
Energy Efficient Streaming Applications with
Guaranteed Throughput on MPSoCs

Jun Zhu, Ingo Sander and Axel Jantsch
ECS/ICT, Royal Institute of Technology, Stockholm, Sweden

junz@kth.se, ingo@kth.se, axel@kth.se

ABSTRACT
In this paper we present a design space exploration flow
to achieve energy efficiency for streaming applications on
MPSoCs while meeting the specified throughput constraints.
The public domain simulators Sim-Panalyzer and Cacti are
used to estimate the energy dissipations of the parameter-
ized architectural components. As the main contributions,
we schedule the streaming applications on a multi-clock syn-
chronous modeling framework, guarantee the application tim-
ing properties by throughput analysis, and customize both
processor voltage-frequency levels and memory sizes in the
design space to optimize the application pipeline parallelism
for energy efficiency. Two widely used heuristic algorithms
(i.e., greedy and taboo search) are used during the design
optimization process. Our experiments show an energy re-
duction of 21% without any loss in application throughput
compared with an ad-hoc approach.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling Techniques

General Terms
Performance, Design, Experimentation

Keywords
Energy efficiency, Streaming applications, MPSoCs, Syn-
chronous MoC

1. INTRODUCTION
Multi-processor systems-on-chips (MPSoCs) have been in-

creasingly adopted as the physical architectures for stream-
ing applications [8, 22]. In streaming applications, a process
corresponds to the given computation running on an MPSoC
processor. Processes are connected with each other through
communication channels, and operate on data streams in
a pipelined fashion. The processors can be heterogeneous,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10 ...$5.00.

each customized for specific tasks, and are running simulta-
neously to obtain high computation power.

However, performance is not the only concern in a stream-
ing environment and MPSoC processors are not required to
run as fast as possible. Processors, running faster than de-
manded by the application requirements, will only produce
data streams ahead of time and lead to consequent redun-
dant storage buffers [6]. Instead, processors often run at a
potentially slower frequency according to the throughput re-
quirements and avoid otherwise higher energy consumption.
Nevertheless, to achieve extreme energy efficiency in MP-
SoCs is non-trivial. The architectural computation, storage,
and communication components, which are fully customiz-
able, all contribute to the system energy dissipation. To take
all their impacts into consideration in the energy efficiency
design, we need appropriate system models to capture both
the parallel nature of streaming applications and the inher-
ent heterogeneous timing properties of MPSoCs as well.

Our main contribution in this paper is a design space ex-
ploration flow with the following characteristics:

1. The streaming applications are scheduled on a multi-
clock synchronous modeling framework.

2. Timing properties are guaranteed by application through-
put analysis.

3. High system energy efficiency on MPSoC architecture
is achieved with customized processor and memory
components from optimized pipeline parallelism.

The rest of the paper is structured as follows. Section 2
discusses the related work. We motivate our work by illus-
trating the energy efficiency design on an example applica-
tion in Section 3, and propose our design space exploration
flow in the following Section 4. Section 5 introduces our for-
mal modeling framework. Section 6 introduces our design
objective on the MPSoCs architecture. Section 7 shows the
experimental results. Finally, Section 8 concludes the paper.

2. RELATED WORK
Various models of computation (MoCs) [13, 17] have been

developed for streaming applications. They are distinguished
by their individual formalisms on how processes interact and
how or whether time is represented. One is the Kahn pro-
cess network (KPN) [16]. In [7], a design space exploration
framework based on KPN investigates the performance and
power trade-offs in MPSoC systems. However, limited by
the unbounded FIFO channels in the KPN semantics, it can-
not dimension the memory modules and analyze the effects

119

on the system energy cost that arise from parameterized
memories.

In the synchronous dataflow (SDF) MoC, the static data
rate allows for the construction of periodic schedules with
bounded memory size at compile time [15]. Based on the
static memory allocation for DSP applications in the SDF
MoC, the energy consumption is exploited on the algorith-
mic level [3]. However, the SDF MoC is untimed, which
means the trade-offs between different timing related prop-
erties, such as throughput and energy, cannot be explored
within this early system model.

A timed extension has been applied to SDF in [9, 21]. Us-
ing the timed SDF MoC, a method to minimize the mem-
ory size by scheduling the processes appropriately for maxi-
mal application throughput is introduced in [9]. In [21], the
trade-offs between any specified throughput constraints and
the corresponding minimal memory requirements are further
studied. Nevertheless, memory is only one of several factors
to impact the total system energy cost, besides computation
and communication logics; meanwhile, the single unit-time
assumption [9, 21] does not suit to model the heterogeneous
computation and communication timing in MPSoCs.

By dividing the physical time axis into slots, the syn-
chronous MoC has an explicit order of time [13]. The syn-
chronous method has met industrial success to program safety-
critical reactive systems in Esterel [4], Lustre [11] and Sig-
nal [14]. Especially, Lustre and Signal/Polychrony [10] de-
fine multi-clock models for heterogeneous embedded sys-
tems. In this paper, we advocate our multi-clock synchronous
MoC framework to analyze timing related properties at the
system level in MPSoCs design space exploration.

In contrast to existing work, we leverage the degrees of
customizability of both processor voltage-frequency levels
and memory sizes, model the heterogeneous timing on our
multi-clock synchronous MoC framework, and investigate
the minimal energy consumption of streaming applications.
High system energy efficiency is achieved without losing through-
put guarantees, as confirmed in our experiments.

3. MOTIVATION
Here we introduce a streaming application model, which

will be the tutorial example in this paper, and motivate our
work by illustrating the energy efficiency design upon some
assumed energy models with this application.

3.1 Streaming application model
A streaming application model example with three-stage

pipeline is depicted in Fig. 1, where nodes denote the com-
putation processes and edges associated with FIFOs denote
the communication channels with finite storage. Processes
read tokens from the input-side FIFOs, operate (compute)
on the data within a specified amount of time, and emit the
resulting data tokens to the output-side FIFOs at the end of
the computation. While a process is computing, the data to-
kens remain on the input-side FIFOs until the computation
is completed.

2 213
FIFO1

p1 p2

ch1,2 ch2,3

FIFO2

p3

Figure 1: Streaming application model example

A communication channel chu,v from process pu to pro-
cess pv has the consumption data rate Iu,v and emission
data rate Ou,v. We concentrate on static (fixed) data rate
applications. In Fig. 1, these static data rates are annotated
as numbers beside each channel, such as ch1,2 has I1,2 = 3
and O1,2 = 2.

