Erlangen-Nuremberg

Am Weichselgarten 3
91058 Erlangen, Germany

{falk,keinert,haubelt,teich}@cs.fau.de

Shuvra S. Bhattacharyya
Department of Electrical and

Computer Engineering
2311 A. V. Williams Bldg.

University of Maryland
College Park MD, 20742

ssb@umd.edu

ABSTRACT
In this paper, we propose a generalized clustering approach
for static data flow subgraphs mapped onto individual pro-
cessors in Multi-Processor System on Chips (MPSoCs). The
goal of clustering is to replace the static data flow subgraph
by a single dynamic data flow actor such that the global per-
formance in terms of latency and throughput is optimized.
Through our proposed clustering approach, the scheduling
of connected static data flow subgraphs can be coordinated
with enclosing system representations in a way that system-
atically exploits the predictability and efficiency of the static
data flow model. Thus, the advantages of static data flow
subsystems can be exploited in the context of overall sys-
tem representations that are based on more general models
of computation. At the same time, our approach goes sig-
nificantly beyond previous approaches to synchronous data
flow clustering by providing a quasi-static — as opposed to
purely-static — scheduling interface between clustered sub-
graphs and the enclosing systems. This greatly enhances
the power of our techniques in terms of avoiding deadlock,
increasing the design space for clustering, and providing for
integration with more general models of computation. We
show benefits of up to 95% performance improvement for
real world examples.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent
Programming - Parallel Programming

General Terms
Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10 ...$5.00.

Keywords
MPSoC scheduling, software synthesis, actor-oriented de-
sign

1. INTRODUCTION
Multi-Processor System on Chips (MPSoCs) are becom-

ing more and more important as implementation platform
for computationally intensive applications, e.g., multimedia
or networking. As MPSoCs are mainly designed for a given
set of applications, their advantage lies in a low power dissi-
pation due to a lower clock frequency but still high compu-
tational power by exploiting the parallelism provided by the
architecture. However, the high degree of parallelism of pro-
cessors makes programming of MPSoCs a challenging task.
While many research groups have conducted research on op-
timally mapping an application onto a given MPSoC plat-
form, e.g., Daedalus [19], SystemCoDesigner [9], Koski [13],
System-on-Chip Environment (SCE) [1], etc., there is still
only little work on defining the right programming model
for MPSoCs.

At Electronic System Level (ESL), a trend towards actor-
oriented programming models [11, 8] can be identified. These
models are often domain specific and typically used already
in the mapping step. For instance, data flow models are
well suited to model multimedia applications. Beside the ap-
plication mapping, further refinements are needed to come
from a high level model to an implementation. In particular,
scheduling actors bound to one processor is one of the key
issues. Often, a straight forward scheduling idea is to post-
pone any scheduling decision to runtime. Such a dynamic
scheduling often results in a significant scheduling overhead
and, hence, a reduced system performance. On the other
hand, static or quasi-static scheduling for multi-processor
systems is only solved for models with limited expressive-
ness, e.g., static data flow graphs. For instance, efficient
single processor scheduling algorithms [2, 10] exist for syn-
chronous data flow models [15], a widely accepted static data
flow model.

Unfortunately, these algorithms are constrained to pure
synchronous data flow graphs while real world multimedia
application require modeling via heterogeneous data flow
graphs also containing actors with higher levels of complex-

189

Sink
Image Frame

Shuffler
IDCT Inverse

ZigZag

Parser Huff.
Decoder

Inverse
ZRL

Inverse
Quant.

JPEG
Source

Figure 1: Example of a Motion-JPEG decoder in-
cluding dynamic as well as static data flow actors
(shaded). Communication between actors (vertices)
is realized via FIFOs (directed edges).

ity. As an example, consider the top level data flow model of
a Motion-JPEG decoder depicted in Figure 1. Beside static
data flow actors (shaded vertices), i.e., actors with constant
consumption or production rates known from synchronous
data flow (SDF) models or cyclo-static data flow (CSDF)
[5] actors, it also includes dynamic data flow (DDF) actors
like the Parser which is modeled by a Kahn process [12].
The 2-dimensional inverse discrete cosine transform (IDCT)
actor shown in Figure 1 represents the static data flow sub-
graph depicted in Figure 2, which consists of SDF and CSDF
actors only.

After mapping the Motion-JPEG application to an MP-
SoC, all actors bound onto one processor have to be sched-
uled either dynamically or statically. As the model includes
dynamic actors, a static schedule is not possible in all cases.
However, a dynamic schedule may degrade the performance
by introducing scheduling overheads even in the schedules of
static data flow subgraphs. To permit the generation of an
efficient schedule, a remedy could be the replacement of the
static data flow subgraph by a single actor, i.e, clustering
all static data flow actors into a new actor. Unfortunately,
existing algorithms might result in infeasible schedules or
greatly restrict the clustering design space by considering
only SDF subgraphs that can be clustered into monolithic
SDF actors without introducing deadlock. Moreover, all
these approaches are limited to integrate the resulting mono-
lithic SDF actor only with an enclosing static data flow sys-
tem representation.

In this paper, we will propose a novel clustering approach
for static data flow subgraphs connected to dynamic data
flow graphs. In contrast to prior work the actor which re-
places the subgraph is not restricted to SDF semantics which
only allow expressing of static schedules for the actors con-
tained in the replaced subgraph. Instead a more general
actor can be generated which can have dynamic behavior.
This allows expressing of a quasi-static schedule (QSS) for
the static data flow subgraph in order to avoid deadlocks
which might occur when restricting to static schedules only.
The QSS is automatically derived by our clustering approach
and expressed in form of a finite state machine (FSM). The
created data flow actor executing this FSM can hence be
easily integrated into a dynamic schedule of all remaining
actors mapped onto the same processor while reducing the
overall scheduling overhead. Thus, the advantages of static
data flow subgraphs can be exploited by our approach in the
context of more general models of computation and we im-
prove previous work by means of increasing the design space
for clustering. We show the benefits of our scheduling using

a scalable benchmark as well as a real-world example, the 2-
dimensional IDCT of a Motion-JPEG decoder mapped onto
a single processor systems and a 4-processor system. In this
case study, we could improve throughput by about 93% and
45%, respectively.

The remainder of this paper is organized as follows: Sec-
tion 2 gives a motivating example. Section 3 formally de-
fines the problem this paper is dedicated to. While Section 4
presents the proposed algorithm used by the clustering ap-
proach, we discuss related work in Section 5 and experimen-
tal results are presented in Section 6.

