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ABSTRACT
We present a new abstraction technique, event order abstraction
(EOA), for parametric safety verification of real-time systems in
which “correct orderings of events” needed for system correctness
are maintained by timing constraints on the systems’ behavior. By
using EOA, one can separate the task of verifying a real-time sys-
tem into two parts: 1. Safety property verification of the system
given that only correct event orderings occur; and 2. Derivation of
timing parameter constraints for correct orderings of events in the
system.

The user first identifies a candidate set of bad event orders. Then,
by using ordinary untimed model-checking, the user examines whether
a discretized system model in which all timing constraints are ab-
stracted away satisfies a desirable safety property under the as-
sumption that the identified bad event orders occur in no system ex-
ecution. The user uses counterexamples obtained from the model-
checker to identify additional bad event orders, and repeats the pro-
cess until the model-checking succeeds. In this step, the user ob-
tains a sufficient set of bad event orders that must be excluded by
timing synthesis for system correctness.

Next, the algorithm presented in the paper automatically derives
a set of timing parameter constraints under which the system does
not exhibit the identified bad event orderings. From this step com-
bined with the untimed model-checking step, the user obtains a suf-
ficient set of timing parameter constraints under which the system
executes correctly with respect to a given safety property.

We illustrate the use of EOA with a train-gate example inspired
by the general railroad crossing problem [13]. We also summarize
three other case studies, a biphase mark protocol, the IEEE 1394
root contention protocol, and the Fischer mutual exclusion algo-
rithm.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
formal methods, model checking; F.3.1 [Logics and Meanings of
Programs]: Specifying and Verifying and Reasoning about Pro-
grams—mechanical verification, invariants; C.3 [Special-Purpose
∗This work is supported by NSF Award 0702670.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-468-3/08/10 ...$5.00.

and Application-Based Systems]: Real-time and embedded sys-
tems

General Terms
Verification, Algorithms, Design

Keywords
Parametric verification, event-based approach, automatic timing syn-
thesis, counter-example guided abstraction refinement (CEGAR)

1. INTRODUCTION
In a typical real-time system, timing constraints on the system’s

behavior are used to ensure its correctness. Such a system is of-
ten modeled by using a set of timing parameters, rather than using
concrete timing constants (for example, [25, 27, 13]). These pa-
rameters specify, for instance, bounds on the duration between two
specific events in a system execution or certain delays, such as mes-
sage delivery times.

Typically, only a subset of possible parameter combinations in
the entire parameter space satisfies correctness of such a system. A
verification engineer or researcher typically follows one of the fol-
lowing two approaches to formally verify such a system: 1. (Fixed-
parameter verification) By fixing all timing parameters in the sys-
tem, he/she reduces the system model to a more tractable one such
as an Alur-Dill timed automaton [1] and model-checks the reduced
system (using UPPAAL [20] or KRONOS [33], for instance [12, 6,
22]); or 2. (Parametric verification) he/she treats the timing param-
eters as uninterpreted constants, finds an appropriate set of con-
straints for the parameters, and manually proves or mechanically
checks correctness under the constraints [25, 31, 34].

The second approach is attractive in the sense that if we can ob-
tain a positive verification result by this approach, then we have
a concrete set of constraints on the timing parameters for the sys-
tem to be correct, and may give an implementation engineer more
freedom of choice, than fixed-parameter verification.

The user can experiment with several instances of the first veri-
fication approach using multiple parameter combinations, and then
can try to figure out possible correlations between parameters in
order for the system to be correct (for example, [27] uses this ap-
proach). However, these experiments by themselves never become
exhaustive if the number of possible parameter combinations is in-
finite (for example, a parameter can be real-valued, or an integer
but unbounded). Thus we need a more intelligent approach for
completely parametric verification.

Another important challenge, in addition to time-parametric ver-
ification, is timing synthesis of a time-parametric model. For timing
synthesis, one tries to derive, in a systematic way, a sufficient set
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of timing parameter constraints under which the system executes
correctly. Automatic timing synthesis is considered to be an even
harder problem than automatic time-parametric verification since
an algorithm or a tool is not a priori given a set of timing constraints
by the user, but has to derive constraints by itself. A classical un-
decidability result about parametric timed automata by Alur et al.
[2] implies that a completely automatic timing synthesis does not
terminate in general.

