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ABSTRACT
We present a statistical optimization approach for schedul-
ing a task dependence graph with variable task execution
times onto a heterogeneous multiprocessor system. Sched-
uling methods in the presence of variations typically rely on
worst-case timing estimates for hard real-time applications,
or average-case analysis for other applications. However, a
large class of soft real-time applications require only statis-
tical guarantees on latency and throughput. We present a
general statistical model that captures the probability dis-
tributions of task execution times as well as the correlations
of execution times of different tasks. We use a Monte Carlo
based technique to perform makespan analysis of different
schedules based on this model. This approach can be used to
analyze the variability present in a variety of soft real-time
applications, including a H.264 video processing application.

We present two scheduling algorithms based on statistical
makespan analysis. The first is a heuristic based on a criti-
cal path analysis of the task dependence graph. The other
is a simulated annealing algorithm using incremental timing
analysis. Both algorithms take as input the required statis-
tical guarantee, and can thus be easily re-used for different
required guarantees. We show that optimization methods
based on statistical analysis show a 25-30% improvement in
makespan over methods based on static worst-case analysis.

Categories and Subject Descriptors
D.4.1 [Operating Systems]: Process Management—sched-
uling ; D.4.8 [Operating Systems]: Performance—stochas-
tic analysis

General Terms
Algorithms, Design, Performance, Reliability

1. INTRODUCTION
The increasing complexity of designing conventional pro-

cessors and increasing power consumption has resulted in
a shift towards chip multiprocessors. The key to success-
ful application deployment on these multiprocessors lies in
effectively mapping the concurrency in the application to
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the architectural resources provided by the platform. Static
compile time task allocation and scheduling is an impor-
tant step during the mapping process. Static models and
methods become viable when the application workload and
parallel tasks are known at compile time. Static scheduling
has been used in the mapping of media and signal process-
ing applications [17]. It is also useful in rapid design space
exploration for micro-architectures and systems [11].

In this work, we consider the problem of statically sched-
uling a graph of concurrent tasks with associated execution
times on a target heterogeneous multiprocessor. The objec-
tive of the scheduling algorithm is to minimize the schedule
length (makespan) of the system. Static models and meth-
ods rely on exact knowledge of the execution time of dif-
ferent tasks at compile time. However, real task execution
times can vary significantly across different runs due to (1)
loops and conditionals in the code leading to different exe-
cution traces and (2) variation in memory access times due
to cache accesses and bus arbitration [20]. Static scheduling
algorithms in the presence of variations rely on worst-case
behavior for hard-real time applications [2], and average-
case behavior for non real-time applications. In contrast, a
large class of recent applications fall under the category of
soft real-time applications. Examples include applications in
the domains of multimedia (video encoders/decoders), net-
working and gaming applications. Such applications do not
require hard guarantees on latency or throughput, but do
require statistical guarantees on steady-state behavior. For
example, a H.264 video application may require that 95% of
all frames are decoded within a specified latency. For such
applications, a static scheduling method may not best uti-
lize system resources. Dynamic scheduling is an alternative,
but the run-time overhead can be prohibitive [17]. This mo-
tivates a move to statistical models and scheduling methods
for effectively mapping soft real-time applications.

In this paper, we present a statistical model and optimiza-
tion methods for scheduling concurrent applications onto
heterogeneous multiprocessors. Our model involves using
general joint probability distribution tables to capture vari-
ations in task execution times. Our work was motivated by
the variability found in the H.264 video decoding applica-
tion, but the model is sufficiently broad to capture many
soft real-time applications. We use a standard Monte Carlo
technique to analyze and compare schedules derived from
this statistical model. Monte Carlo analysis is considered
a “golden” model for statistical analysis and can handle any
type of variations, but is usually compute intensive. Our use
of Monte Carlo analysis is made possible due to the following
factors: (1) most scheduling problems only involve hundreds
of random variables as opposed to systems in financial anal-
ysis and circuit timing analysis involving thousands to mil-
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lions of variables, (2) we can perform an incremental Monte
Carlo analysis to speed up the computation.

We are interested in computing the best schedule for a
concurrent application. Our target platform is a heteroge-
neous multi-core architecture. This optimization problem is
known to be strongly NP-hard even for static models and
homogeneous architectures [9]. A variety of methods have
been proposed for scheduling static models onto multiproces-
sors. Kwok and Ahmed present a comprehensive taxonomy
of heuristic methods [16]. Heuristic approaches work well
for multiprocessor scheduling problems that do not consider
a variety of practical constraints. However, scheduling algo-
rithms that handle constraints such as specific architecture
topologies, memory limitations and so on have to deal with a
complicated and not very well understood solution space. A
general method that has been successfully applied to practi-
cal and complex multiprocessor scheduling problems is Sim-
ulated Annealing[14][21].

In this work, we propose two algorithms, one a list sched-
uling based heuristic that uses Monte Carlo analysis and
the other a simulated annealing technique that utilizes in-
cremental statistical analysis to schedule a concurrent appli-
cation with statistical execution times to a multiprocessor.
Both our algorithms take in the required statistical guaran-
tee as an input. Thus the same algorithms can be re-used
for different required statistical guarantees.

In order to demonstrate the effectiveness of our method,
we compare the results of statistical scheduling for different
guarantees to static scheduling with worst-case execution
times. We are typically only interested in high guarantees,
and therefore do not consider scheduling with average-case
execution times. We show that the static algorithm with
worst-case execution times makes wrong scheduling deci-
sions due to a wrong estimation of task completion times.
On the other hand, the statistical methods use the Monte
Carlo analysis for a given schedule and hence makes more
accurate decisions.

2. RELATED WORK
The problem of mapping task-level concurrency to a mul-

tiprocessor architecture has been studied since the 1960s.
Methods used to solve this problem usually assume that the
task execution times are fixed. A classification of different
heuristic methods to solve the scheduling problem can be
found in [16]. One popular heuristic approach is list sched-
uling for which different variants have been proposed [12, 3,
13, 23]. Methods based on branch-and-bound, evolutionary
algorithms and constraint formulations have also been de-
vised [25]. Simulated annealing has recently found success
in multiprocessor scheduling problems [21]. Ravindran [22]
shows a toolbox of methods for solving the static scheduling
problem.