We only consider applications with consistent data rate,
which can run infinitely with bounded FIFO space [15].
When the data rate is consistent, pu and pv can run in a
repetitive pattern with non-trivial (non-zero) firing times ru

and rv, where ru and rv are the minimum integer solutions of
a set of balance equations ru ·Ou,v = rv ·Iu,v for all the com-
munication channels. For the example application model,
the process firing times vector is < r1, r2, r3 >=< 3, 2, 1 >.

The computation constraints are captured in a process
computation latency list T , which contains the latency ti

in time slots to execute each process pi once. A time slot
equals to an abstract clock cycle and is the elementary time
unit, in which time is measured and for which timing re-
lated properties (throughput, energy, etc.) are evaluated.
The storage constraints are captured in a FIFO size list Γ,
which contains the storage capacity γi in data tokens for
each FIFO i. Thus, T = [t1, t2, t3] and Γ = [γ1, γ2] in the
example application model.

We use self-timed scheduling [20], which means a process
executes as soon as it is enabled; otherwise, it stalls. A pro-
cess is enabled, only when the input-side FIFOs have suffi-
cient data tokens and the output-side FIFOs have enough
vacant space. Obviously, the enable conditions of the cor-
responding input- or output-side FIFOs are ignored for the
signal source or sink processes.

3.2 Design exploration
We explore different design options for the example appli-

cation of Fig. 1, and analyze the problem only in a single
domain synchronous MoC for clarification.

We assume that the computation is constrained by the
following latency list T = [1, 2, 2]. Using the memory mini-
mization techniques in [21], the self-timed schedule achieved
by design option a), with Γ = [6, 2], is shown in Fig. 2.a). In
the graph, the process and FIFO status are listed in sepa-
rated rows, and time evolution is depicted in corresponding
columns. Using the unit abstract clock, the time tag ad-
vances 1 per column. At each time tag, a process pu in
executing (shadowed) state has a number t′u to denote the
remaining execution time slots, a stalling (non-shadowed)
process status is denoted as 0, and a FIFO status γ′

i is de-
noted as the occupied storage space of FIFOi in token num-
bers.

At time tag 0, the process status list is T ′
0 = [t′1, t

′
2, t

′
3] =

[1, 0, 0], in which p1 is executing with 1 time slot left and p2

and p3 are stalled; in the meantime the FIFO status list is
Γ′

0 = [γ′
1, γ

′
2] = [2, 0], with only 2 tokens space reserved at

FIFO1. At time tag 1, p1 finishes the previous computation,
emits 2 tokens into FIFO1, and reserves another 2 tokens
space from FIFO1 for a new execution; thus, T ′

1 = [1, 0, 0]
and Γ′

1 = [4, 0]. At time tag 2 (T ′
2 = [1, 2, 0] and Γ′

2 = [6, 1]),
besides the similar status changes in p1 and FIFO1, p2 is
enabled and starts to compute. As the schedule advances to
time tag 9, the application encounters the same process and
FIFO status list as at time tag 3 (T ′

9 = T ′
3 = [0, 1, 0] and

Γ′
9 = Γ′

3 = [6, 1]) and enters a periodic phase. The periodic

120

1 2 3 4 5 6 87 9 1 2 3 4 5 6 87 9

1

2

2

8

8

9 14.25

14.75

17

4

4

2

0.125

0.125

0.1251

1

1

67

78

50

1 1 1 0 1 0 1 1 0 0 1 0 1 1
time tag 0 10111213 0 10111213time tag

0 0 0 0 0 02 1 2 2 21 1 1
0 0 0 0 0 0 0 0 0 02 2 11 1 0 0 0 000000000 2

12 2 21 10 0 0 0 0 012

2 6 6 5 5 4 6 6 6 5 5 4 64
1 20 0 1 2 2 2 2 1 2 2 21

2 4 4 6 6 5 5 4 4 6 6 5 52
2 20 0 0 0 1 1 2 2 2 1 1 2

0 1011121 2 3 4 5 6 87 9 13time tag

2 20 0 0 0 1 1 2 2 2 3 3 2
2 2 4 4 6 6 5 5 4 4 6 6 5 5

10 0 0 0 0 0 0 0 0 0234

2 1 2 2 22 221 1 1 1 1 1 2 1 2 2 22 221 1 1 1 1 1
0 0 0 0 0 0 2 22 2 1 1 11

process
FIFO

e). Memory energy

a)

b)

c)
f). Energy and computation efficiency analysis

energy

9

6.75

5.25
d). Computation latency and energy

FIFO1

p2

p1

p3

FIFO2

p1

p2

p3

FIFO1

p2

FIFO2

1FIFO

FIFO2

p1

p3
FIFO1

p2

p1

p3

FIFO2

design
option

b). T = [2, 2, 2], Γ = [6, 2]a). T = [1, 2, 2], Γ = [6, 2]

periodic phaseperiodic phase

c). T = [2, 2, 4], Γ = [6, 3]

periodic phase

Êmemj
(γi)

1 ∗ γ1

1 ∗ γ2

EU EM
(vL, fL)

ti

ESum
η[%]

(vH , fH)(vL, fL)(vH , fH)

P̂µpj ,pi
(v2

j , fj)

Figure 2: Self-timed schedules of the example application with different design options

phase extends from time tag 3 to 8, with the length 6 time
slots and process firing times vector < 3, 2, 1 >.

Instead of minimizing the memory requirement with re-
spect to a designated computation constraint T , we cus-
tomize both the process computation latency and FIFO size,
and extend the design space to explore another two design
options b) and c). Compared with a), b) is just to run p1 at
half speed as T = [2, 2, 2] and keeps the same FIFO sizes Γ;
c) uses T = [2, 2, 4] and Γ = [6, 3] to run both p1 and p3 at
half speed and assign one more storage element to FIFO2.
Accordingly, their individual self-timed schedules are shown
in Fig. 2.b) and c). Both schedules encounter a periodic
phase, with the same length and the same processes firing
times vector, as a) does. In this sense, all the design options
can deliver the same guaranteed application throughput 1.