In this paper, we present a new abstraction technique, event or-
der abstraction (EOA), for parametric safety verification of the
subclass of real-time systems in which correct orderings of events
maintained by timing constraints on the systems’ behavior are crit-
ical for correctness (for example, a biphase mark protocol [25], the
Fischer mutual exclusion algorithm ([21], Section 24.2), and the
IEEE 1394 root contention protocol [27]). By using EOA, one can
separate the task of verifying a safety property of a system into two
parts: 1. Safety property verification of the system given that only
correct event orderings occur; and 2. Derivation of timing parame-
ter constraints for correct orderings of events in the system.

To use EOA, the user models a real-time system by using the
time-interval automata (TIA) framework, which is an extension of
the I/O automata framework [21], and can express certain restricted
class of timed I/O automata [19]. By using the TIA framework, the
user can specify lower and upper bounds on the time interval be-
tween a specific event and a set of possible events that follow. The
framework has a certain structure that is suitable for a mechanical
timing constraint derivation scheme presented in this paper.

A parametric verification of a real-time system using EOA is
conducted in the following steps. First step is identification of
“bad” event orders. The user proposes a candidate set of bad event
orders that he/she wants to exclude from the system executions by
timing synthesis. The user then model-checks a safety property
of interest on a discretized model of the underlying TIA, under
the assumption that the model does not exhibit the proposed bad
event orders A discretized model of a TIA is simply an ordinary
untimed I/O automaton that does not have any timing constraints
as the original TIA does. If the model-checking is completed with
a positive answer, the user has obtained a set of bad event orders
that he/she needs to exclude. Otherwise, the user uses counterex-
amples obtained from the model-checking to extract additional bad
event order, and repeats the same process until he/she successfully
model-checks the discretized model.

The user expresses bad event orders by a simple language that
can express a sequential order of events and some types of repe-
tition of events. He/she typically needs to apply human insight to
extract from the counterexample a bad event order expressed in a
concise way, and this is why we have manually identified bad event
orders for the case studies presented in the paper.

Model-checking under a specific event order assumption can be
carried out in the following two steps. The user first constructs a
monitor that raises a flag when one of the identified bad event or-
ders is exhibited. Then he/she model-checks the discretized model
with this monitor under the assumption that the monitor does not
raises a flag (in Linear Temporal Logic (LTL) [23], this condition
can be represented by: �(¬Monitor.flag) ⇒
�(¬DiscretizedModel.propertyViolated)). We used the SAL model-
cheker [9] in this paper. We manually constructed monitors since
the construction was straightforward for the presented case stud-
ies (we are planning to develop an automatic monitor construc-
tion tool). Since we successively refine the underlying discretized
model (by refining the bad order assumption) from a counterexam-
ple obtained from model-checking, EOA can be regarded as a coun-
terexample guided abstraction refinement (CEGAR) technique [7].

Next, by an algorithm that we present in the paper, the user au-

tomatically derives timing parameter constraints under which the
system exhibits none of the identified bad event orders. From this
step, the user obtains sufficient timing constraints under which the
system executes correctly with respect to a given safety property.
Related work: Some of the existing timed model-checkers (HYTECH
[14], RED [32], TReX [3], LPMC [28], and an extension of UP-
PAAL [18]) allow automatic synthesis of timing parameters for a
specified desirable property of a given system: these tools automat-
ically derive a set of constraints on timing parameters for the system
to satisfy a given property. However, termination is in general not
guaranteed for these model-checkers.

The main differences of EOA from the existing automatic timed
model-checkers listed above are the following four.

First, to use EOA, the user has to provide a set of bad event
orders to be excluded in the system by timing synthesis. Timed
model-checkers mentioned above does not need such inputs.