2. MOTIVATION AND BACKGROUND
In the following we will examine the hierarchical IDCT ac-

tor from Figure 1 which is depicted in its expanded ver-
sion in Figure 2. As mentioned above this data flow sub-
graph contains only SDF (lightly shaded vertices) and CSDF
(darker shaded vertices) actors. The subgraph implement-
ing the 2-dimensional IDCT functionality is composed of two
1-dimensional IDCTs modeled by the SDF actors which are
separated by the CSDF transpose actor. We will use this
example to show the negative impact of dynamic vs. static
scheduling and to reiterate important definitions for SDF
and CSDF actors from [15] and [5], respectively. A data
flow schedule is an approach to execute actors in a data flow
graph such that actors fire only when they have sufficient
data based on the underlying data flow graph model. In
more detail, for each firing invocation an actor consumes
tokens from the FIFOs connected to its input ports, exe-
cutes its data processing work performed by a function in
the following called action, and produces tokens on the FI-
FOs connected to its output ports. The number of tokens
consumed on an input port during an actor firing is called
the consumption rate of this input port for this firing in-
vocation. Likewise, the number of tokens produced on an
output port is called the production rate of this output port
in this firing invocation. An actor may only fire if all the
necessary tokens which will be consumed by the next actor
firing are available on its input FIFOs.

To get a rough estimate of the benefits for a static sys-
tem we benchmark only the IDCT part of the Motion-JPEG
decoder on an embedded MicroBlaze processor running at
66MHz implemented on a Xilinx Virtex-II Pro FPGA. Then
200 2-dimensional IDCT operations on 8×8-blocks take 1.91
seconds to complete for the dynamically scheduled IDCT.
On the other hand, using a static schedule for the IDCT
implementation we measure a runtime of 0.95 seconds for
processing the 200 blocks.

A static schedule is a data flow schedule in which the order
of actor execution is determined entirely before execution
begins. In contrast to this, dynamic scheduling wholly de-
termines the actor execution order at runtime. Thus, due to
the reduction of the overhead occurring for dynamic schedul-
ing, processing time can be reduced by 50%. This clearly
illustrates the potential of scheduling data flow actors at
compile time if possible.

To exemplify this, we consider actor a3 from Figure 2.
Knowledge of the consumption rates of the actor a3 of eight
tokens per input FIFO, as annotated on the arrowheads of
the edges, and the production rates of one token per output

190

8

8

8

8

8

8

8

8

6464

8
8

8

8

8
8

1
1

18
8 1

1

1

[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]
[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]

[8,0,0,0,0,0,0,0]

[0,0,8,0,0,0,0,0]

[0,0,0,0,0,0,8,0]

[0,0,0,0,8,0,0,0]

[0,8,0,0,0,0,0,0]

[0,0,0,0,0,0,0,8]

[0,0,0,8,0,0,0,0]

[0,0,0,0,0,8,0,0]

11

1

1

1

1

1

1

1

1

a2 a3a1

a5

a7

a6

a8 a4

Figure 2: The above figure depicts the static data flow subgraph contained in the hierarchical IDCT actor
from Figure 1. As is customary, the constant consumption and production rates of these SDF and CSDF
actors are annotated on the edges, i.e., a number annotated on the arrowhead of an edge corresponds to the
consumption rate of the connected actor and a number annotated on the shaft corresponds to production
rate of the connected actor. Missing number annotations denote a consumption or production of one token.

FIFO of the actors a4 to a7, likewise annotated on the stems
of the edges leaving the actor, enables us to conclude that
each actor a4 to a7 must be fired eight times before firing
actor a3.

However, for dynamic systems, i.e, systems containing dy-
namic actors, no such a priori information about consump-
tion and production rates are available. Consequently dy-
namic scheduling strategies, which are fitted to these sys-
tems, cannot make any assumptions about the number of
produced or consumed tokens by an actor firing. Hence, no
prediction is possible about actors subsequently enabled by
an actor firing. Therefore, after each invocation of actors a4

to a7, also the precondition for actor a3 has to be checked,
i.e., whether sufficient tokens on the input FIFOs are avail-
able. However most of the times this will not be fulfilled
leading to eight superfluous checks, of which seven fail and
one finally succeeds but which could all have been avoided
if only actor a4 to a7 had each been fired eight times be-
fore firing actor a3. This eight superfluous checks are part
of the scheduling overhead imposed by dynamic scheduling
of static actors of the hierarchical IDCT actor. This leads to
useless operations resulting in a runtime schedule overhead
which is missing from a static schedule.

Formally, a static schedule is a sequence of actors which
can be fired in the given sequence without requiring inter-
mediate checks for preconditions, e.g., the static schedule
(8a4, 8a5, 8a6, 8a7, a3) for the previously discussed actors a3

to a7 which denotes to fire each actor a4 to a7 eight times
followed by one firing for a3. At the start of such a static
scheduling sequence a precondition can be checked which
blocks until the execution of the whole sequence of actors
can be guaranteed, e.g., checking for availability of sufficient
tokens on the input ports of the subgraph defined by the
actors which shall be scheduled statically.

Unfortunately static scheduling is only possible for actors
which provide constant or even cyclic consumption and pro-
duction rates. More formally, SDF actors are constraint to
have constant consumption and production rates per port
independent from the current firing invocation, i.e., for each
firing invocation they produce or consume the same number
of tokens on a port. Likewise, CSDF actors are constraint

to have cyclic consumption and production rates per port
which repeat with the same period, e.g., the CSDF actor a2

from Figure 2 has a period of eight after which production
and consumption rates repeat. To exemplify this, we con-
sider the FIFO connected from actor a2 to actor a8. On the
first invocation of a2 the actor produces eight tokens on this
FIFO. For the next seven invocations zero tokens are pro-
duced. At the eighth invocation the sequence repeats with
the production of eight tokens.

3. PROBLEM DEFINITION
In this section, we formally define the problem this paper

is dedicated to and introduce the necessary mathematical
notations. The application is modeled by a so called data
flow graph, e.g, the Motion-JPEG decoder in Figure 1 is a
data flow graph:

Definition 3.1 (Data Flow Graph) A data flow graph is a
directed graph g = (A, C, L) containing a set of actors A
(vertices) and a set of channels C ⊆ A × A represented by
the edges of the graph. Additionally, the data flow graph
contains an initial fill level function L : C → N0 which
associates with each channel (asrc, adest) ∈ C its number of
initial tokens.1

Furthermore, to ease visual references, we introduce a no-
tion of so called actor input ports i ∈ I and so called actor
output ports o ∈ O where a.I ⊆ I and a.O ⊆ O are the
set of input and output ports of the actor a, respectively.2

Analogously, we define the set of subgraph input ports gγ .I
and subgraph output ports gγ .O, where gγ .I and gγ .O are
actor input and output ports connected to channels crossing
the subgraph boundary. An example of such an annotated
data flow graph is depicted in Figure 3 where i1, i2 and o1,
o2 are the input and output ports of the subgraph g1,γ , re-
spectively. Note that the proposed clustering approach is

1N0 = {0, 1, 2, 3, . . .} denotes the set of non-negative inte-
gers.
2We use the ‘.’-operator, e.g., a.I , for member access of tu-
ples whose members have been explicitly named in their def-
inition, e.g., member I of actor a.