In the case when task execution times vary, different mod-
els for accounting for the variations have been proposed
based on both analytical and simulation-based techniques [26,
10]. In this work, we adopt a general simulation-based model
that can capture any general variability in code. The im-
pact of such execution time variability on scheduling real-
time periodic tasks with deadlines onto multiprocessors has
been studied in [19]. This method assumes that tasks are
periodic and have individual deadlines. In this work, we fo-
cus on scheduling aperiodic tasks with stochastic execution
times onto multiprocessors to optimize for schedule length

(makespan). Since the makespan is a distribution, we are
interested in a particular percentile of the distribution.

Statistical timing analysis has been well-studied recently
for circuit timing in the presence of process variations [8].
Circuit timing analysis involves thousands to millions of
gates and a fast analysis is paramount. The models used
typically assume normal or near-normal delay distributions
and the analysis is usually analytical. In contrast, task ex-
ecution times are often not normally or even continuously
distributed and are not easily amenable to analytical anal-
ysis. We use a general Monte Carlo analysis in view of the
limited problem sizes of at most a few hundred tasks.

Statistical optimization has been primarily used for power
optimization [24] and gate sizing [18]. These problems are
usually modeled as convex optimization problems. Schedul-
ing, on the other hand, is an inherently discrete and non-
convex problem. Compilers have used profiling to drive in-
struction scheduling [4], but these typically based on average-
case analysis. We target applications where high statistical
guarantees are required. Statistical optimization has, how-
ever, been used for scheduling job-shop applications in the
Operations Research community [1]. The work in [1] solves
a special case of the multiprocessor scheduling problem we
consider, and only uses the means and standard deviations
of jobs. In this work, we consider arbitrary distributions of
task execution times.

3. PREVIOUS WORK: STATIC MODELS
AND METHODS

In this section, we consider a representative static sched-
uling problem. We introduce terminology and concepts that
will be used in our statistical scheduling work as well.

3.1 Static Scheduling Problem
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Figure 1: An example task dependence graph with an-

notations for execution times of each task.

We consider a static scheduling problem whose objective
is to schedule a task dependence graph onto a multipro-
cessor to minimize the schedule length (makespan). The
task graph is a directed acyclic graph (DAG) G = (V, E),
where V = {v1, v2, ...vn} represents the set of computation
tasks, and the directed edges E ⊆ V × V represent depen-
dence constraints between the tasks. The architecture graph
H = (P, C) is a graph showing the processors and their inter-
connections, where P = {p1, p2, ...pm} is a set of processors
and C ⊆ P × P shows the connectivity between the pro-
cessors. Each task is fully executed without preemption on
a single processor. The performance model is represented
by W : (V × P ) ∪ (E × C) → <+, where W (v, p) is the
execution time of task v on processor p and W (e, c) is the
communication latency of edge e on communication link c.
An example task dependence graph with the performance
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model is displayed in Fig. 1. For convenience, we usually
add two dummy nodes with zero execution time, a source
node with edges to all nodes without a predecessor and a
sink node with edges from all nodes without a successor.

For a task dependence graph G = (V, E) and an ar-
chitectural model H = (P, C), we define a valid alloca-
tion as a function A : V → P that assigns every task
in V to a single processor in P . Given a particular A,
the communication delay between tasks v1 and v2 is given
by W ((v1, v2), (A(v1), A(v2))), where (v1, v2) represents the
edge between tasks v1 and v2, and (A(v1), A(v2)) repre-
sents the communication link between processors A(v1) and
A(v2). A valid schedule is defined as a function S : V → <+

that assigns a non-negative start time to each task, and sat-
isfies two sets of constraints.

∀(v1, v2) ∈ E(dependence constraints),

(a) S(v2) ≥ S(v1) + W (v1) + W ((v1, v2), (A(v1), A(v2)))

∀v1, v2 ∈ V, v1 6= v2(ordering constraints),

(b) A(v1) = A(v2) ⇒
S(v1) ≥ S(v2) + W (v2) ∨ S(v2) ≥ S(v1) + W (v1)

(a) (b)

v5

v1

v2

v4

v8

v7
v3

v6

v1
v4

v3 v7

v8

v6v5

v2

P1 : v1, v2, v3, v4

P2 : v5, v6, v7, v8 P2 : v5, v6, v3, v8

P1 : v1, v2, v7, v4

Figure 2: Two valid allocations and schedules for the task

dependence graph in Fig.1 onto two processors. The dot-

ted lines represent ordering edges and the solid lines are

dependence edges. The longest path gives the makespan

of the schedule.

Constraint (a) enforces that the task dependencies are
met: a task starts only after all predecessors are complete.
Constraint (b) enforces a total ordering among the set of all
tasks assigned to a single processor.

The makespan of a valid allocation and schedule is de-
fined as maxv∈V S(v) + W (v) or alternatively, as S(snk)
where snk is the sink node. The problem of computing the
makespan is called the analysis problem. Given a graph
G(V, E), an allocation A and a schedule S, we can cap-
ture the schedule graphically by adding additional edges
to the task graph. Define E′′ = {(v1, v2) /∈ E|A(v1) =
A(v2) ∧ S(v2) ≥ S(v1) + W (v1)} to be the set of order-
ing edges that define the order in which tasks allocated
to the same processor execute. Define G′ = (V, E′) where
E′ = E ∪ E′′. G′ is the graph G with the ordering edges
added. G′ is a DAG for a valid schedule. Analysis of a
schedule is then a longest path computation on G′, which
is a breadth-first traversal of the graph G′. Fig. 2 gives two
valid allocations and schedules for the task graph in Fig. 1
scheduled on two processors. The dotted lines in Fig. 2 de-
pict the ordering edges. The objective of the scheduling

problem is to compute a valid allocation and schedule with
minimum makespan.