3.3 Energy efficiency evaluation
In the periodic phase, the energy efficiency of different

design options is evaluated, based on the following assumed
latency and energy models (only the dynamic energy is con-
sidered):

1. Each process pi is bound to one individual processor
µpj . Each processor operating voltage vj is set at two
voltage levels vH and vL (vL is half of vH) to explore
the design space. The processor operating frequency
fj changes proportionally to vj (fj ∝ vj); thus, fL is
at half speed of fH . The computation latency ti of pi

changes accordingly to ti ∝ f−1
j .

2. For each executing time slot of pi the dynamic power
consumption on µpj is P̂µpj ,pi (v

2
j , fj) = α·v2

j ·fj , where
α is the average switching capacitance. Since fj ∝ vj

is known, we attain that P̂µpj ,pi ∝ f3
j is a cubic func-

tion of fj . For n computation time slots the processor

energy consumption Eµpj is Eµpj = n · P̂µpj ,pi (v
2
j , fj).

3. Each FIFOi is bound to one individual memory memj ,
and the memory size equals to the FIFO size γi. Within
a fixed accessing pattern, the memory energy consump-
tion is Ememj = Êmemj (γi) ∝ γi, where the memory dy-

1For the formal definition, see Section 5.4

namic energy function Êmemj is proportional to mem-
ory size.

4. As the baseline, in design option a) all the proces-
sor voltage-frequency levels are set to (vH , fH), and
for each time slot the processor dynamic power con-
sumption is normalized to 1, as shown in column 4 of
Fig. 2.d); the memory energy consumption in the pe-
riodic phase is assigned to 1 per storage element, as
shown in Fig. 2.e).

Thus, we derive the computation latency, computation
energy and memory energy characteristics of other design
options in Fig. 2.d-e). For design option a) (T = [1, 2, 2],
Γ = [6, 2] and < r1, r2, r3 >=< 3, 2, 1 >), the total processor
energy EU and total memory energy EM are

EU = Eµp1
+ Eµp2

+ Eµp3
=

P

∀µpj
ti · ri · P̂µpj ,pi (v

2
H , fH)

= 1 · 3 · 1 + 2 · 2 · 1 + 2 · 1 · 1 = 9

EM = Emem1 + Emem2 =
P

∀memj
Êmemj (γj)

= 1 · 6 + 1 · 2 = 8

The total system energy consumption is ESum = EU +EM =
17. Similarly, the energy consumptions for design options b)
and c) are calculated, as shown in Fig. 2.f).

Design option c) has the most efficient system energy
ESum . In addition, it achieves the highest average proces-
sor utilization η (ratio of the shadowed part in the periodic
phase of process schedules), which means the best pipelined
parallelism. However, higher pipelined parallelism does not
always mean lower system energy dissipation, as demon-
strated in Section 7.

4. DESIGN SPACE EXPLORATION FLOW
We propose an energy efficiency design space exploration

flow for streaming applications with guaranteed throughput
on MPSoCs. As shown in Fig. 3, the inputs of the design ex-
ploration flow (shadowed boxes) are the application bench-
mark C program, the static mapping from the application
onto the MPSoC architecture and the architectural design
options in the configuration file.

121

gcc Heuristic
searching

new
design options

Implementation model
instances

constraints
resource

Multi−clocked
synchronous

MoC framework

T
END

Satisfied? F

C
program

mapping

Static application
& architecture

Configuration
file (*.xml)

profiles
& energy

throughput energy

timing
Sim−Panalyzer

& Cacti
simulators

Figure 3: Energy efficiency design exploration flow
with guaranteed throughput

The C program for each computation process is cross-
compiled into a binary using the ARM gcc toolchain [1].
From the application to architecture mapping and the re-
source constraints defined in the configuration file, imple-
mentation model instances with different architectural pa-
rameters are initialized. We explore the design space by
customizing both the processor voltage-frequency levels and
memory sizes, as discussed in Section 3.2.

Instead of using the assumed latency and energy models
in the previous section, the process binary computation tim-
ing and energy dissipations on the architectural component
instances are estimated on Sim-Panalyzer [2] and Cacti [23]
simulators. Based on the individual process timing and en-
ergy profiles, the application throughput and system energy
dissipations on MPSoC architecture are analyzed systemat-
ically in our multi-clock synchronous MoC framework.

The design objectives for each design option are to meet
the application throughput requirement and try to minimize
the total system energy dissipation. As the design space
increases exponentially with the problem size, heuristic al-
gorithms (greedy and taboo [5] search) are used during the
design options searching until the design goals are met.

5. SYNCHRONOUS MOC FRAMEWORK
We adopt the synchronous MoC framework for both ap-

plication throughput analysis and system energy evaluation.
In the synchronous MoC, systems are described as a set
of concurrent processes, which communicate through syn-
chronous signals. The static data rate in the SDF MoC are
preserved in our synchronous semantics. Furthermore, we
exploit multi-clock domains, which suit the heterogeneous
timing in MPSoCs well, and relate all the clocks in different
system domains to each other (similar to Lustre [11]).

5.1 Signal and process
A signal s with clock clks is an indexed 2 set of events, s =

∪{e(n)}
clks = {e(0), e(1), · · · , e(n), · · · }

clks , ∀n ∈ N0. The

signal clock clks ∈ Q+ is the abstract cycle (time slot) period
between two adjacent events. Each event e(n) = (g(n), ~v(n))
has a time tag g(n) and a value ~v(n). Time tags are used to
model the global order of events, and are implicitly given by

2In this paper, we use the numbers in parentheses especially
for indexing purpose.

the event indexes in the signal, with g(n) = n · clks ; thus, a

signal can be simply denoted as s = ∪{~v(n)}
clks . We visual-

ize the relation of events for signals with different clocks in
Fig. 4. Two signals s1 and s2 have the clock timing relation
clks1
clks2

= 3
2
. The global order of the events in both signals are

maintained by time tags.

Value ...
2 3Index 0 1 ...

1 2 3 4 5Index 0 ...
Value ...

2Time tag 0 ...

1 2 3Time tag 0 ...

Event ~v1(1) ~v1(2) ~v1(3)~v1(0)

~v2(0) ~v2(2)~v2(1) ~v2(3) ~v2(5)~v2(4)

2
3

4
3

8
3

10
3

s1 = ∪{~v1(n)}
1

s2 = ∪{~v2(n)}
2
3

Figure 4: Timing relations of events in signals with
different clocks

To capture the data rate consumed in process executing
cycles and absents in stalling cycles, values are a vector ~v
of regular tokens, extended with a pseudo value ⊥. ~v(n) is
~v when the required tokens are present, or ⊥ when absent.
In static data rate applications, the number of the regular
tokens contained in ~v is fixed. A synchronous signal s1 =

{⊥, < 1, 1, 2 >, < 2, 3, 4 >, · · · }
1
2 has integer tokens with the

data rate 3 and clock period 1
2
.