Second, EOA can treat a class of systems that may exhibit an
unbounded number of repetitions of events. The existing paramet-
ric model-checkers listed above use symbolic reachability analy-
sis of states symbolically represented by linear logic expressions.
Thus, if an underlying parametric model has an unbounded loop
that involves evolution of continuous variables, then this reacha-
bility analysis does not terminate, and therefore the verification at-
tempt fails (for example, in [14], Section 4.2, the authors stated that
they had to modify a model of a biphase mark protocol so that it ex-
hibits no unbounded loop). In EOA, by using a language construct
that represents an unbounded number of repetitions of events, the
user can handle this kind of system.

Third, when doing successive refinements by using EOA, each
abstraction in a refinement step is a completely untimed transi-
tion system (an ordinary I/O automaton with ordering constraints).
Thus the user can directly employ existing verification techniques
for untimed transition systems.

Fourth, EOA does not suffer from the “dimensionality problem”
as much as the timed model-checkers listed above do. Automatic
timing synthesis using the above listed model-checkers rapidly be-
comes intractable as the number of parameters grows ( [14], Sec-
tion 5. Lessons learned). This problem is called the “dimensional-
ity problem”, and is regarded as one of the main bottle necks of the
time-parametric model-checkers. With EOA, timing synthesis is
handled separately from model-checking – the tool derives timing
parameter constraints from identified event orders just with infor-
mation about time bounds between events, and does not use any
information about the state transition structure of the system. This
synthesis process does not use a fixed-point computation as timed
model-checkers do, and thus does not need linear logic simplifica-
tion for termination1. Instead, as we present in Section 6, timing
synthesis is done by a straightforward search within a certain space
inferred by specified event orders. In all case studies summarized
in this paper, the search spaces were small. Indeed, the train-gate
example that we use to illustrate EOA throughout the paper has
ten parameters, and the timing synthesis for it from specified event
orders took less than one second.

Frehse, Jha, and Krogh [11] presented a CEGAR-based approach
for automatically synthesizing parameter constraints of linear hy-
brid automata (LHA) [15]. Though this work is independently done
from our work, the approach is similar to ours in that it uses discrete
abstraction of the underlying system to obtain counterexamples,
and then synthesize the timing (continuous) parameter constraints
to exclude the obtained counterexamples. The main differences
between their approach and our approach are the following three:

1Nevertheless, a linear logic simplification for a derived set of constraints is provided
by the prototype tool for user’s convenience.
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1. Their approach automatically identifies bad event sequences; 2:
Their approach does not treat a repetition of events as our approach
does (Treating repetitions is crucial to verify certain examples such
as the train-gate example in this paper and a biphase mark protocol,
for which meaningful parameter constraints can be obtained only
by treating repetitive events); 3: Their approach treats LHA, which
is more general than TIA. They experimented their approach by a
simple car-conflict prevention example, which has only two param-
eters. The applicability of their approach to a system with a large
number of parameters such as the ones in Section 7 is not known.

Several researchers considered digitization of timed transition
systems [17, 5, 4, 26]. These techniques could possibly be used to
obtain a discrete version of real-time systems for fixed parameters,
but as far as we know, an application of the technique to parametric
verification has not been studied.

We have developed EOA to fill in the gap between the inductive
proof approach and automatic time-parametric model-checking. The
inductive proof approach needs human insights into an underlying
system to come up with an inductive property, and we believe that
identifying bad event orders is more amenable process and requires
less training than coming up with inductive properties. On the other
hand, automatic time-parametric model-checking may not always
scale to a system with a considerable number of timing variables
and parameters, as we described earlier.

When automatic time-parametric model-checker does not scale,
one can try using inductive invariant reasoning or by model-checking
using parameter constraints as inputs – these are typically more
scalable compared to automatic parameter synthesis tools. To do
so, he/she first needs to derive a set of timing parameter constraints
under which (he/she believes) the system works correctly. Typi-
cally the user performs this derivation by first drawing a process
communication diagram that depicts a possible bad scenario, and
then manually finding out how to constrain timing parameters to ex-
clude the depicted scenario. This approach is used in [31] to verify
a biphase mark protocol, and in [27] for the root contention resolv-
ing algorithm of the IEEE 1394 protocol. With EOA, the user can
directly make use of these human insights into the bad scenarios,
and can also automate the process of deriving timing constraints
from the bad scenarios.