4. STATISTICAL MODELS AND ANALYSIS
In many real world examples, static models are insuffi-

cient to accurately reflect execution characteristics of tasks.
There are usually variations in task execution times due to
the presence of conditionals or loops inside code, and mem-
ory access time variations due to cache misses and bus arbi-
tration The task execution time is then properly expressed
as a distribution rather than a single value. We introduce
a statistical model for task execution times, and show tech-
niques to perform analysis and optimization on this model.

4.1 Timing Model
There have been previous attempts at characterizing the

execution time of tasks. These can be classified into analyti-
cal and simulation based approaches. Analytical approaches
build up the variability of a task from the variability of each
statement of code and the structure of the code. These
can be accurate but are usually difficult to build. Simula-
tion based approaches execute the code with different inputs
and get the distribution of real execution times. Such an ap-
proach is simpler but assumes access to the final platform.

In this work, we use a simulation-based approach to char-
acterize the run times of individual tasks. There are two
main types of variations we wish to capture: (1) variations
in the runtime of a single task across many runs due to cache
effects or bus arbitration (2) variations in the runtime due to
different inputs exciting different execution traces within the
task. To capture the second effect, we simulate the runtimes
of each task in the task graph with different inputs. We re-
peat the execution of each input a certain number of times
to ensure that variations in cache access times are captured
in our traces. The execution times of each task in each of
these runs are then discretized by binning and stored in the
form of a probability distribution table. Such a table has en-
tries of the form (runtime range, probability), and stores the
probability that the task has an execution time in a partic-
ular range. If the task execution times are dependent, then
we need to additionally store the joint probability distribu-
tions. Dependencies in task execution times arise mainly
due to global sources of variation having to do with vary-
ing memory access times. The joint probability distribution
is also stored in the form of a table, but the entries are of
the form (range1, range2, ... , rangen, probability) that
stores the joint probability that the task execution times of
task 1 lies in range 1 and the execution time of task 2 lies
in range 2 and so on. It may so happen that only certain
sets of tasks have dependent task executions, while others
do not. In this case, the joint probability distribution tables
only need contain the dependent variables. In general, the
joint probabilities help capture the correlations between the
execution times of different tasks. This method of captur-
ing task execution time variations is very general and can
capture any type of variations.

4.2 Example: H.264 decoding
The need for such a general model is made evident in

the context of decoding of H.264 macroblocks. In previous
work [5], we have discussed the parallelization of H.264 de-
coding on multiprocessor architectures. The parallelization
is across different macroblocks within a single frame. Task
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Figure 3: Partial H.264 task dependency graphs for (a) I-

frames having only I-macroblocks and (b) P-frames with

both I- and P-macroblocks.

graphs for parts of H.264 frame decoding can be seen in Fig-
ure 3. Each task is responsible for the decoding of a single
macroblock. There are two main sources of variations in
execution time.

1. Variations in macroblock type: We consider only
I and P-frames below. An I-frame (or intra frame) consists
of tasks decoding I(intra)-macroblocks. These macroblocks
usually depend only on other macroblocks within the same
frame, and some residual information. A P(predicted)-frame
contains both I and P-macroblocks. Depending on the in-
put, a particular task may be responsible for decoding I or P
macroblocks. P-macroblocks depend on previously decoded
frames as also residual information. I and P macroblocks
have different execution time characteristics (Fig 4). There
is variability in the execution time of both I- and P- mac-
roblocks due to varying amount of residual information. For
further details, we refer the reader to [5].

2. Global frame buffer access: An important source
of variations in H.264 arises because each P-macroblock has
to access a global shared frame buffer. Cache misses and/or
bus arbitration leads to uneven execution times even when
a single P-macroblock is executed repeatedly with the same
input. Since each P-macroblock has to access the frame
buffer, this is a global source of variation in task execution
times, and causes task execution times to be correlated.
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Figure 4: Histogram of the execution time variations

with (a) I-macroblocks and (b) P-macroblocks of the

manitu.264 video stream in H.264 decoding.

The overall run time of each individual task is a com-

plex function of the input macroblock type and cache ac-
cess times. There is a further complication in that the to-
tal cache access time depends on the number of accesses
to the global frame buffer which is, in turn, dependent on
the type of macroblock (only P-macroblocks depend on past
frames and need to look at the frame buffer). Thus to sum-
marize: there is execution time variation between I- and
P-macroblocks, there are execution time variations due to
the different amount of residual information in different I-
and P-macroblocks, and there is a global source of variation
that is only applicable to P-macroblocks due to global mem-
ory/cache access times. Modeling this system analytically
will very likely prove difficult. Our simulation based scheme
can capture all these sources of variation. We have individ-
ual probability distribution tables for each I-macroblock that
take into account the residual information. We have a joint
probability distribution for all the P-macroblocks that take
into account both the individual variations due to residual
information as well as the global frame buffer access times.
Figure 4 shows the nature of the probability distributions
of execution times for the I-macroblocks and P-macroblocks
for the manitu.264 video stream. For the sake of depiction,
the figure does not show the joint probability distribution
for all P-macroblocks in the frame. It instead shows the
marginal probability distribution for a single P-macroblock
(eliminating all other variables from the joint distribution
through summation).

4.3 Statistical Analysis
For the statistical timing model, a valid schedule com-

putes a start time probability distribution for each task in
V , subject to the constraints (a) and (b) in Section 3.1.

The makespan of a schedule is defined as maxv∈V S(v) +
W (v). The makespan is no longer a single number as in
the static case, but is instead a distribution. Given a distri-
bution and a number η (0 ≤ η ≤ 100), the η’th percentile
of the distribution is defined as the value below which η%
of the observations fall. For a given schedule, the η’th per-
centile of the makespan is the value that gives us a statistical
guarantee that no more than 100 − η % makespans out of
repeated simulations of the schedule will exceed it. This
is similar to the concept of yield in timing analysis of cir-
cuits. The objective of statistical optimization is to compute
the schedule with the minimum η’th percentile of makespan
distribution. For H.264, this corresponds to optimizing for
makespan while guaranteeing a certain quality of service,
viz. that η% of the frames will finish before the makespan.