Processes operate on signals. In each evaluation cycle,
processes consume one event from the input signals and
output one event to the output signals. In perfect syn-
chrony [13], the computation and communication are exe-
cuted in zero time and the computation states are main-
tained in explicit delay process statements. A synchronous
model is composed of combinational processes pcomb(f) and
unit-cycle delay processes p∆(~v′

(0)), in which function f spec-
ifies the mapping from input events to output events and the
given initial state ~v′

(0) is the output event at time tag 0 to
defer the input events one cycle.

mealy state machine

pcomb
(fstate)

pcomb
(fout)

p∆

(⊥)
snextSt sout

sin

scurSt

Figure 5: Process skeleton of a mealy state machine

While pcomb(f) is suited for describing algorithmic func-
tion flow, its combination with p∆(~v′

(0)) can be used to con-
struct control logic and more complex components. For
instance, the τ -cycle (τ ∈ N) delay process is p∆,τ (⊥) =
p∆(⊥) ◦ · · · ◦ p∆(⊥)
| {z }

τ

3; a combinational process with τ -cycle

computation latency is pcomb,τ (f) = pcomb(f) ◦ p∆,τ (⊥); and
a mealy state machine, with the state function fstate and
output function fout, has the process skeleton shown in Fig. 5.
The mealy state machine is the base to construct the control
logic of a finite size FIFO [19] (see Section 3.1).

3The process composition operator ◦ has the formal defini-
tion p1 ◦ p2(s1) = p1(p2(s1))

122

5.2 Multi-clock synchronous domains and do-
main interfaces

In our synchronous model, the abstract clock period cor-
responds to a given physical time. Processes using the same
abstract clock are said to be in the same synchronous do-
main. To model the heterogeneous timing properties in em-
bedded systems, such as the parallel computation on several
processors running at different frequency levels, multi-clock
synchronous domains are introduced.

When multi-clock domains exist (i.e., different domain
clocks have a rational ratio to each other), asynchronous
domain interfaces (DI) are needed to maintain the global
timing. In the upper-left part of Fig. 6, two domains DA and
DB , with different clock periods clkA and clkB , have a ra-
tional clock ratio λA:B = clkA

clkB
= mA

mB
,∀mA, mB ∈ N, mA 6=

mB , and mA and mB are relatively prime. The domain in-
terface DIA:B , which establishes the clock ratio λA:B from
A to B is defined as DIA:B = downDI (mB) ◦ upDI (mA).

As the start point at index 0, all the signal events have
the consistent time tag 0. Thus, at tag 0 upDI (mA) and
downDI (mB) output the value ~v(0) from the input signal.
Otherwise, upDI (mA) is up-sampling the input signal clock
mA times by inserting mA − 1 absent events before each
event; and downDI (mB) is down-sampling the input signal
clock mB times by merging every mB events. They have the
following definitions:

upDI (mA)
“

{~v(0), ~v(1), ~v(2), · · · }
clkx

”

=

{~v(0),⊥, · · · ,⊥,
| {z }

mA−1

~v(1),⊥, · · · ,⊥,
| {z }

mA−1

~v(2), · · · }
clkx
mA (1)

downDI (mB)({~v(0), · · · , ~v(mB), ~v(mB+1), · · · }
clkx) =

{~v(0),<~v(1),··· ,~v(mB)>,<~v(mB+1),··· ,~v(2mB)>,··· }mB ·clkx (2)

where we reduce < ⊥, · · · ,⊥
| {z }

mB

> to ⊥

Although the domain interface has asynchronous features,
its input and output signals do not violate the causality
condition 4 of the demand driven simulation.

In Fig. 6.a.1) and b.1-2), the functionalities of several dif-
ferent instances of up- and down-sampling components are
illustrated by a unit data rate input signal sA and two in-
stances of output signal s′B and s′′B , in which s′′B has the
slowest clock with clkB = 4

3
(simply denoted as s′′B@ 4

3
). The

signal events are listed in the ascending order of time tags.
Without losing or gaining data tokens, the specified input
events (shadowed) of sA are mapped to the output events
(shadowed) of s′B or s′′B in a different clock domain. When
λA:B = 3

2
> 1 and clkB is faster than clkA, the output data

token pattern is getting more sparse, but the original data
rate (the number of the non-absent values in ~v) is kept.
Otherwise, λA:B = 3

4
< 1 and the denser data tokens can

cause increased data rate; especially, when mB 6= 1, the data
rate of the output events can vary, as shown in Fig. 6.b.2).
However, as the output data stream is always buffered by
a FIFO, it does not violate the static data rate assumption
for process computation. As shown in the upper-right part
of Fig. 6, the output signal s4 of the FIFO always provide
a constant data rate 2 required by p4. To ensure consistent

4For the Lemma and Proof, see Appendix A

timing, DIB:A from domain DB to DA has the reversed sam-
pling ratio λB:A.

Domain interfaces act as the glue processes between dif-
ferent synchronous domains. When a domain clock time
changes, only the domain interface sampling ratios need to
be reconfigured, which greatly facilitates design space explo-
ration in heterogeneous MPSoCs.

5.3 Scheduling state and cross domain analy-
sis

As discussed in Section 3, in a single synchronous do-
main DN , at time tag g(n) (n ∈ N0) the process status list
T ′

N(n) associates with each process the remaining number of
time slots when it executes, or 0 when it stalls; meanwhile,
the FIFO status list Γ′

N(n) associates with each channel the
amount of FIFO storage space used. The scheduling state
in DN is a tuple (T ′

N(n), Γ
′
N(n)).

A multi-clock application consists of a set of synchronous
domains D, in which domain DN with the slowest domain
clock clkN is chosen as the logic mold domain. Each com-
ponent (process or FIFO) status signal in DK (∀DK ∈ D)
can be cast across domain boundary into the single DN via
DIK:N , where λK:N ≤ 1. Such a single component status
signal casting (λK:N = 3

4
) can be illustrated by Fig. 6.a.1)

and b.2). We look sA as the status signal in DK and s′′B the
status signal in the mold domain DN . We call each value at
time tag g(n) in s′′B a scheduling pattern.