191

1 1

1 1 1

2 2

2 2

1

g1,γ

i2 o2

o1i1

i4o4

o3

i3o5

i5

a1

a2

a3

a4
g1

Figure 3: Example of a dynamic data flow graph g1

with an SDF subgraph g1,γ and a maximal tight feed-
back loop between the subgraph output and input
ports o2 and i1.

also able to consider CSDF actors. However, for the sake of
readability, the examples in this paper use static data flow
subgraphs containing only SDF actors.

By mapping an application modeled by a data flow graph
g = (A, C, L) onto an MPSoC, subgraphs of the data flow
graph are bound to the distinguished programmable proces-
sors. Communications between the subgraphs are bound to
the on chip buses or networks on chip. The proposed clus-
tering approach computes for a static data flow subgraph gγ

induced by the set of static data flow actors AS ⊆ g.A bound
onto a single processor of an MPSoC a composite actor aγ

which replaces this subgraph gγ . This composite actor im-
plements a data flow schedule which can vary from static
over quasi-static to dynamic.

To exemplify the replacement of the subgraph by a sin-
gle composite actor, we again consider Figure 3. The set of
static data flow actors AS contains the actors a1 - a3. Fur-
thermore, we map the actors a1 to a3 and some unspecified
dynamic actors of g1 to a CPU of an MPSoC resulting in
an induced subgraph g1,γ of static data flow actors mapped
to this CPU. For this subgraph we have to find a composite
actor to replace it. One possibility is depicted in Figure 4
where the subgraph is replaced by the SDF composite actor
a′
1,γ which implements the static schedule (2a1, a2, 2a3), i.e.,

fire actor a1 twice then a2 and finally a3 twice. The number
of firings for each actor are defined by the so called repe-
tition vector which can be calculated by the balance equa-
tion [15]. An SDF graph is called consistent if the balance
equation has a non-trivial solution.3 The repetition vector
assures that after execution of the static schedule sequence
the graph returns into its initial state. In other words the
number of tokens stored on each edge connecting the actors
of the subgraph are identical before and after execution of
the actor sequence. For CSDF graphs all actors further-
more have to execute a multiple of their firing period. More
formally, we define clustering as follows:

Definition 3.2 (Clustering) Given a data flow graph g and
a static data flow subgraph gγ induced by all static data flow
actors a ∈ AS ⊆ g.A which are bound onto a given processor
of the considered MPSoC. Clustering replaces gγ by a single
actor aγ, called composite actor, implementing a data flow
schedule for the actors a ∈ AS, resulting in a new data flow

3The trivial solution being the all zeros repetition vector.

2 2

2 2

a′
1,γ

i2 o2

o1i1

a4
g̃′
1

Figure 4: Converting the subgraph g1,γ from Fig-
ure 3 into an SDF actor may introduce a deadlock.

graph g̃, i.e., g̃.A = g.A+{aγ}−AS and g̃.C = g.C+Ca−CS,
where CS = {c = (a1, a2) ∈ g.C | a1 ∈ AS ∨ a2 ∈ AS} and
Ca is the set of edges connecting aγ with the remaining DDF
actors g.A−AS, i.e., Ca = {(asrc, asink) ∈ g̃.A×g̃.A | (asrc =
aγ =⇒ ∃(a′, asink) ∈ g.C : a′ ∈ AS) ∨ (asink = aγ =⇒
∃(asrc, a

′) ∈ g.C : a′ ∈ AS)}.

The goal of our generalized methodology for data flow
graph clustering is to allow designers and design tools more
flexibility in trading off among different costs and benefits
related to the grouping of subgraphs into individual units
for scheduling. The specific clustering algorithm that we
develop in this paper is geared towards reducing dynamic
scheduling overhead, while providing enough flexibility to
avoid deadlock during the clustering process, i.e., the data
flow schedule implemented by the composite actor is as static
as possible. A static schedule can be considered to have ob-
tained the full benefits of the given information contained in
the static subgraph, whereas a quasi static schedule repre-
sents a intermediate level of success and a dynamic schedule
is the degenerated case. The clustering algorithm produces
a quasi-static schedule in the sense that any scheduling de-
cisions which depend on preconditions which cannot be pre-
dicted at compile time are still made at runtime. Actor fir-
ings which can be executed as consequence of a precondition
are scheduled at compile time resulting in a static schedule
for this actor firings. The static and dynamic cases for the
data flow schedule can be considered the best case and the
degenerated cases of the quasi-static schedule, respectively.

Exploration of clustering techniques that exploit the flex-
ibility of our generalized framework for other scheduling ob-
jectives is a useful direction for further work. The more re-
stricted approach of replacing a static data flow subgraph by
its corresponding SDF actor implementing a static schedule
for the actors of the subgraph excels at schedule overhead re-
duction.4 An example of such a best case scenario is shown
in Figure 2 where the SDF subgraph for the 2-dimensional
IDCT can be replaced by an SDF composite actor implement-
ing a static schedule of the contained IDCT actors, i.e., for
the composite actor replacing the IDCT subgraph we only
need to check the prerequisite of 64 tokens on the input of
the IDCT before we can fire the contained static schedule.

However, this approach might be infeasible due to the en-
vironment, e.g., as depicted in Figure 3, of the static data

4In general the longer the static scheduling sequence which
can be fired by checking a single prerequisite, the less sched-
ule overhead is imposed by this schedule.

192

[0,2]

[1,1]

[0,2]

[1,1]

a1,γ

i1

i2

o1

o2

a4
g̃1

Figure 5: Instead of a conversion of the subgraph
g1,γ into an SDF an alternative conversion into the
above depicted CSDF actor solves the introduction
of the deadlock from Figure 4.

flow subgraph g1,γ displayed as a cloud in all figures. The
problem stems from the lack of flexibility in the static sched-
ule (2a1, a2, 2a3) implemented by the composite actor a′

1,γ

(cf. Figure 4) and the feedback loop between the output o2

to the input i1 (represented by the dashed edge and the dy-
namic data flow (DDF) actor a4) that imposes the additional
constraint on the schedule that actor a3 has to be executed
at least once before executing actor a2 in order to avoid a
deadlock. A constraint which is violated by the static sched-
ule (2a1, a2, 2a3). This situation can be solved by converting
the subgraph g1,γ into a CSDF composite actor a1,γ as de-
picted in Figure 5. This actor a1,γ implements a quasi-static
schedule composed of two static schedules. First a check for
one token on port i2 is performed, then the static sched-
ule (a1, a3) is fired. Next a check follows for two tokens on
port i1 and one token on port i2, then the static schedule
(a1, a2, a3) is executed.