The rest of the paper is organized as follows. In Section 2,
we introduce a new automata framework, time-interval automata.
We present the train-gate example, which is inspired by a railroad
crossing problem [13], in the TIA setting. We use this example
to illustrate the use of EOA throughout the paper. The example is
simple compared to an industrial protocol, for example, a biphase
mark protocol that we study in Section 7, yet has ten parameters
and exhibits an unbounded repetition of events. In Section 3, we
explain how the user can formally specify event orders. In Section
4, we demonstrate how the user can conduct the bad-event-order
identification step. Section 5 is devoted to presenting the basis for
automatic timing constraint derivation. In Section 6, we present
a prototype implementation that automatically synthesize timing
constraint from given event orders. Section 7 presents case studies
of time-parametric verification using EOA. We first present verifi-
cation of the train-gate example. We also summarize three other
case studies, a biphase mark protocol that has been studied in sev-
eral verification papers (for example, [25, 31]), the IEEE 1394 root
contention protocol [27], and the Fischer mutual exclusion algo-
rithm ([21], Section24.2). As a conclusion, in Section 8 we discuss
a summary of the paper and possible future work.

2. TIME-INTERVAL AUTOMATA
The time-interval automata (TIA) framework is an extension of

the I/O automata (IOA) framework [21]. An I/O automaton is a

guarded-command style transition system with distinguished input,
output, and internal actions. Informally, with the TIA framework,
one can specify the lower and upper time bounds on the interval be-
tween one action and its following actions. A time bound for action
a and actions in B is represented as an interval in the form [l, u].
Informally, this bound represents that, for any time of occurrence
ta of action a, no action in B occurs before ta + l, and at least one
action in B is performed before or at ta + u.

As we explain in the reminder of this section, a TIA has an ex-
plicit structure to specify the time bounds for actions, or events.
The automatic derivation scheme we present in Section 5 and also
the prototype implementation introduced in Section 6 make use of
this explicit structure to conduct a timing synthesis. We compare
the relation between the TIA framework and other timed automata
frameworks in the related work part in this section.

An interval-bound map defined in the following Definition 1 for-
mally specifies time bounds for actions. The special symbol ⊥ is
used to express the time bound on the interval between the system
start time and the time an action in the specified set occurs.

Definition 1. (Interval-bound map). An interval-bound map b
for an I/O automaton A is a pair of mappings, lower and upper.
Each of lower and upper is a partial function from actions(A)⊥×
P(actions(A)) to R>0, where actions(A)⊥ = actions(A) ∪
{⊥} is a set of actions of A extended with a special symbol ⊥,
P(actions(A)) is the power set of actions ofA, and R>0 is the set
of positive reals.

An interval-bound map defined in Definition 1 may not satisfy
requirements to express a meaningful bound (for example, the spec-
ified lower bound is not greater than the specified upper bound).
Due to space limitation, we cannot show these requirements in this
paper. These appear in [30]. We say that an interval-bound map is
valid if it satisfies the requirements.

Definition 2. (Time-interval automaton). A time-interval automa-
ton (A, b) is an I/O automaton A together with a valid interval-
bound map b for A.

Definition 3. (Timed execution). A timed execution of a time-
interval automaton (A, b) is a (possibly infinite) sequence α =
s0, (π1, t1), s1, (π2, t2), · · · where the si’s are states ofA, the πi’s
are actions of A, and the ti’s are times in R≥0; s0 is an initial state
of A; and for any j ≥ 1, (sj−1, πj , sj) is a valid transition of A
and tj ≤ tj+1. We also require a timed execution to satisfy the
upper and lower bound requirements expressed by b:
Upper bound: For every pair of an action π and a set of actions Π
with upper(π,Π) defined, and every occurrence of π in the execu-
tion πr = π, if there exists k > r with tk > tr + upper(π,Π),
then there exists k′ > r with tk′ ≤ tr +upper(π,Π) and πk′ ∈ Π.
Lower bound: For every pair of an action π and a set of actions Π
with lower(π,Π) defined, and every occurrence of π in the execu-
tion πr = π, there does not exist k > r with tk < tr+lower(π,Π)
and πk ∈ Π.
The upper and lower bound requirements for a bound with ⊥ are
defined similarly (see [30]).