To be consistent with the scheduling state definition in
the single domain, we encode the scheduling patterns into
incrementing numbers starting from 0, and use the same
number to denote the revisited patterns. The functionality
of such a encoding module patternEnc is shown in Fig. 7.
In spatternSt , the scheduling patterns at time tags 1 and 4
are duplicated, and are encoded as the same 1 in sencSt . In
this way, we can analyze the timing properties for multi-
clock applications by casting the system scheduling states
in multi-clock domains into the single mold domain DN .

... ...
<3, , ,4>

< , ,1, >
< ,2, , >

< , ,1, > patternEnc

1:1

<3>

<0>
<1>
<2>

<0>

<1>

0
1
2
3

...

4

0
1
2
3

...
4

⊥ ⊥

⊥⊥⊥
⊥⊥ ⊥

⊥⊥⊥

spatternSt sencSt

Figure 7: Scheduling patterns encoding

5.4 Throughput analysis
Caused by the bounded process computation latencies and

FIFO sizes, the state space of the application scheduling
state is always finite. However, as mentioned in Section 3.1,
our streaming applications can run infinitely, which means
some scheduling states will be revisited in its possibly non-
terminating schedule. When this happens, the application
schedule enters a periodic phase, such as the schedules in
Fig. 2.a-c), caused by the self-timed determinism [20].

In the logic mold domain DN , when the application schedul-
ing state (T ′

N(n2), Γ
′
N(n2)) at time tag g(n2) meets a visited

one as at g(n1)(n1 < n2, T ′
N(n2) = T ′

N(n1) and Γ′
N(n2) =

Γ′
N(n1)), the application schedule enters a periodic phase

with length g∆ = g(n2) − g(n1). In this periodic phase, the

123

Adomain D

upDI

...

<1, >
< ,2>

<3, >
< ,4>...

downDI
(4)

<3, , ,4>

< , ,1, >
< ,2, , >

...

<0>

...
2

<3, , ,4>

< , ,1, >
< ,2, , >

...

<0>

upDI
(3)

<0>

<1>

<2>...

<0>
<1>
<3>
<2>

<0>

<1>

<2>...

downDI
(2)

<0>

<1>

<2>...

domain D B

4:1
ValueIndex

downDI

a.1). b.2).

1:1

b.1).

<4>

0
1
2
3

...

4

1:3 <0>
2:1

<0,1>

<2,3>

p1

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

(mA)

@1/3
sTmp

@1/3
sTmp

⊥
⊥

⊥
⊥

s′′B
@4/3

⊥⊥

⊥⊥⊥
⊥⊥ ⊥

⊥⊥

⊥⊥⊥
⊥⊥ ⊥

p3

p2

DIB:A

mA

mA

mB

DIA:B

⊥

⊥

⊥

⊥

p5

p4
s4

(mB)
sBsTmp

@clkB

DIA:B

sA

@clkA

@2/3
s′B

@1

sB

sB
s4

@1/3
sTmp

@clkTmp

⊥

⊥

⊥

⊥

sA

sA
mB

Figure 6: Multi-clock synchronous domains and domain interfaces

process throughput of pn is defined as

Thru(pn) =
rpn · Ipn · Sztoken

g∆
(3)

in which rpn is the execution times of pn, Ipn the output
data rate and Sztoken the data size per token. When Sztoken
in bit and the corresponding physical time to g∆ are known,
equation (3) defines the process throughput in bit/s. We
simply use the throughput of the sink process as the applica-
tion throughput, which is the speed the application delivers
outputs.

6. ENERGY EFFICIENCY DESIGN ON MP-
SOCS

Our design objective is to minimize the system energy dis-
sipation while meeting the required application throughput.

6.1 Implementation model
The architecture model is an MPSoC template, which con-

sists of on-tile components and a packet switched communi-
cation network-on-chip (NoC), as shown in the lower part of
Fig. 8. Each tile contains one processor (µp) and one local
SRAM memory (mem), and is decoupled from the commu-
nication network through the network interface (NI). Each
processor has a single-cycle access to the local SRAM mem-
ory, and no cache is needed.

Given an architecture model with a set of processors U
and a set of memories M, the implementation model (a
resource-aware refinement of the application model) has the
mappings from a set of computation processes P onto U and
a set of FIFOs F onto M. For simplicity, we assume FIFOs
are mapped to disjoint memory regions as did in [21], and
do not consider the techniques in [9] allowing buffer sharing
among the FIFOs mapped to the same memory module.

As the mapping optimization on the NoC communication
has been studied in [12] and is out of the scope of our pa-
per, we simply use one empirical mapping strategy as the
start of our work. Furthermore, we do not investigate the
design flexibility in the communication backbone and simply
consider the design option in the NoC communication logic
to be fixed; instead, we concentrate on exploring the design
alternatives of on-tile components.

model
Architecture

Ic

p p

model

domain D

mapping mapping

Implementation

domain D

mem
tile

mem
tile

network
NI NI

PQ

A C domain DB

...

comm.

µ µ

p1

τNoC

p2

DIC :BDIA:C

p∆, p3

Figure 8: Mapping of the implementation model of
the example application (Fig. 1) onto a NoC based
MPSoC architecture model

The mapping of the implementation model of the example
application (in Fig. 1) onto a two-tile NoC based MPSoC
architecture is shown in Fig. 8. We capture the MPSoC
architectural characteristics in the implementation model,
with the following strategies:

1. Each process pi is mapped to one on-tile processor µpj ,
each FIFO FIFOi to one memory memj , and inter-tile
channels to NoC communication.

2. Each tile and the NoC communication are modeled
in individual domains, and they interact via domain
interfaces. In Fig. 8, the sampling ratios of DIA:C

and DIC :B correspond to the heterogeneous timing be-
tween different architecture modules.

3. When multiple processes are mapped onto one proces-
sor (see domain DA), their executions are scheduled
sequentially according to the non-preemptive assign-
ments in a priority queue (PQ).

4. When multiple FIFOs are mapped onto one memory
(see domain DA), they use independent logic addresses
without space sharing, and the memory size is the
summation of the FIFO sizes.

124

5. From the work in [18], we assume that the NoC logic
provides the communication between different tiles with
a guaranteed bandwidth. In Fig. 8, the inter-tile data
token transmission delay quantified by process p∆,τNoC

is predictable, with

τNoC = ⌈

Ic·Sz token

wNoC
+ thop

clkC

⌉ (4)

in which Ic is the input data rate of p∆,τNoC , wNoC

the reserved NoC bandwidth and thop the network hop
delay.