However, this strategy fails when applied to the next ex-
ample depicted in Figure 6. In this case we assume a dy-
namic actor a4 which uses two different forward modes. In
mode (i), it forwards both depicted tokens to port i1. This
allows production of two tokens on port o1 which are then
forwarded to port i2 by actor a4. In mode (ii) however, actor
a4 starts to forward one token to port i2. This time the sub-
graph g1,γ can generate one token at output o2 which allows
actor a4 to forward two tokens to port i1. After generation
of two tokens on output port o1, actor a4 finally forwards
again one token to port i2.

Unfortunately we can recognize that applying the above
schedule, (a1, a3) followed by (a1, a2, a3), fails if actor a4

forwards according to forward mode (i). We could try to
solve this problem by substituting another CSDF composite
actor a′

2,γ (cf. Figure 7) that implements the check for two
tokens on i1, fires schedule (a2), checks for two tokens on i2
and finally fires schedule (2a1, 2a3). However, this schedule
fails for forward mode (ii).

More explicitly the forward mode (i) of actor a4 requires
firing actor a2 first while forward mode (ii) imply firing
(a1, a3) first. As the dynamic actor can arbitrarily switch
between the two modes, the subgraph g2,γ can neither be
converted into an SDF nor a CSDF actor without possi-
bly introducing a deadlock. Therefore, the decision which
schedule sequence to choose depends on token availability
on the subgraph input ports i1 and i2. However, this flexi-

1 1

1 1 1

2 2

2 2

1

g2,γ

i2 o2

o1i1

i4o4

o3

i3o5

i5

a2

a3a1

a4
g2

Figure 6: Second example with two feedback loops
o1 → i2 and o2 → i1 over the dynamic data flow ac-
tor a4 which may randomly switch between the for-
warding modes (i) two tokens forwarded to port i1
followed by two tokens to port i2 and (ii) one to-
ken to port i2, two tokens to port i1 followed by one
token to port i2.

[2,0] [2,0]

[0,2] [0,2]

a′
2,γ

i1

i2

o1

o2

a4
g̃′
2

Figure 7: Second try for a CSDF composite actor
replacing the subgraph g2,γ.

bility cannot be implemented by a static schedule. Instead
a Quasi-Static Schedule (QSS) is required which statically
schedules the sequences (a1, a3) and a2 but which postpones
the decision of the sequence to execute first to runtime.

The above examples demonstrate that in the general case
a static data flow subgraph cannot be converted into an
SDF actor nor a CSDF actor without introducing a possi-
ble deadlock into the transformed data flow graph. In the
following, we introduce the so called cluster Finite State Ma-
chine (FSM) representation for composite actors providing
this flexibility. The cluster FSM is an immediate represen-
tation for the quasi-static schedules computed by our clus-
tering algorithm. More formally, we define:

Definition 3.3 (Cluster FSM) The cluster FSM of a com-
posite actor aγ is a tuple m = (Q, q0, T, N, R) containing a
finite set of states Q and an initial state q0 ∈ Q, a finite set
of transitions (qsrc, qdest) ∈ T ⊆ Q × Q, a guard function
N : T → N0

|gγ .I| specifying the precondition for the number
of tokens required on each channel connected to the subgraph
input ports gγ .I to execute a transition, and finally an ac-
tion function R : T → gγ .A∗ encoding a static scheduling
sequence for the actors a ∈ gγ .A of the subgraph.

With this notation, the subgraph g1,γ can be replaced by
a composite actor a2,γ which can be expressed as depicted in
Figure 8. Note that we use #i to denote the number of avail-
able tokens on the channel connected to the actor input port

193

a2,γ

i2 o2

o1i1

a4

q1

q0 t5
#i2 ≥ 1/(a1, a3) q3

q2
#i2 ≥ 1/(a1, a3)

t2
#i1 ≥ 2/(a2)

t4

t1

#i2 ≥ 1/(a1, a3)
t3

#i1 ≥ 2/(a2)

g̃2

Figure 8: The composite actor a2,γ replacing sub-
graph g2,γ represented via a cluster Finite State Ma-
chine. The transitions are annotated with precondi-
tions and the static scheduling sequences to execute
if a transition is taken.

i. As it can be seen, two transitions t1 and t2 are leaving the
start state q0. t1 requires at least two tokens on input port
i1 denoted by the precondition #i1 ≥ 2 and executes the
static schedule (a2) whereas t2 requires at least one input
token on input port i2 denoted by #i2 ≥ 1 and executes the
static schedule (a1, a3). This notation allows us to represent
static schedules (The FSM has one state with one transi-
tion self-loop), quasi-static schedules (The FSM has at least
one transition with a scheduling sequence of more then one
actor), and dynamic schedules (All transitions of the FSM
have a degenerated scheduling sequence containing exactly
one actor).

4. CLUSTERING ALGORITHM
In this section, we will present a methodical way to con-

struct the cluster FSM m as defined in Definition 3.3 that
represents a quasi-static schedule (QSS) for a given static
data flow subgraph gγ . The key idea to our algorithm is
that each output o ∈ gγ .O of gγ might have a feedback
via other data flow actors to each input i ∈ gγ .I . As we
have learned from the examples in Section 3, any produced
token on an output o ∈ gγ .O might cause through these
feedback loops the activation of an actor a ∈ gγ .A in the
same subgraph. In particular, postponing the production
of an output token may result in a deadlock of the entire
system. Hence, the QSS determined by our clustering algo-
rithm guarantees the production of a maximum number of
output tokens from the consumption of a minimal number
of input tokens. However, the proposed clustering algorithm
requires that tokens produced by an output port depend on
all input ports. Otherwise an unbounded accumulation of
tokens on a channel inside the cluster may result. Therefore,
resulting in an infinite state space of the cluster FSM, due to
the subsumption of the cluster channel fill levels in the state
of the cluster FSM. More formally, we define the following
clustering condition:

Definition 4.1 (Clustering Condition) A static data flow
subgraph gγ can be clustered by the given algorithm if the
subgraph disregarding its inputs and outputs is deadlock
free itself and for each pair of actors (asrc, adest) possess-
ing a subgraph input and output port there exists a di-
rected path p ∈ gγ .C∗ from actor asrc to actor adest,

i.e., ∀asrc, adest ∈ gγ .A, asrc
= adest : (asrc.I ∩ gγ .I
= ∅ ∧
adest.O ∩ gγ .O
= ∅) =⇒ ∃ a directed path p =
((asrc, a2), (a2, a3), . . . , (an−1, adest)) ∈ gγ .C∗.