To perform the analysis, we use the notation of “ordering”
edges introduced in Section 3.1. The problem of computing
makespan reduces, as in the static case, to a longest path
computation on the graph with ordering edges. However, we
now have to compute the longest path in a graph where each
node execution time is an arbitrary random distribution ex-
pressed by a (individual or joint) probability distribution
table. In this general case, analytical approaches to com-
pute the longest path in the presence of correlations need to
consider all permutations of entries in each table, which is
infeasible. In this work, we use a Monte Carlo simulation
approach to compute the longest path. The Monte Carlo
analysis is simple in concept: we take a sample for each
independent variable (either an entry in the joint probabil-
ity distribution table or one for each individual probabil-
ity table). Using these samples as deterministic values for
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the random variables, we perform a deterministic longest
path analysis on the graph. We then repeat this experiment
a number of times to get the final distribution. Once we
compute the probability distribution of the makespan, it is
simple to obtain the ηth percentile. The only complication
comes when there are multiple joint probability distribution
tables for subsets of tasks, and there are shared tasks across
tables. In this case, we need to pick consistent values for
variables across different tables.

A Monte Carlo simulation usually requires a number of
iterations to converge to a distribution, incurring significant
computation and execution time. The number of iterations
required for obtaining a good estimate depends on the num-
ber of variables and the nature of the variations. In our
work, we typically deal with small task graphs with only
a few hundred variables. Thus, we have found that doing
a set of 1000 Monte Carlo iterations is sufficient. For effi-
ciency, we generate all 1000 samples for each task and then
do a single breadth-first graph traversal for computing all
longest paths. We can further improve computation time
through our incremental analysis as outlined in Section 5.

4.4 Deterministic analysis
We are typically interested in solving the analysis problem

at a high value of η to provide high statistical guarantees
on makespan. One deterministic approach to analyzing a
statistical task graph is to use a worst-case estimate on the
execution time of each individual task, and then perform a
normal static longest path analysis (Sec. 3.1). The worst-
case estimate of a task is obtained by taking the 99.9’th
percentile (or some other suitably chosen percentile) of its
execution time distribution. This method is conservative
since there is very little chance that all individual random
variables simultaneously attain their extreme values.

Another deterministic approach is to use the average-case
execution times of individual tasks. This approach is not
conservative, but can heavily underestimate the final make-
span if we are interested in high percentiles. Soft real-time
applications typically require high guarantees on makespan,
and thus average-case analysis is unsuited.

In the next section, we compare the accuracy of statistical
analysis to deterministic worst-case analysis.

v1 3 0.2

v2 3 0.3

v3 1 0.3

v4 7 0.1
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v2

v4

v3 v7

v8

v6

Mean St.Dev.

Figure 5: The task dependence graph in Fig. 1 with anno-

tations for the mean and standard deviation of execution

times of each task.

4.5 Validation of Analysis
In this section, we show with the help of a simple example

that deterministic analysis can be very inaccurate as com-
pared to the Monte-Carlo statistical analysis.

Consider the simple task graph in Fig. 5. For this example,
we assume that the execution times of tasks are independent

and are normally distributed. The means and standard de-
viations of task execution times are shown in the figure. In
our model, we would discretize these values and have a table
representing the probability distribution of each task. We
do not show this table here for the sake of clarity. Assume
that the task graph is to be scheduled on a homogeneous
two-processor system.

For the two schedules shown in Fig. 2, we run Monte Carlo
simulations of the scheduled graph to obtain our golden
model of makespan distributions. For η = 99%, we compare
the makespan percentile computed by the statistical analy-
sis with the deterministic estimate obtained by individually
raising the execution time of each task to its worst-case es-
timate. This is shown in Fig. 6 for the two schedules. The
same figure also shows the deterministic estimate obtained
by taking the average execution time for each task.

Fig. 6 shows that the deterministic worst-case analysis
overestimates the Monte Carlo makespan at η=99% in both
schedules (a) and (b). Further, the worst-case analysis does
not overestimate the two schedules equally: it is more ac-
curate for schedule (b) than for schedule (a). In fact, the
worst-case analysis would conclude that schedule (b) is bet-
ter than schedule (a), whereas the Monte Carlo simulations
indicates that schedule (a) is better than schedule (b). As
a general rule, worst-case estimates are inaccurate if critical
and near-critical paths have high variance, which is the case
in schedule (a). In schedule (b), these paths are of low vari-
ance, and hence the worst-case estimate is more accurate.
Accuracy can vary significantly across schedules. Fig. 6 also
shows that the deterministic average-case analysis very sig-
nificantly underestimates the Monte Carlo makespan. Using
average-case analysis is tantamount to scheduling for close
to the average-case scenario, providing a very low guaran-
tee on makespan. In cases where we are interested in very
high guarantees on makespan, it is not usually advisable to
utilize average-case analysis. We do not further consider
average-case analysis in this work.

The above trends are consistent for larger examples as
well. In particular, the worst-case deterministic analysis
consistently overestimates the makespan, while the percent-
age difference between the worst-case analysis and Monte
Carlo analysis varies considerably across different schedules.
A histogram of the percentage differences between the de-
terministic worst-case estimate and the 99% percentile of
a Monte Carlo makespan distribution for a set of 1000 ran-
domly chosen schedules of a task graph for decoding a H.264
video stream is shown in Fig. 7. There is a large spread
in the accuracy of the deterministic worst-case estimates
with respect to the Monte Carlo values. Any optimization
method based on this analysis is thus significantly subopti-
mal. Monte Carlo analysis, on the other hand, is a “golden”
model and is considered very accurate.