6.2 Design objectives: application throughput
and energy efficiency

The architectural design options on the processor voltage-
frequency levels are customized by the domain interface con-
figurations, and memory sizes by the parameterized FIFOs.
For each instance of the implementation model, the pro-
cesses computation timing and energy properties are pro-
filed by the cycle-accurate processor energy simulator Sim-
Panalyzer [2] and the memory simulator Cacti [23]. As
shown in Fig. 9, Sim-Panalyzer is configured with certain
voltage-frequency levels, and provides the computation tim-
ing and dynamic energy dissipation for the gcc cross-compiled
binary of each process. We assume that the static power of
the processor during customization is constant and is ig-
nored in calculation. Meanwhile, the memory accessing pat-
terns are profiled in an execution trace file, based on which
the static and dynamic energy dissipations of the memory
with specified size are estimated with Cacti.

...
Sim−Panalyzer

frequency level
processor voltage/

memory
accessing

trace

Cacti
memory
energy

processor
energy

process

timing
computation

timing &
energy
profiles

memory size

process binary

Figure 9: Process timing and energy profiling

With each process computation latency resolved from the
computation timing profiles and each communication delay
from the guaranteed bandwidth NoC communication logic,
the timing of each process on the implementation model is
specified. While the processes bounded on the same tile are
scheduled sequentially, the application self-timed schedule is
determined by its scheduling state. We can use the same
techniques as introduced in Section 5.4 for the resource-
aware application throughput analysis.

Within a given throughput requirement, the amount of
stream data transmitted via the NoC communication is fixed
during some period of time. In [12], the bit energy model
reveals that the average energy consumption to send one bit
on NoC is proportional to the Manhattan distance between
two tiles. From this metric, the NoC energy dissipation for
streaming applications with guaranteed throughput is static
and will not be counted in our system energy analysis.

The process and memory energy dissipations are estimated
for each time slot in a state based way. When all the pro-
cesses mapped onto a processor µpj are stalled, the proces-
sor is in idle mode and only consumes the static energy Ėµpj

(to be ignored as we mentioned), so does the local memory

memj consumes Ėmemj ; otherwise, the processor and mem-
ory are in active mode, they also consume the dynamic en-
ergy (Êµpj and Êmemj) of the executing process profiled by
Sim-Panalyzer and Cacti.

While satisfying a given application throughput require-
ment Thru0 upon the sink process psink , we aim to minimize
the overall system energy ESum , which is the energy summa-
tion of all the processor and memory modules. The design
objectives and constraints are formalized as the following:

min ESum =
X

∀µpj∈U

Êµpj

+
X

∀memj∈M

(Êmemj + Ėmemj) (5)

where Êµpj =
X

∀pj∈P

(ti · ri · P̂µpj ,pi (v
2
j , fj) · ϕpi ,µpj)

Êmemj = Êmemj (
X

∀FIFOi∈F

(γi · ϕFIFOi ,memj
))

Ėmemj = g(∆) · Ṗmemj (
X

∀FIFOi∈F

(γi · ϕFIFOi ,memj
))

subject to Thru(psink) ≥ Thru0

X

∀µpj∈U

ϕpi ,µpj = 1, ∀ϕpi ,µpj ∈ {0, 1}

X

∀memj∈M

ϕFIFOi ,memj
= 1, ∀ϕFIFOi ,memj

∈ {0, 1}

in which ϕpi ,µpj and ϕFIFOi ,memj
are the decision variables

(equals to 0 or 1) to determine the mapping from P onto

U and F onto M, Ṗmemj the static power function of the
specified memj , and g(∆) the length of the periodic phase.

The design space exploration has the complexity O(n|U|+|F |),
which is NP-hard regarding the problem size. Thus, we
use the widely used heuristic algorithms (i.e., greedy and
taboo [5] search) for the design options optimization.

7. CASE STUDY
To evaluate the potential of our design flow in energy ef-

ficiency design, we apply it on the software FM radio appli-
cation (presented in [8]) on a NoC based 4 × 4 mesh tiles
MPSoC.

1

2 3

5

1 2 3 4 5

LPF Dem Equ sinksource

1 2 3 5...

4_0

1 5 1 1
1

1

5

5

1

1 1

1

4_1 4_2

4_4 4_3

4_5 4_6

4_9 4_8 4_7

unused
tiles

tile
pipeline stage NoC comm. & DIs

4_9

4_0
network

logic

logic connections of
the allocated application

4 × 4 tiles architecture

Figure 10: FM radio application mapped onto 4 × 4
tiles

The application model has 44 concurrent processes and
are clustered into 14 partitions in a five-stage pipeline, as
shown on the left side of Fig. 10. The pipeline consists of a

125

Table 1: Voltage-Frequency levels

Voltage(V) 2.5 1.8 1.4 1.2

Frequency(MHZ) 233 180 140 100

signal source, a low-pass filter (LPF), a demodulator (Dem),
an equalizer (Equ) with 10 children modules over a range
of frequencies, and a signal sink. The arrows marked with
numbers show the logic connections and data rates between
different partitions.

With each partition allocated to one tile, an empirical
mapping from the clustered application to the 14 tiles (the
other two are left unused) is shown in Fig. 10. Each pipeline
stage of the application is modeled in one individual syn-
chronous clock domain, so is the network logic. The dashed-
lines between each pipeline stage stand for the implicit NoC
communication and domain interfaces. With the static clock
abstraction in the network communication domain, we take
it as the logic mold domain in the multi-clock synchronous
model. We use symmetrical on-tile resources and NoC com-
munication configurations for the 10 children modules in
stage 4, which helps to decrease the problem size.

Each on-tile processor is a StrongARM SA-1100 with the
customizable voltage-frequency levels shown in Table 1, and
each local memory is SRAM with the size given by the FIFO
buffers to be implemented on this tile. The C program task
of each process is compiled into binary using the ARM gcc
toolchain and used as the input of Sim-Panalyzer and Cacti
for architectural energy estimations. In addition, as the en-
ergy results for each customizable module is independent of
each other, they could be simulated off-line in a linear time
proportional to the problem size, and saved in a look-up
table for design exploration.

At the application sink process, a unit data token is a
compound data type containing 512 32-bit values. Accord-
ing to the sink process throughput, design optimizations
have been performed based on three different application
workloads. They have the required application throughput
640 kb/s (Thru-1), 533 kb/s (Thru-2) and 400 kb/s (Thru-
3) respectively.