To exemplify this consider the subgraph g2,γ depicted in Fig-
ure 6 satisfying the clustering condition. However, removing
the channel (a1, a2) would contradict the condition as there
is no path from i2 to o1 and introduce an unbounded accu-
mulation of tokens on edge (a2, a3) while producing tokens
on port o1 but never requiring any tokens on i2. For static
data flow subgraphs that do not satisfy the cluster condition,
the set of static actors AS can be partitioned into subsets
each inducing a connected subgraph satisfying the clustering
condition.

Our proposed clustering algorithm works in three steps:
(step 1) Preprocessing, (step 2) Compute the set of in-
put/output states each representing the maximal production
of output tokens with a minimal consumption of input to-
kens, and (step 3) Construct the cluster FSM. In the fol-
lowing, we discuss these individual steps in detail.

The preprocessing computes some termination criteria for
step 2 and step 3. In particular, the number of firings of
each actor to bring the cluster back into its initial state as
well as the number of consumed and produced tokens by
these firings will be computed. More formally:
Step 1.1: Compute the repetition vector [15] rmin,gγ for
subgraph gγ , i.e., a positive integer rmin,gγ (a) is assigned to
each actor a ∈ gγ .A in the subgraph denoting the minimal
number of firings of a to return gγ back to its initial state.
For the subgraph g2,γ in Figure 6, the repetition vector is
rmin,g2,γ = (na1 , na2 , na3) = (2, 1, 2), i.e., actors a1 and a3

have to be fired twice, whereas actor a2 has to be fired once.
Step 1.2: Compute the so called input/output repetition
vector nmin,gγ that assigns to each input i ∈ gγ .I and
each output o ∈ gγ .O the number of consumed tokens
nmin,gγ (i) or produced token nmin,gγ (o), respectively, by fir-
ing each actor a ∈ gγ .A exactly rmin,gγ (a) times. For exam-
ple, the input/output repetition vector of g2,γ computes to
nmin,g2,γ = (ni1 , ni2 , no1 , no2) = (2, 2, 2, 2), i.e., from each
input, two tokens are consumed and on each output, two
tokens are produced when firing actors a1 and a3 twice and
actor a2 once.

In order to avoid deadlocks, we assume the worst case,
i.e., each produced output token causes the activation of an
actor in the subgraph via a feedback loop. Hence, it is re-
quired that the resulting QSS always produces a maximal
number of output tokens with a minimal number of input
tokens. Each end point of such a production is marked by an
input/output state of the subgraph. As an exhaustive evalu-
ation is prohibitive, we propose the following three steps to
determine the input/output states:
Step 2.1: Compute for each output port o the input/output
dependency tuples encoding the minimal numbers of con-
sumed tokens on the input ports to produce n tokens on o.
For this purpose, we formally define an input/output depen-
dency function depgγ

.

Definition 4.2 (Input/Output Dependency Function)
Given a subgraph gγ the input/output dependency function
depgγ

: gγ .O × N0 → N0
|gγ .I| is a function that associates

with a cluster gγ , for each subgraph output port o ∈ gγ .O,

194

and for a requested number of tokens n ∈ N0 a vector
of minimal number of input tokens (ni1 , ni2 , . . . ni|gγ .I|)
consumed on each subgraph input port i ∈ gγ .I to produce
the requested number n of tokens on the output port o.

Note that the set of input/output dependency values
we need to consider can be bounded by the input/out-
put repetition vector, i.e., we only need to consider
the set iodepgγ

= {depgγ
(o, n) | o ∈ gγ .O, n ∈

N0, depgγ
(o, n)
> mmin,gγ} containing tuples not greater

than the projection of the input/output repetition vector
nmin,gγ = (ni1 , ni2 , . . . ni|gγ .I| , no1 , no2 , . . . no|gγ .O|) to its in-

puts mmin,gγ = (ni1 , ni2 , . . . ni|gγ .I|). The algorithm to cal-

culate the input/output dependency function is depicted be-
low, where fill(c) defines the number of tokens stored on the
channel c. The ← sign is used to indicate variable assign-
ment.

Algorithm 4.1 dep
IN: The cluster gγ ,

the cluster output port o ∈ gγ .O,
the number of requested tokens n on output o.

OUT:The minimal number of tokens required on each
input i ∈ gγ .I to produce n tokens on the output o.

BEGIN
LET ∀c ∈ gγ .C : fill(c)← gγ .L(c)

∀p ∈ gγ .I ∪ gγ .O : fill(p) ←
j
−n if p = o
0 otherwise

WHILE ∃a ∈ gγ .A, o ∈ a.O : fill(o) < 0 DO 5

LET n← max
nl

−fill(o)
prod(o)

m
| o ∈ a.O

o
∀i ∈ a.I : fill(i)← fill(i)− n · cons(i)
∀o ∈ a.O : fill(o)← fill(o) + n · prod(o)

DONE
RETURN −(fill(i1), fill(i2), . . . fill(i|gγ .I|))

END

For the subgraph g2,γ , the input/output dependencies are
shown in Table 1.
Note that the algorithm works with negative channel fill
levels and therefore cannot be used to check for the exis-
tence of a valid schedule for a given consistent SDF sub-
graph. These schedulability checks are instead performed
in Step 3.5 where the static scheduling sequences for each
transition in the cluster FSM are derived. Furthermore, a
failure of the schedulability check is equivalent to the exis-
tence of a deadlock in the original subgraph gγ .
Note that the computation of input/output dependencies
is bounded by the input/output repetition vector, i.e., it
is only necessary to consider values n where depgγ

(o, n)
≥
nmin,gγ , i.e., iodepgγ

= {depgγ
(o, n) | o ∈ gγ .O, n ∈

N0, depgγ
(o, n)
≥ nmin,gγ}.

Step 2.2: Compute the so called input/output state set
iostatesgγ by determining the maximal number of output
tokens producible on each output port for the number of in-
put tokens available in each input/output dependency value.
Additionally, add the null input/output state (0, 0, . . . 0)
which may be missing if the subgraph can produce output

5Please note that actor ports are used interchangeable with
the channels connected to them.

Table 1: Input/output dependency values for sub-
graph g2,γ from Figure 6 and corresponding in-
put/output states. For example, to produce at least
n = 1 token on output o = o1, at least two tokens are
required from input port i1.

depg2,γ
(o, n) iostatesg2,γ

o = o1 o = o2

n = 0 (0, 0) (0, 0) (0, 0, 0, 0) (0, 0, 0, 0)
n = 1 (2, 0) (0, 1) (2, 0, 2, 0) (0, 1, 0, 1)
n = 2 (2, 0) (2, 2) (2, 0, 2, 0) (2, 2, 2, 2)

n = 3 (4, 2) (2, 3) — —

tokens without consuming any inputs. More formally, we
define the input/output state set as follows:

Definition 4.3 (Input/Output State Set) The input/out-
put state set iostatesgγ ⊆ N0

|gγ .I∪gγ .O| consists of in-
put/output states (ni1 , ni2 , . . . ni|gγ .I| , no1 , no2 , . . . no|gγ.O|)
encoding the minimal number of required input tokens ni

per input port i ∈ gγ .I and the maximal producible output
tokens no per output port o ∈ gγ .O from this input tokens,
i.e.,

iostatesgγ = {(0, 0, . . . 0)} ∪ {
(ni1 , ni2 , . . . ni|gγ .I| , no1 , no2 , . . . no|gγ .O|)

| (ni1 , ni2 , . . . ni|gγ .I|) ∈ iodepgγ

∧ ∀o ∈ gγ .O : no = max(
{n ∈ N0|depgγ

(o, n) ≤ (ni1 , ni2 , . . . ni|gγ .I|)}) }.