5. INCREMENTAL STATISTICAL
ANALYSIS

The Monte Carlo statistical analysis method will be used
inside the inner loop of a Simulated Annealing Engine in
one of our optimization methods. Performing a full Monte
Carlo analysis for each iteration of the Simulated Annealing
loop can become computationally infeasible.

An incremental analysis is useful when we already have
an analysis for a graph, and the graph structure or node
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Figure 6: Comparison of Monte Carlo analysis versus

deterministic analysis for schedules in Fig. 2(a) and (b)
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Figure 7: Histogram of the percentage differences be-

tween worst-case deterministic analysis and Monte Carlo

analysis for a set of 1000 schedules for H.264 decoding

on manitu.264. The deterministic analysis is uneven in

its overestimation of makespan.

timing values is then perturbed a little. Incremental analysis
has been studied in the context of circuit simulation and
physical synthesis. In the context of statistical scheduling,
we shall see in Section 6.2 (Fig 8) that only a few “ordering”
edges change across simulated annealing iterations, while all
timing values for individual nodes remain the same.

The addition and removal of edges in a graph can change
the arrival times of only the nodes in the fanout cone of
the modified edges. All random values used in for the other
nodes are unchanged from the existing analysis. This kind of
limitation in the nodes to be considered for analysis has been
called level limiting analysis in [8]. In our statistical analysis,
we perform (for efficiency reasons) longest-path analysis for
all iterations using a single breadth-first search of the graph.
In the incremental analysis, we do the same – except that we
only need to perform a breadth-first traversal of the graph
starting from the target nodes of the modified edges.

Another facet of incremental analysis is dominance-limiting
analysis. If a particular modified edge does not affect the
arrival time of its target node, then it has been dominated
by the node’s other edges. Then we need not proceed with
a breadth-first traversal of that edge. In the context of our
Monte Carlo analysis, we perform a number of determinis-
tic runs. If most of these runs (a fraction above a certain
threshold) are not affected by the modified edge, then we do
not need to propagate arrival times through that node.

These two techniques together significantly reduce the
number of nodes to be considered for analysis. Since the
number of random variables decreases, the Monte Carlo anal-
ysis also tends to converge with fewer iterations.In the Sim-
ulated Annealing algorithm, we obtain a speedup of 2-3X
over performing full Monte Carlo analysis.

6. STATISTICAL OPTIMIZATION
For a given allocation and schedule, Section 4.3 shows

us how to compute the makespan distribution and the η’th
percentile of makespan. The problem of finding the valid
allocation and schedule that achieves a makespan distribu-
tion with the minimum η’th percentile for a given η is the
optimization problem.

The problem is known to be strongly NP-hard, even in
the special case of deterministic execution times. As such,
various heuristic [16] and exact algorithms [25] have been
devised for the deterministic version of the problem. In the
case of statistical optimization, the algorithm must addition-
ally be customized according to the input η value. We now
proceed to describe two methods for the statistical version:
one heuristic approach and the other a Simulated Anneal-
ing based search. We show how the customization of the
algorithms to the required η value occurs in both cases.

6.1 List scheduling based heuristic
List scheduling algorithms are popular for solving multi-

processor scheduling problems [3]. They have been shown
to perform well on common variants of scheduling prob-
lems [23].

Almost all list scheduling algorithms have the following
structure. First, the algorithm computes a total ordering
or list of tasks based on some priority metric. Tasks are
then considered according to the list order and scheduled on
available processors. The algorithm repeatedly executes the
following two steps until a valid schedule is obtained:

• Select the next task to schedule, which is typically the
task with highest priority and whose predecessors have
completed execution.

• Allocate the selected task to a processor that allows
the earliest start time for that task.

The algorithm progresses by allocating a task at each it-
eration and terminates when all tasks are scheduled. List
scheduling algorithms differ in the rule used to pick the next
task from the list when a processor is free [3]. A common
choice of priority is the static level, the largest sum of execu-
tion times along any path from a task to any sink vertex in
the graph [12]. Ties are broken based on the task processing
times or the number of immediate successors [13]. More re-
cent list scheduling algorithms have been based on dynamic
levels, which are recomputed after each task has been allo-
cated to a processor. One such algorithm is Dynamic List
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Scheduling [23] proposed by Sih and Lee, which computes a
dynamic level for a (task, processor) pair as the difference
between the static level and the earliest time that the task
can start on that processor. This algorithm picks the best
(task, processor) pair at each iteration and assigns the task
to the processor.

We now describe a dynamic list scheduling heuristic for
statistical scheduling. The key step is to define the priority
metric for the tasks. The static and dynamic levels of a
task are now distributions rather than deterministic values,
since the execution time of each task varies across runs. The
definition of the priority metric must depend on the value
of η, the required statistical guarantee.

Definition of Statistical Static Level (SSL).
The static level of a node is defined as the length of the

longest path from the sink node to it in the task graph. At
any given point in the scheduling heuristic, the static level of
any unscheduled task, when added to the start time of the
task, gives a valid lower bound to the optimal makespan.
This is because the static level of a task added to its start
time gives the longest path in the unscheduled graph through
that node, while the optimal makespan is the longest path on
the scheduled graph with additional “ordering” edges. The
greedy heuristic approach is to keep this lower bound as low
as possible by scheduling the node with the highest static
level first, giving it as low a start time as possible.

In the statistical case, the static level is a distribution. To
obtain this distribution, we perform a Monte Carlo analysis
on the original task graph (without any ordering edges).
In each Monte Carlo iteration, we compute the static level
with the corresponding deterministic execution time values
for each task. We take the ηth percentile of this distribution
to give us a single number for statistical static level that we
use in our algorithm. We now justify this choice of statistical
static level. Just as in the static case, we are interested in
finding the task which will minimize the lower bound to the
makespan. However, the definition of makespan is now the
ηth percentile of the makespan distribution. We can see
that, just as in the deterministic case, the ηth percentile of
the static level distribution of the task, added to its start
time, gives us the ηth percentile of the longest path through
that node. It can easily be seen that this is a lower bound
to the ηth percentile to the makespan. As before, we pick
the node that minimizes this lower bound, or the node with
the highest statistical static level.