As the baseline, an Ad-hoc design method 5 is served as
the reference. The minimal memory requirements (Min-
Memory) technique in [21] emphasizes the design optimiza-
tion in memory usage. We implement both heuristic Greedy
and Taboo [5] search as our methods in design optimiza-
tions to make full use of the architectural customizability
in our design exploration flow. The termination criteria of
both methods are a specified number of iterations, e.g. 10
iterations, during which the objective function Eq. 5 has no
improvements on its value.

Within all the workloads, the computation schedules on
multiple processors achieved by the design options with dif-
ferent methods are shown in Fig. 11. Being aware of the
global timing, the schedules modeled in different clock do-
mains are elaborated on a normalized time axis. Each pro-
cessor µpi corresponds to the processor on the tile marked
with i in Fig. 10. In addition, the computations on all the
µp4 n (0 6 n 6 9) in the pipeline stage 4 are symmetrical

5From 100 randomly selected design choices with satisfied
application throughput, the one with median energy con-
sumption is chosen as the Ad-hoc design option, similar to
the approach Hu et al. [12] adopts.

and have the same scheduling behaviors. We take only one
sample in this stage to evaluate the system energy and pro-
cessor computation efficiency. All the design options meet
the application throughput requirements. The heavier the
workload is, the denser the periodic execution pattern is.
The design options, which require the processors to run at
a relatively lower frequency, get the higher computation ef-
ficiency(the average executing ratio in the processor sched-
ules), as shown in the η columns of Table 2.

The results of the experiments, to deliver a specified amount
of application output data in the periodic schedules, are
summarized in Table 2, in which δ denotes the energy sav-
ing ratio achieved by each other design method according to
the Ad-hoc approach. In all the experiments, the heuristics
methods get the optimized design option in 103 searches,
which is trivial compared to the searching space, i.e., >
5 × 109. Analyzing the experiments we can derive the fol-
lowing results:

1. With minimal memory usage, the Min-Memory method
consumes the smallest memory energy EM . However,
it ignores the customizability of processors, and achieves
only a limited energy saving at around 10%.

2. Higher computation efficiency η does not always mean
higher system energy efficiency ESum . Instead, an en-
ergy efficient design assigns the minimum energy bud-
get on both processor and memory modules with a
properly pipelined parallelism. For example, in work-
load Thru-2 of Table 2 Taboo gets the η of 40.7%,
which is lower than 53.0% of Greedy, but its design
option is more energy efficient in ESum (3.3 mJ less).

3. Our method with the Greedy search shows the energy
savings δ at around 19%. Using the Taboo search,
which could escape from the local optima in the search-
ing space, even better solutions at 21% can be found.

We conclude that our design flow with the Taboo search
takes the advantage of the customizable computation and
storage modules, and can be used to design energy efficient
streaming applications with guaranteed throughput on MP-
SoCs.

8. CONCLUSION AND FUTURE WORK
We propose an energy efficient design exploration flow

for streaming applications with guaranteed throughput on
MPSoCs. Both application throughput analysis and system
energy calculation have been carried out on a multi-clock
synchronous MoC framework. Instead of only analyzing the
memory efficiencies or processor utilizations, our intent is to
minimize the overall energy cost. Our investigations suggest
that focusing on either best memory efficiencies or processor
utilizations is more likely to result in less optimized imple-
mentations. By using the heuristic Taboo search, we can
find better solutions in terms of total energy cost, which is
also supported by our experiments.

Although we focus on the customization of the on-tile re-
sources, our method could be extended to include the com-
munication backbones. In the future, we plan to parametrize
the NoC communication logic and use the flexibility in data
transmission for energy efficiency design.

126

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.2

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.4

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.6

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 0.8

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

 1

time

time

time

time

time

time

time

time

time

time

time

time

stalling executing

a.2) Ad−hoc within Thru−2

b.2) Min−memory within Thru−2

c.2) Greedy within Thru−2

d.2) Taboo within Thru−2

a.3) Ad−hoc within Thru−3

b.3) Min−memory within Thru−3

c.3) Greedy within Thru−3

d.3) Taboo within Thru−3

a.1) Ad−hoc within Thru−1

b.1) Min−memory within Thru−1

c.1) Greedy within Thru−1

d.1) Taboo within Thru−1

µp4 n

µp3

µp2

µp5

µp1

µp4 n

µp3

µp2

µp1

µp5

µp4 n

µp3

µp2

µp1

µp5

µp4 n

µp3

µp2

µp1

µp5

µp4 n

µp3

µp2

µp1

µp5

µp4 n

µp3

µp2

µp1

µp5

µp4 n

µp3

µp2

µp1

µp5

µp4 n

µp3

µp2

µp1

µp5

µp4 n

µp3

µp2

µp1

µp5

µp4 n

µp3

µp2

µp1

µp5

µp4 n

µp3

µp2

µp1

µp5

µp4 n

µp3

µp2

µp1

µp5

Figure 11: Periodic schedules of the FM radio application on multiple processors. (Three workloads consid-
ered are Thru-1=640 kb/s, Thru-2=533 kb/s and Thru-3=400 kb/s. The schedule of µp4 n (0 6 n 6 9) represents
the symmetrical computations in the pipeline stage 4.)

Table 2: Experimental results
Thru-1 Thru-2 Thru-3

EU EM ESum δ[%] η[%] EU EM ESum δ[%] η[%] EU EM ESum δ[%] η[%]

Ad-hoc 28.1 a 181.2 209.2 - 37.5 31.0 174.4 205.4 - 32.0 34.1 174.5 208.6 - 28.5

Min-memory 33.9 152.3 186.2 11.0 33.0 32.9 152.2 185.2 9.8 29.7 34.1 152.4 186.5 10.6 27.0

Greedy 9.3 159.0 168.3 19.6 61.5 9.8 158.8 168.6 17.9 53.0 8.2 155.8 163.9 21.4 47.5

Taboo 10.3 155.6 165.8 20.7 55.3 12.8 152.4 165.3 19.5 40.7 10.9 152.6 163.5 21.6 38.2

aThe unit of energy is mJ.

9. ACKNOWLEDGMENTS
Thanks to Mladen Nikitovic, Sandro Penolazzi, Roshan

Weerasekara, Kaiyu Chen, Dr. Sander Stuijk, and Dr. Juan
Chen for the useful discussions, and four anonymous review-
ers for helpful comments on the techniques and content of
this paper.