A composition of multiple TIA is defined in a way similar to
that of ordinary I/O automata. Interval-bound maps of TIA are
combined by using a union of maps (by regarding maps as rela-
tions). In order to formally define a composition for time-interval
automata, we need a definition of the compatibility of a collection
of TIA. The compatibility for TIA is defined simply as the com-
patibility of the underlying I/O automata (see [30] for the formal
definition).
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Definition 4. (Composition of TIA) For a compatible collection
of TIA, the composition (A, b) = Πi∈I(Ai, bi) is the timed-interval
automaton as follows. (1). A is the composition of the under-
lying I/O automata {Ai}i∈I (which is an ordinary asynchronous
composition with synchronization of input and output actions with
the same name [21]), and (2). lower is given by taking union of
{loweri}i∈I and upper is given by taking union of {upperi}i∈I

(by regarding partial functions as sets of ordered pairs).
A TIA must satisfy the feasibility condition. Namely, every ex-

ecution of a TIA must be extended to a time-diverging execution
(that is, supi≥0{ti} = ∞). The definition appears in [30]. All
composed TIA of case studies in the present paper are feasible.

Definition 5. (Discretized TIA) Given a TIA (A, b), the discretized
model of (A, b) is simply an underlying ordinary untimed I/O au-
tomaton A.

The set of (untimed) executions of a TIA (A, b) (obtained by
ignoring time stamps in timed executions) is contained by the set
of executions of its discretized model A, since A does not have
any timing constraint. Thus, if A satisfies a safety property under
a certain event ordering assumption for its executions, then (A, b)
also does so under the same ordering assumption.

Related work of the TIA framework: The timed I/O automata
(TIOA) framework [19] is a highly expressive framework with which
the user can specify continuous evolution of analog variables by
using differential equations and inequalities, as well as specifying
discrete state transitions as in an ordinary I/O automaton. Indeed,
any TIA can be expressed as a TIOA as well. However, a TIOA
does not have an explicit time bound structure like a time-interval
bound map of a TIA, and thus information about time bound cannot
be easily handled by the scheme or the tool presented in the paper
(a time lower bound needs to be embedded in the precondition of
an action, and an upper bound needs to be expressed by another
construct, the stop-when statement).

The MMT (time-constrained) automata framework [24] is closely
related to the TIA framework. While a TIA specifies time upper
and lower bounds on the interval between an event and a set of
events that follow, an MMT automaton specifies time upper and
lower bounds on the duration that an action in a specific set of ac-
tions called a task stays enabled. When we define a TIA, for a
pair (π,Π) of an action and an action set with a bound defined,
we impose constraints on the TIA so that at least one action in Π
must be enabled after π and before an action in Π is performed. If
we impose the same constraint on an MMT automaton, we have a
framework similar to TIA. The timed transition system framework
[16] is close to the MMT automata framework, in that the lower
and upper time bound on the duration that one transition is enabled
can be specified. One main difference between TIA and these two
frameworks is that in TIA, the user can use different bounds for
the same set of actions depending on which action precedes it. We
need this feature to model a biphase mark protocol.

The Alur-Dill timed automata framework [1] is arguably the best
known framework to model a real-time system, and is the theoret-
ical foundation for timed model-checkers like UPPAAL [20] and
KRONOS [33]. This framework can model only a system with
fixed timing parameters, but not a time-parametric system.

The parametric timed automata (PTA) framework introduced in
[2] is a time-parametric version of the Alur-Dill timed automata
framework. In a PTA, the user specifies lower and upper bounds on
a time interval in which the automaton stays in a specific location
(in the Alur-Dill timed automata sense). A TIA can be modeled
as a PTA, but time bound for events becomes implicit (unlike the
explicit interval-bound map) and thus cannot directly use the auto-
matic timing synthesis scheme presented in the paper.