We illustrate our definition of statistical static levels this
by means of a simple example. Consider a simple task graph
with four nodes: node A, node B, and the source and sink
nodes. There are edges from the source node to nodes A and
B, and edges from nodes A and B to the sink node. Node
A has a deterministic execution time of 5, while node B can
have an execution time of either 4 (with 80% probability) or
6 (with 20% probability). Both the source and sink nodes
have zero execution time. The static level of nodes A and
B are the same distributions as their respective execution
times. The static level of the source node, or the longest
path distribution will be the maximum of these two static
levels. For this example, it is evident that the the distri-
bution will be either 5 (with 80% probability) or 6 (with
20% probability). Now, if we are interested in a statistical
guarantee η > 80%, then the ηth percentile of the longest
path has a value of 6. This, in turn, is a lower bound on the

makespan. In this case, it is only node B that determines
this lower bound. Any decrease in the execution time of
node A has no effect on this bound. Our definition of statis-
tical static levels reflects this: the level for node A is 5, while
that of B is the ηth percentile of its static level distribution,
which is 6. This allows node B to be scheduled earlier than
A. However, if η is less than 80%, then the statistical static
level of B becomes 4, less than that of A which always re-
mains 5. Thus node A is scheduled earlier than B. This is
also justified: we note that any delay in scheduling A will
result in an increase to the lower bound of the makespan,
which is currently the longest path through A (a value of
5). A delay in scheduling B would affect some values of the
makespan distribution above the ηth percentile, but not the
percentile value itself.

Overall algorithm.
The pseudocode for the algorithm is as follows.

Algorithm 1 LS(G, H, W , η) → (A, S)

for n = 1...(# Monte carlo iterations)
E(n, v) ← Simulate(G, H, W )
// E(n, v) is the execution time of task v in iteration n
SL(n, v) ← Static level of node v in G using E

end for
SSL(v) ← ηth percentile of SL(n, v)

for i = 1..|V |
forall (v, p) ∈ V × P : v has not been assigned

ST (v, p) ← earliest start time of v on p
//ST is a distribution
SDL(v, p) ← SSL(v, p) - ηth percentile of ST (v, p)

end forall
Pick (v, p) : SDL(v, p) is the highest.
Set A[v] = p, S(v) = ST (v, p).

end for

The algorithm runs within a scheduling loop with as many
iterations as the number of tasks in the graph. At each it-
eration, we maintain the current allocation A and schedule
start time S for the tasks assigned up to the beginning of
the loop. We also maintain the finish time F of all tasks
on each processor so far. The schedule S and finish times
F are probability distributions while A is deterministic. In
each loop iteration, we consider only tasks that have not
been assigned and all of whose predecessors have been as-
signed. For each such task v and for each processor p, we
compute the earliest time ST (v, p) that task v can start
on the processor p. ST (v, p) is the maximum of the lat-
est finish time of all predecessors of v (plus communication
time) and the time F (p) when processor p becomes free.
The finish times of the predecessor nodes as well as F (p)
are distributions, and hence we need to perform a statistical
analysis to compute the maximum of these. We do this by
means of an incremental Monte Carlo analysis that we ex-
plain later. The statistical dynamic level of (v,p) is defined as
SDL(v, p) = SSL(v) − ηth percentile of ST (v, p). We pick
the (v, p) pair with highest SDL(v, p) and assign A(v) = p.
We also set the start time of task v (S(v)) to ST (v, p) and
update F (p) to ST (v, p)+W (v, p), where W (v, p) is the ex-
ecution time distribution of task v on processor p. The com-
putation of F (p) also requires an incremental Monte Carlo
step. We repeat iterations until all nodes are assigned.
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We now explain our use of incremental Monte Carlo when
computing ST (v, p) and F (p). We can think of the algo-
rithm as building up a scheduled graph along with the “or-
dering” edges defining the schedule — but only containing
a subset of nodes (the graph is being built in the order of
dynamic levels). At each loop iteration, we have already
performed a Monte Carlo analysis of the graph constructed
so far – we have the Monte Carlo values of the S distribu-
tion for all predecessor tasks, as well as the Monte Carlo
values for the F distribution for all processors. When we
add a new node, we only have to perform Monte Carlo sim-
ulations for the single node added (node v), and re-use the
previously computed Monte Carlo samples for the prede-
cessor nodes. This allows for incremental computation of
ST (v, p) and F (p).

We note that the above algorithm reduces to deterministic
Dynamic List Scheduling heuristic (DLS) if there is no vari-
ation in execution time. As in DLS, the definition of static
levels used changes if the system is heterogeneous. For such
systems, the average execution time of a task across differ-
ent processors is used to compute the static level [23]. In
our scheme, we compute the average execution time using a
set of Monte Carlo simulations for each task independently.

6.2 Simulated Annealing
While heuristics have been found effective for certain mul-

tiprocessor scheduling problems, they are often difficult to
tune for specialized problem instances. They may be ad-
ditional constraints imposed on the problem in the form of
topology constraints, constraints on task grouping and so on
that are not easily handled by heuristics. A technique that
has found success in exploring the complex solution space
in practical scheduling problems is a Simulated Annealing
(SA) based search [21][15]. SA is a global optimization algo-
rithm that does not get stuck at local minima. The method
is flexible and can incorporate a variety of objectives.

Simulated Annealing can be described as a probabilistic
non-greedy algorithm that adapts the Markov chain Monte
Carlo method for global optimization [14]. The idea of Sim-
ulated Annealing is well known, and so we do not go into
many details. The algorithm starts with an initial state
s0, and a termination parameter t∞. The algorithm goes
through a number of iterations, each of which updates the
current state si and a control parameter ti, called temper-
ature. The temperature determines how frequently inferior
moves are accepted. The temperature is typically highest
at the first iteration and is gradually reduced according to
an “annealing schedule”. At a given temperature, a ran-
dom transition is proposed to a new state according to a
Move function. The Cost function measures the quality of
a state as a real number. After each move, the algorithm
computes the difference ∆ in the Cost function between the
current state si and the new state. The proposed transition
is accepted if the new state improves the Cost function; oth-
erwise it is accepted with a probability that is dependent on
∆ and the temperature ti. The allowance for such “uphill”
moves to inferior states saves the algorithm from becoming
stuck at local minima. As the temperature decreases, the
probability of uphill moves is lowered. The algorithm ter-
minates when the temperature ti decreases below t∞.