10. REFERENCES
[1] ARM Ltd. http://www.arm.com.

[2] The SimpleScalar-ARM power modeling project.
http://www.eecs.umich.edu/~panalyzer/.

[3] L. Benini, M. Ferrero, A. Macii, E. Macii, and
M. Poncino. Supporting system-level power
exploration for DSP applications. In GLSVLSI ’00,
pages 17–22, New York, NY, USA, 2000. ACM.

[4] F. Boussinot and R. De Simone. The ESTEREL
language. Proceedings of the IEEE, 79(9):1293–1304,
September 1991.

[5] D. Cvijovic and J. Klinowski. Taboo Search: An
Approach to the Multiple Minima Problem. Science,
267:664–666, Feb. 1995.

[6] M. Duranton. The challenges for high performance
embedded systems. In DSD ’06, pages 3–7,
Washington, DC, USA, 2006. IEEE Computer Society.

[7] C. Erbas. System-Level Modeling and Design Space
Exploration for Multiprocessor Embedded
System-on-Chip Architectures. PhD thesis, 2006.

[8] M. I. Gordon, W. Thies, and S. Amarasinghe.
Exploiting coarse-grained task, data, and pipeline
parallelism in stream programs. Source ACM SIGOPS
Operating Systems Review archive, 40(5):151–162,
2006.

[9] R. Govindarajan, G. R. Gao, and P. Desai.
Minimizing buffer requirements under rate-optimal
schedule in regular dataflow networks. Journal of
VLSI Signal Processing, 31(3):207–229, July 2002.

[10] P. L. Guernic, J. Talpin, and J. L. Lann. Polychrony
for system design. Journal of Circuits, Systems and
Computers. Special Issue on Application Specific
Hardware Design, 2002.

[11] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous data flow programming language
LUSTRE. Proceedings of the IEEE, 79(9):1305–1320,
September 1991.

[12] J. Hu and R. Marculescu. Energy-aware mapping for
tile-based noc architectures under performance
constraints. In ASPDAC ’03, pages 233–239, New
York, NY, USA, 2003. ACM.

127

[13] A. Jantsch and I. Sander. Models of computation and
languages for embedded system design. In IEE
Proceedings on Computers and Digital Techniques,
pages 114–129, 2005.

[14] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le
Marie. Programming real-time applications with
SIGNAL. Proceedings of the IEEE, 79(9):1321–1335,
September 1991.

[15] E. A. Lee and D. G. Messerschmitt. Static scheduling
of synchronous data flow programs for digital signal
processing. IEEE Transactions on Computers,
C-36(1):24–35, January 1987.

[16] E. A. Lee and T. M. Parks. Dataflow process
networks. IEEE Proceedings, 83(5):773–799, May 1995.

[17] E. A. Lee and A. Sangiovanni-Vincentelli. A
framework for comparing models of computation.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 17(12):1217–1229,
December 1998.

[18] M. Millberg, E. Nilsson, R. Thid, and A. Jantsch.
Guaranteed bandwidth using looped containers in
temporally disjoint networks within the Nostrum
network on chip. In DATE ’04, page 20890,
Washington, DC, USA, 2004. IEEE Computer Society.

[19] I. Sander and A. Jantsch. System modeling and
transformational design refinement in ForSyDe. IEEE
Trans. on CAD of Integrated Circuits and Systems,
23(1):17–32, 2004.

[20] S. Sriram and S. S. Bhattacharyya. Embedded
multiprocessors: Scheduling and synchronization. CRC
Press, 2000.

[21] S. Stuijk, M. Geilen, and T. Basten. Exploring
trade-offs in buffer requirements and throughput
constraints for synchronous dataflow graphs. In DAC
’06, pages 899–904, CA, USA, July 2006.

[22] S. wei Liao, Z. Du, G. Wu, and G.-Y. Lueh. Data and
computation transformations for Brook streaming
applications on multiprocessors. In CGO ’06, pages
196–207, Washington, DC, USA, 2006. IEEE
Computer Society.

[23] S. J. Wilton and N. P. Jouppi. Cacti: An enhanced
cache access and cycle time model. IEEE Journal of
Solid-State Circuits, 31(5):677–688, 1996.

APPENDIX
A. DOMAIN INTERFACE CAUSALITY

Lemma 1. Domain interface DIA:B has input signal sA

at domain DA and output signal sB at domain DB, as shown
in Fig. 12. ∀a1 ∈ N0, ∃b1 ∈ N0,

DIA:B ({· · · , ~vA(a1), · · · }
clkA) = {· · · , ~vB(b1), · · · }

clkB ,

where {~vB(b1)}
clkB = {< · · · , ~vA(a1), · · · >}clkB .

s.t. the timing relation Tag(~vB(b1)) > Tag(~vA(a1)) exists,
in which the operator Tag is to get the time tag g(n) for
a specified signal value ~v(n). Hence, DIA:B has causality
between its input and output signals.

Adomain D

upDI

Bdomain D

downDI
(mA)

DIA:B

sA sB

(mB)
sTmp

sA = ∪{~vA(a)}
clkA sB = ∪{~vB(b)}

clkB

sTmp = ∪{~vTmp(tmp)}
clkTmp

Figure 12: Domain interfaces DIA:B

Proof. In case of a1 = b1 = 0, Tag(~vB(0)) ≡ Tag(~vA(0)) ≡
0 meets the timing relation. Otherwise, a1 > 1 and b1 > 1.
From the definition of upDI (mA) in (1), we know that clkTmp =
clkA
mA

. From the definition of downDI (mB) in (2), we know

that ∀b1 ∈ N0

{~vB(b1)}
clkB = {< · · · , ~vA(a1), · · · >}clkB

= downDI (mB)

({~vTmp(mB ·(b1−1)+1), ··· , ~vTmp(mB ·b1)}
clkTmp)

Tag is monotonically increasing, thus

Tag(~vA(a1)) 6 Tag(~vTmp(mB ·b1))

From the definition of Tag , we know that

Tag(~vB(b1)) = b1 · clkB

Tag(~vTmp(mB ·b1)) = mB · b1 · clkTmp = b1 · (mB ·
clkA

mA
)

= b1 · clkB .

We get the conclusion Tag(~vB(b1)) > Tag(~vA(a1)).

128