For the subgraph g2,γ in Figure 6, the in-
put/output state set iostatesg2,γ computes to
{(0, 0, 0, 0), (2, 0, 2, 0), (0, 1, 0, 1), (2, 2, 2, 2)} (cf. Table 1).
Note that the entries for n = 3 are not contained in iodepgγ

due to their redundancy.
Step 2.3: In the previous two steps, we have neglected

the different interleavings of actor firings that are permitted
by the partial order of these actor firings. In Figure 6 for
instance, we can fire actor a2 followed by one execution
of sequence (a1, a3) which results in the iostate (2, 1, 2, 1).
As however algorithm 4.1 considers each output port
individually, this iostate does not occur in iostatesg2,γ .

This can be solved by computing the least fix-
point lfp(iostatesgγ) which is defined as the point-
wise maximum of all pairs of input/output states
n ∈ iostatesgγ . For our example given in Fig-
ure 6, the least fixpoint computes to lfp(iostatesgγ =
{(0, 0, 0, 0), (2, 0, 2, 0), (0, 1, 0, 1), (2, 1, 2, 1), (2, 2, 2, 2)}.
Note that the state (2, 1, 2, 1) has been added to the
input/output state set.

After computing the input/output states, the cluster
FSM can be constructed by ordering the input/output
states and computing the transitions between input/output
states. This can be done by the following five steps:
Step 3.1: Compute the partial order n1 ≤ n2 on
lfp(iostatesgγ) where n1 ≤ n2 iff ∀p ∈ gγ .I ∪ gγ .O :
n1(p) ≤ n2(p). We use Hasse diagrams to visualize
partial orders, where vertices represent input/output
states and directed edges (n1,n2) represent the relation

195

(2, 2, 2, 2) (2, 1, 2, 1) (0, 0, 0, 0)
(0, 1, 0, 1)

(2, 0, 2, 0)(ni1 , ni2 , no1, no2)

e5

e1

e2

e3

e4

Figure 9: Hasse diagram of the partial order for the
input/output states lfp(iostatesg2,γ) of the subgraph
g2,γ shown in Figure 6.

n1 ≤ n2. The resulting Hasse diagram of lfp(iostatesg2,γ)
computed in step 2.3 is depicted in Figure 9. This
partial order implies the state transitions for the clus-
ter FSM as can be seen later. Furthermore, we use
T Ogγ to denote the set of so called tightly ordered pairs
(nsrc,ndest) ∈ lfp(iostatesgγ)2 where nsrc < ndest but
no input/output state n′ exists between nsrc and ndest,
i.e., T Ogγ = {(nsrc,ndest) ∈ lfp(iostatesgγ)2 | nsrc <
ndest ∧ �n′ ∈ lfp(iostatesgγ) : nsrc < n′ < ndest}. Hence,
the tightly ordered pairs are the edges in the corresponding
Hasse diagram, e.g., e3 = ((2, 0, 2, 0), (2, 1, 2, 1)) ∈ T Og2,γ

in Figure 9. Finally, we define a modulo operation
n mod nmin,gγ to be the greatest vector n′ = n+ n ·nmin,gγ

not greater than or equal to nmin,gγ , where n ∈ Z. For exam-
ple, (1, 3) mod (2, 2) = (1, 3) but (2, 3) mod (2, 2) = (0, 1).
Later, the modulo operation is used in step 3.3 to determine
the set of transitions T of the cluster FSM.
Step 3.2: Compute the state set Q of the cluster FSM

m by generating a state q ∈ Q for each input/output state
n not greater than or equal to the input/output repetition
vector, i.e., m.Q = {n ∈ lfp(iostatesgγ) | n
≥ nmin,gγ}.
The bottom element in the partial order, i.e., the null in-
put/output state (0, 0, . . . 0), corresponds to the initial state
q0. For the example in Figure 6, the state set computes to
Q = {q0 = (0, 0, 0, 0), q1 = (2, 0, 2, 0), q2 = (0, 1, 0, 1), q3 =
(2, 1, 2, 1)} (cf. Figure 8).
Step 3.3: Compute the transition set T of the clus-
ter FSM m by generating a transition t ∈ T for each
tightly ordered pair of input/output states, i.e., m.T =
{(nsrc mod nmin,gγ ,ndest mod nmin,gγ) | (nsrc,ndest) ∈
T Ogγ}. Considering T Og2,γ = {e1, e2, e3, e4, e5}
in Figure 9, the resulting set of transitions is
T = {(q0, q1), (q0, q2), (q1, q3), (q2, q3), (q3, q0)}. Note
that only for transition t5 = (q3, q0) the modulo operation
was necessary.
Step 3.4: Compute the guard function N of the
cluster FSM m by generating a guard function
value N(t) encoding the minimal number of tokens
on each subgraph input port to enable the transi-
tion t from each tightly ordered pair of input/out-
put states, i.e., ∀(nsrc,ndest) ∈ T Ogγ : m.N(nsrc mod
nmin,gγ ,ndest mod nmin,gγ) = (ni1 , ni2 , . . . n|gγ .I|) where
ni = ndest(i) − nsrc(i). Considering e5, at least one token,
i.e., ((2, 2, 2, 2)− (2, 1, 2, 1))(i2) = 1, on port i2 is necessary
to enter state q0.
Step 3.5: Compute the action function R of the cluster
FSM m. For this purpose, a partial repetition vector
rgγ ,t that assigns to each actor a ∈ gγ .A a non-negative
integer rgγ ,t(a) indicating the number of actor firings to go
from state qsrc to state qdest is derived from each tightly
ordered pair of input/output states, i.e., rgγ ,t = rdest − rsrc

where t = (qsrc, qdest), qsrc = nsrc mod nmin,gγ , and
qdest = ndest mod nmin,gγ . Furthermore, the repetition
vectors rdest and rsrc correspond to the input/output
states ndest and nsrc, e.g., firing each actor a ∈ gγ .A
rsrc(a) times produces nsrc(o) tokens on output port o and
consumes nsrc(i) tokens from input port i. Finally, for each
transition on the basis of the partial repetition vector, a
single processor schedule is computed by a version of the
scheduling algorithm presented in [10] modified to support
partial repetition vectors. This schedule is assigned to R(t)
and is one of the schedule phases of the resulting composite
actor replacing the static data flow subgraph gγ .