We now discuss the use of simulated annealing for statis-
tical scheduling. The objective of the simulated annealing
algorithm is to compute a valid allocation A and schedule

S that yields a makespan distribution with the minimum
η’th percentile for a given η. The inputs to the schedul-
ing problem are the task dependence graph G = (V, E), the
multiprocessor architecture model P , and the task execu-
tion times W for all tasks. The task execution times are
specified by means of a probability distribution table. The
key to a successful application of simulated annealing for the
scheduling problem lies in the judicious selection and tuning
of the Cost, Move, Prob and Temp functions. We found
the Prob and Temp functions as defined in [15] to give us
good scheduling performance. We discuss our choices for the
Move and Cost functions below.

The annealing search, or the optimization, occurs over the
set of all possible valid allocations and schedules. Every
state is associated with a valid allocation and a valid sched-
ule. The valid schedule at each state imposes a total order on
the set of all tasks allocated to each processor (according to
constraint (b) in Section 3.1). The Move function randomly
selects a task and a processor, and moves the task from its
current processor to the randomly chosen one. Move then
randomly selects a position in the total order of the tasks
in the new processor for the new task. As not all positions
are acceptable due to ordering constraints, we check for the
validity of the move and undo it if necessary. The global
schedule needs to be recomputed after the relocation.

X
X

X

prev_pred
(on old 

processor)

prev_succ
(on old
processor)

new_pred
(on new

processor)

new_succ
(on new 
processor)

vertex 
moved from 
old to new 
processor 

Fanout area to be considered 

in incremental analysis

X Old ordering edges (deleted) 

New ordering edges (added)

Figure 8: Incremental Statistical Analysis.

Use of Incremental Timing Analysis.
After we obtain the new schedule, we need to compute

the cost for the new state. An obvious choice for the Cost
function is the η’th percentile of the makespan distribution
of the schedule. The Cost function is the analysis function
of Section 4.3. However, we do not need to perform the full
Monte Carlo analysis because of the way in which the Move
function picks the next state.

Since the Move function only changes one task to a dif-
ferent processor, the only change in the graph structure is
involved with the ordering edges of the task that is moved.
Before the move, the task had two ordering edges associated
with it - one from its preceding task in the processor and
one from its successor task. After the move, the task will
also have two ordering edges associated with its successor
and predecessor in the new processor. Figure 8 shows how
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the ordering edges change with a single transition. There
are a total of six edges that change due to the transition.
First, the edges from its predecessor and successor in the
old processor are removed. Then an ordering edge is added
from the predecessor to the successor of the task in the old
processor. Third, the ordering edges to the predecessor and
successor of the task in the new processor are added. Finally,
the ordering edge between the predecessor and successor of
the task in the new processor is removed.

The fanout of the six edges modified overlap significantly.
In particular, the fanout of the successor task in the old
schedule and the task that has been relocated are the only
two tasks whose fanouts have to be considered. The incre-
mental timing analysis described in Section 5 is used for this
incremental analysis. We have found through experiments
that we reduce the number of nodes to be considered by a
factor of 2-3 on the average.

7. RESULTS
In this section, we show the results of applying the two sta-

tistical optimization approaches to the scheduling problem
with execution time variations. We compare the makespans
obtained by the two methods for statistical models at dif-
ferent percentiles with the result of deterministic simulated
annealing using worst-case execution times. If the determin-
istic simulated annealing result was worse than the result of
a deterministic Dynamic List Scheduling (DLS) [23] heuris-
tic, then we used the heuristic value for comparison. All
algorithms were run on a Pentium 2.4 GHz processor with
1 GB RAM running Linux.

Two benchmark sets were used in our experiments. The
first benchmark set consisted of two task graph instances
derived from practical applications from the multimedia do-
main: H.264 video decoding and MPEG-2 video encoding.
The task graph that corresponds to decoding H.264 video
streams was obtained from [5]. We schedule a frame at a
time, and each task corresponds to a macro-block within
the frame. The task execution times were profiled for a set
of 1000 runs on a 2.4 GHz Pentium machine. The vari-
ations reflect the effect of cache misses on P-frames that
access global frame buffer memory, as well as due to differ-
ing amounts of residue across different input streams. [5].
The code and task graph corresponding to MPEG-2 encod-
ing was obtained from [7]. Task execution time variations
were profiled for different frames. The second benchmark
set was a collection of random task graph instances pro-
posed by Davidović et al. [6]. These problems were designed
to be unbiased towards any particular solver approach and
are reportedly harder than other existing benchmarks for
scheduling task dependence graphs. For the second set of
benchmarks, we assumed that the distributions of execution
times was normal. The mean execution times were taken
from the benchmarks. The standard deviations were chosen
randomly in the range [0 - 0.7*mean] such that the average
ratio of standard deviation to the mean of each task is 0.35.
We chose a value of 0.35 as this was the average ratio for
the two practical applications.