5. RELATED WORK
In this section, we will present the related work pertain-

ing to clustering of synchronous data flow graphs. All the
presented approaches only convert an SDF subgraph to an
SDF actor. The advantages of clustering SDF actors for the
purpose of generating static schedules have been shown in [3]
which introduced the Pairwise Grouping of Adjacent Nodes
(PGAN) clustering algorithm for constructing lexical order-
ings for later conversion into single appearance schedules.
However, to detect the feasibility of a clustering operation,
this algorithm uses the corresponding Acyclic Precedence
Graph (APG) [16] of the SDF graph, a representation which
can grow exponentially in the number of actors in the data
flow graph. Due to the restriction that the APG can only
be derived for synchronous data flow graphs, heterogeneous
data flow systems cannot be clustered using this algorithm.
An improvement of PGAN for acyclic graphs has been pre-
sented by Bhattacharyya et al. [4] with Acyclic Pairwise
Grouping of Adjacent Nodes (APGAN) algorithm. Another
complementary heuristic for clustering is the top-down al-
gorithm Recursive Partitioning by Minimum Cuts (RPMC)
also presented in this work. Both APGAN and RPMC could
in principle be used for clustering heterogeneous data flow
systems due to the restriction that only acyclic graphs are
handled. This evades the problem of feedback loops if we
also require an infinite input to the SDF subgraph in the
heterogeneous graph. Otherwise only a prefix of the out-
put stream may be generated by the resulting composite
actor. In [17] a heuristic for SDF clustering is presented
which avoids the exponential growth problem of PGAN but
is also limited to generating SDF actors.

Additionally, clustering is used for MPSoC scheduling by
clustering actors which are later bound to a dedicated re-
source. In [14], a technique is developed to cluster dataflow
subgraphs to guide multiprocessor scheduling techniques to-
wards solutions that provide lower schedule makespan (i.e.,
that minimize the time required to execute a single iteration
of a dataflow graph). However, this technique is limited to
operating on homogeneous SDF graphs. The technique can-
not handle any kind of dynamic dataflow graph, nor can
it process SDF graphs unless they are first expanded into
equivalent homogeneous SDF graphs.

Scheduling SDF subgraphs within dynamic dataflow
graphs to decrease scheduling overhead is explored in [6,
7]. However, in these approaches, the clustered SDF graphs
are treated as atomic (pure SDF) actors, and therefore the

196

Table 2: Measured runtimes for different synthetic
graphs and 1000 cluster FSM cycles.

#Actors QSS [s] dynamic [s] improvement

12 1.2 3.0 60%
24 5.3 7.5 29%
39 10.3 14.0 26%

clustering design space and the resulting schedules are more
restricted compared to those associated with the approach
that we present in this paper. Finally, Vincentelli et al. [18]
presented a quasi-static scheduling approach for equal con-
flict Petri nets. However, this technique is limited to pure
equal conflict nets and exhibits exponentially complexity in
the number of conflicts. If only a subgraph exhibiting equal
conflict semantics is scheduled with this technique a best
case environment is assumed, i.e., the feedback loop prob-
lem over the environment of the subgraph is neglected.

6. RESULTS
In order to illustrate the benefits of our clustering algo-

rithm developed in Section 4, we have applied it to both
synthetic data flow graphs as well as the IDCT of a Motion
JPEG Decoder. The synthetic graphs are generated based
on Figure 6 by adding a variable number of actors with iden-
tical delays on edges (a4, a2), (a2, a4), (a1, a3).

Table 2 shows the obtained measurements dependent on
the number of actors in the subgraph. It compares the
runtime when applying the QSS determined by the clus-
tering algorithm against a dynamic scheduler. The latter
one polls each actor in a round-robin fashion whether it can
execute or not. The achieved improvements clearly show the
benefits of our clustering algorithm which is able to derive
quasi-static schedules even when the cluster cannot be rep-
resented by a static data flow actor. Note that the decreas-
ing improvement with increasing problem size is due to our
particular synthetic example in combination with the imple-
mented round-robin scheduler which accidentally schedules
the static clusters nearly optimal. However, this observation
cannot be generalized.

In order to evaluate the optimization potential for real-
world examples, we additionally have applied our cluster-
ing algorithm to the two-dimensional IDCT of our Motion-
JPEG decoder for both, a single-processor and a multi-
processor implementation. Both of them were implemented
using embedded MicroBlaze processors running at 66 MHz a
Xilinx Virtex-II Pro FPGA. For the single-processor imple-
mentation with round-robin scheduling, we derived a latency
of 1.91 seconds per 200 blocks and 0.95 seconds using the
QSS computed by our proposed method. This results in a
latency improvement of 50%. The throughput improvement
is even more significant and amounts to 93% (round-robin
scheduling: 110 blocks/s, QSS: 212blocks/s).

For the multi-processor implementation, we partitioned
the IDCT into four clusters as shown in Figure 10. Each
of the four composite actors resulting from applying our
clustering algorithm is implemented on a single MicroBlaze.
Inter-processor communication is implemented using Xilinx
Fast Simplex Links (FSL). The source (s) and the sink (d)

are implemented as hardware modules. Note that each of
the four clusters satisfies the clustering condition from Def-
inition 4.1.

Comparing the dynamic round-robin scheduler with the
QSS resulting from the clustering algorithm, the latter im-
proves the throughput by 45% (round-robin: 1259 blocks/s,
QSS: 1831 blocks/s).6 The latency improvement is slightly
smaller with 34% (round-robin: 0.17 ms per 200 blocks,
QSS: 0.11 ms per 200 blocks).

The performance increase can be explained by two facts.
First of all, the dynamic round-robin scheduler polls each
actor individually whether it can fire or not. Due to the un-
equal number of invocations however, several pollings fail,
wasting precious computational power. Additionally, the
dynamic scheduler has to check the fill level of each FIFO
connecting two actors, even if both of them are mapped to
the same processor. The QSS schedule on the other hand
only checks the hardware input and output FIFOs. As soon
as there are enough input tokens, a sequence of actor firings
determined during compile time is executed without check-
ing the internal FIFOs.

7. CONCLUSIONS
In this paper, we presented a generalized clustering ap-

proach for static data flow subgraphs and proposed a clus-
tering algorithm that computes a quasi-static schedule re-
ducing the scheduling overhead for one processor of an MP-
SoC while still accommodating a worst-case environment of
the cluster. Through our proposed clustering approach, the
scheduling of these subgraphs can be coordinated with en-
closing system representations in a way that systematically
exploits the predictability and efficiency of the static data
flow model. This greatly enhances the power of our tech-
niques in terms of avoiding deadlock, increasing the design
space for clustering, and providing for integration with more
general models of computation. We have shown the benefits
of up to 95% improvement of performance by experiments.
Future work will focus on optimal clustering techniques, i.e.,
to identify which actors should be clustered in order to mini-
mize the scheduling overhead, hence, minimizing the number
of states in the clustering FSM while maximizing the length
of the static scheduling sequences. Furthermore, we have
figured out in preliminary investigations that quasi static
schedules allow for efficient intra processor communication
synthesis as the number of tokens stored in each channel dur-
ing graph execution can be predicted at runtime. As first
measurements have shown promising improvements in per-
formance, we are currently working on an automatic synthe-
sis path for this kind of optimized software communication.
Moreover, even a large cluster FSM state space has a com-
paratively small set of unique schedules. In future work, we
will exploit this fact to generate an efficient representation
of the cluster FSM state space for synthesis.

6The super-linear speedup in comparison to the single pro-
cessor implementation is due to the different memory inter-
faces used in both implementations: Thanks to the multi-
processor implementation, the code size for the individual
processors could be reduced such that fast Local Memory
Buses (LMB) can be used.

197

8

8

8

8

8

8

8

8

6464

8
8

8

8

8
8

1
1

18
8 1

1

1

[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]
[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]

[1,1,1,1,1,1,1,1]

[8,0,0,0,0,0,0,0]

[0,0,8,0,0,0,0,0]

[0,0,0,0,0,0,8,0]

[0,0,0,0,8,0,0,0]

[0,8,0,0,0,0,0,0]

[0,0,0,0,0,0,0,8]

[0,0,0,8,0,0,0,0]

[0,0,0,0,0,8,0,0]

11

1

1

1

1

1

1

1

1

ds

a2 a3a1

a5

a7

a6

a8 a4

µBlaze4µBlaze3

µBlaze2

µBlaze1

Figure 10: Clustered multi-processor implementation of the two-dimensional IDCT. Inter-processor commu-
nication is realized via hardware FIFO links.

8. REFERENCES
[1] S. Abdi, J. Peng, H. Yu, D. Shin, A. Gerstlauer,

R. Doemer, and D. Gajski. System-on-Chip
Environment (SCE Version 2.2.0 beta): Tutorial. UC
Irvine, Irvine, CA, July 2003. Tech. Rep.
CECS-TR-03-41.

[2] S. S. Bhattacharyya, J. T. Buck, S. Ha, and E. A. Lee.
Generating Compact Code from Dataflow
Specifications of Multirate Signal Processing
Algorithms. IEEE Transactions on Circuits and
Systems I: Fundamental Theory and Applications,
42(3):138–150, Mar. 1995.

[3] S. S. Bhattacharyya and E. A. Lee. Scheduling
synchronous dataflow graphs for efficient looping. J.
VLSI Signal Process. Syst., 6(3):271–288, 1993.

[4] S. S. Bhattacharyya, P. Murthy, and E. Lee. APGAN
and RPMC: Complementary Heuristics for
Translating DSP Block Diagrams into Efficient
Software Implementations. Journal of Design
Automation for Embedded Systems, Jan. 1997.

[5] G. Bilsen, M. Engels, R. Lauwereins, and
J. Peperstraete. Cyclo-Static Dataflow. IEEE
Transaction on Signal Processing, 44(2):397–408, Feb.
1996.

[6] J. T. Buck. Scheduling Dynamic Dataflow Graphs with
Bounded Memory using the Token Flow Model. PhD
thesis, Department of Electrical Engineering and
Computer Sciences, University of California at
Berkeley, September 1993.

[7] C. Choi and S. Ha. Software synthesis for dynamic
data flow graph. In Proceedings of the International
Workshop on Rapid System Prototyping, 1997.

[8] S. A. Edwards and O. Tardieu. SHIM: A Deterministic
Model for Heterogeneous Embedded Systems. In
Proceedings of EMSOFT, pages 264–272, 2005.

[9] C. Haubelt, J. Falk, J. Keinert, T. Schlichter,
M. Streubühr, A. Deyhle, A. Hadert, and J. Teich. A
SystemC-based Design Methodology for Digital Signal
Processing Systems. EURASIP Journal on Embedded
Systems, Special Issue on Embedded Digital Signal
Processing Systems, 2007:Article ID 47580, 2007.

[10] C. Hsu and S. S. Bhattacharyya. Cycle-Breaking

Techniques for Scheduling Synchronous Dataflow
Graphs. Technical Report UMIACS-TR-2007-12,
Institute for Advanced Computer Studies, University
of Maryland at College Park, Feb. 2007.

[11] A. A. Jerraya, A. Bouchhim, and F. Pétrot.
Programming Models and HW-SW Interfaces
Abstraction for Multi-Processor SoC. In Proceedings
of DAC, pages 280–285, 2006.

[12] G. Kahn. The semantics of simple language for parallel
programming. In IFIP Congress, pages 471–475, 1974.

[13] T. Kangas, P. Kukkala, H. Orsila, E. Salminen,
M. Hännikäinen, T. D. Hämäläinen, J. Riihimäki, and
K. Kuusilinna. UML-Based Multiprocessor SoC
Design Framework. ACM Transactions on Embedded
Computing Systems, 5(2):281–320, May 2006.

[14] V. Kianzad and S. S. Bhattacharyya. Efficient
Techniques for Clustering and Scheduling onto
Embedded Multiprocessors. IEEE Trans. Parallel
Distrib. Syst., 17(7):667–680, 2006.

[15] E. A. Lee and D. G. Messerschmitt. Synchronous Data
Flow. Proceedings of the IEEE, 75(9):1235–1245, Sept.
1987.

[16] E. A. Lee and D. G. Messerschmitt. Static Scheduling
of Synchronous Data Flow Programs for Digital Signal
Processing. IEEE Transactions on Computers,
C-36(1):24–35, Jan. 1987.

[17] J. L. Pino, S. S. Bhattacharyya, and E. A. Lee. A
Hierarchical Multiprocessor Scheduling System for
DSP Applications. In Proc. Conf. on Signals, Systems,
and Computers, volume 1, pages 122–126, Nov. 1995.

[18] M. Sgroi, L. Lavagno, Y. Watanabe, and
A. Sangiovanni-Vincentelli. Quasi-Static Scheduling of
Embedded Software Using Equal Conflict Nets. In
Application and Theory of Petri Nets 1999. 20th
International Conference, ICATPN’99, June 1999.

[19] M. Thompson, H. Nikolov, T. Stefanov, A. Pimentel,
C. Erbas, S. Polstra, and E. Deprettere. A Framework
for Rapid System-level Exploration, Synthesis, and
Programming of Multimedia MP-SoCs. In Proceedings
of CODES-ISSS’07, pages 9–14, 2007.

198

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