Table 1 reports the results of the scheduling approaches
for H.264 decoding and MPEG-2 decoding applications on
4, 6 and 8 processor systems. All processor systems were
divided into two sets of processors, communication between
which was about a factor of 4 more expensive than within
the set (this models locality of processors on an on-chip mul-

tiprocessor network). Column 2 gives the number of tasks
in the task dependence graph. Column 3 shows the number
of processors that the graph is scheduled on. The subse-
quent columns report the makespan computed by the deter-
ministic worst-case algorithm, the statistical list-scheduling
heuristic and the statistical simulated annealing algorithms
at percentiles of η = 99%, 95% and 90%. The reason the
deterministic timing value varies across different percentiles
is that we do not use the actual makespan computed by the
worst-case analysis, which can be significantly higher than
the statistical makespan. Instead, we only use the alloca-
tion and the “ordering” of tasks within each processor in
the table, and perform a Monte Carlo analysis to obtain
the makespan distribution for the deterministic worst-case
schedule. We then read out the makespans corresponding to
the required guarantee. This provides a fairer comparison
than using the worst-case makespan values. The final col-
umn is the time taken for the statistical simulated annealing
run. All heuristic runs completed within a minute.

# Edge Statistical improvement
Tasks Density in % (η=)

99.9% 95% 90%
Heur. SA Heur. SA Heur. SA

52 10 8.8 14.1 17.8 26.9 22.1 33.4
52 30 9.9 16.2 16.1 24.7 18.5 24.4
52 50 7.6 14.3 20.7 26.1 25.7 32.7
52 70 8.7 12.4 18.3 30.9 15.1 37.2
52 90 10.4 16.4 14.4 20.1 19.6 26.3
Avg. % diff. 9.1% 14.7% 17.5% 25.7% 20.2% 30.8%

from worst-case
102 10 13.2 20.5 17.3 29.7 20.1 34.1
102 30 10.4 14.1 16.1 26.9 23.8 33.4
102 50 8.8 13.1 14.2 19.9 16.2 27.9
102 70 12.5 14.1 19.2 26.9 18.5 33.4
102 90 17.6 24.7 21.8 33.1 24.6 41.8
Avg. % diff. 12.5% 17.3% 17.7% 27.3% 20.6% 34.1%

from worst-case

Table 2: Average percentage makespan difference be-

tween deterministic worst-case and statistical scheduling

at different percentiles for random task graph instances

(source: [6]) on 4, 6 and 8 processors.

Table 2 shows the results of the scheduling approaches on
the benchmark with randomly generated task graphs. The
graphs are classified by the number of tasks and edge den-
sity (the percentage ratio of the number of edges in the task
graph to the maximum possible number of edges). Columns
3 through 8 report the percentage difference between the de-
terministic worst case makespan and the statistical heuristic
and simulated annealing makespan computed at percentiles
of η=99.9%, 95% and 90% respectively. Each row is an aver-
age over the percentages for 4, 6 and 8 processors. All runs
completed within 30 minutes. As before, the timing values
are obtained by Monte Carlo runs on the schedule.

We observe from Table 1 that the deterministic schedule
typically gives a schedule that is about 10-20% away from
the simulated annealing schedule at η = 99.9%, and around
10% away from the heuristic schedule at the same η. This is
also corroborated by the results in Table 2. This is because
the deterministic scheduling method incorrectly compares
(Sec. 4.5) different schedules, and hence yields a different
and less optimal schedule than the statistical schedule. Fur-
ther, as we decrease the required confidence interval to η =
95% and 90%, the deterministic schedule remains the same
– we merely read off a different percentile from the Monte
Carlo simulation. On the other hand, both statistical al-
gorithms are customized to the particular value of η and
actually change the allocation and ordering. The difference
between the deterministic and statistical simulated anneal-
ing increases to about 25-30%, and the difference to the
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Bench- # # Statistical Guarantee η = SA
mark Tasks Procs. 99% 95% 90% Opt.

Worst Stat. Stat. Worst Stat. Stat. Worst Stat. Stat. Time (s)
case Heur. SA case Heur. SA case Heur. SA

H.264 182 4 2418.8 2160.1 2031.4 2397.7 2131.9 2005.0 2383.3 2042.7 1921.6 641
6 1770.4 1595.5 1528.3 1751.4 1545.4 1422.1 1721.4 1455.1 1326.2 923
8 1390.9 1287.1 1210.5 1376.2 1241.3 1119.4 1367.9 1197.3 997.8 1076

Avg. % diff. from det. worst-case 10.3% 16.6% 12.2% 21.9% 16.4% 30.3%

MPEG-2 76 4 1247.2 1159.1 1121.6 1229.6 1094.9 1029.8 1216.8 1117.4 1040.4 399
6 1190.8 1131.9 1084.9 1171.7 1022.4 965.0 1167.4 1000.3 920.1 457
8 1179.5 1107.5 1070.4 1153.2 1080.8 1015.9 1146.3 980.6 903.6 621

Avg. % diff. from det. worst-case 6.4% 10.4% 11.2% 18.1% 14.2% 23.5%

Table 1: Makespan results for H.264 decoding and MPEG-2 encoding comparing deterministic worst-case scheduling

with statistical list-scheduling heuristic and simulated annealing (SA) algorithms at different percentiles

heuristic changes to about 20%. We also note from Table 2
that statistical optimization gives us more improvement on
larger task graphs. This is because large task graphs tend
to have many paths with differing variance in path delays.
It is more likely for a large task graph to have some near-
optimal paths with high variance. The deterministic worst-
case estimate overestimates the impact of these paths, and
could optimize them at the expense of lower variance paths,
leading to suboptimal results. On the whole, the worst-case
schedule tends to have a very low variance, which is also
borne out in the tables, as the difference between the 99%
and 90% percentiles for our applications is less than 3%.

8. SUMMARY
In this paper, we presented two statistical optimization

approaches to schedule task dependence graphs with varia-
tions in execution time onto multiprocessors. We optimize
for makespan for a required percentile. Static approaches
based on worst-case estimates are one way to solve the prob-
lem, but are inaccurate. We propose a statistical analysis
based on accurate Monte-Carlo simulations. We use this
analysis in a heuristic and a simulated annealing based opti-
mization approach and demonstrate a 25-30% improvement
in makespan over approaches based on worst-case estimates
on soft-real time applications.

In the future, we intend to investigate other optimization
methods based on constraint programming, which can give
us optimal solutions to the scheduling problem. We also
plan to integrate our solution methods into a practical design
space exploration tool for multiprocessor platforms.
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