——————————————–
Automaton Train(r, R, p, P : Real) where

0 ≤ r ≤ R ∧ 0 ≤ p ≤ P
signature

output Request
output Pass

states
requested: Bool := false;

transitions
output Request

pre ¬requested
eff requested := true;

output Pass
eff requested := false;

bounds:
b(⊥, {Request}) = [r, R];
b(Pass, {Request}) = [r, R];
b(⊥, {Pass}) = [p, P ];
b(Pass, {Pass}) = [p, P ];

——————————————–

Figure 1: Train automaton

Example 1. (Time-Interval Automaton). We describe an exam-
ple of time-interval automata. The example is inspired from rail-
road crossing problems [13]. The example is constructed from a
composition of a train automaton (Figure 1) and a gate automa-
ton (Figure 2). An informal description of the problem we want to
solve is the following. A train is about to pass the railroad cross-
ing with a gate. The gate is supposed to be open except for the
time when the train passes the crossing, so that cars can cross the
railroad. When the train gets close to the crossing, it requests that
the gate be closed. The gate needs to be closed at the time the
train passes the crossing. The railroad actually forms a circle, and
thus the train passes the railroad crossing cyclically. After the gate
becomes closed, it becomes open after a bounded time interval.2

The actions of the Train automaton model actions taken by the
train. The Request action represents a close request made by the
train to the gate. The Pass action represents an event that the train
passes the crossing. The automaton has four bounds for these two
actions. The first one (b(⊥, {Request}) = [r,R]) and the second
one (b(Pass, {Request}) = [r,R]) say that the Request action will
be performed within the time interval [r,R] after the system starts,
and every time after the train passes the crossing, respectively. The
third bound (b(⊥, {Pass}) = [p, P ]) and the fourth bound (b(Pass,
{Pass}) = [p, P ]) say that the Pass action will be performed within
the time interval [p, P ] after the system starts, and every time af-
ter the train passes the crossing, respectively.3 The gate automaton
described in Figure 2 models a gate system that uses a busy-wait
loop for checking whether a request has been made. The gate au-
tomaton cannot immediately know the arrival of a request. Instead,
a request information is stored in a state variable train_requested,
and the gate automaton needs to repeatedly check this variable (ex-
pressed by a successful check, Check(true), and a failing check,
Check(false)). We set the time interval between two repeated
checks to be within [δ,∆]. Once a check succeeds, the gate automa-
ton stops checking train_requested, but resumes it within [δ,∆]
after the gate becomes closed. The gate becomes closed (Close

2If the reader prefers an example with more digital system flavor than the train-
gate example, he/she can regard this example as, for instance, the following single-
writer/multi-reader shared variable problem: one writer process (Train) writes to a
shared variable (railroad crossing) periodically, and before writing to the variable, it
first requests the guardian process (Gate) to lock the variable so that any reader (a car
crossing the rail-road) cannot access to the variable while the writer is writing to it.
3We could, for example, think that a train is moving with a bounded velocity within
[vmin, vmax], and the length of the railroad is L. The time bound of [p, P ] for the
pass event is equivalent to saying that p = L/vmax and P = L/vmin .
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—————————————————————–
Automaton Gate(δ, ∆, τ, T, c, C: Real) where

0 ≤ δ ≤ ∆, 0 ≤ τ ≤ T , 0 ≤ c ≤ C
signature

input Request
output Close
output Open
output Check(result: Bool)

states
open: Bool := true;
train_requested: Bool := false;
check_succeeded: Bool := false

transitions
input Request

eff train_requested := true;
output Close

pre check_succeeded ∧ open
eff open := false;

output Open
pre ¬open
eff open := true;

train_requested := false;
check_succeeded := false;

output Check(result)
pre ¬check_succeeded ∧ result = train_requested
eff check_succeeded := train_requested;

bounds:
b(⊥, {Check(true), Check(false)}) = [δ, ∆];
b(Check(false), {Check(true), Check(false)}) = [δ, ∆];
b(Close, {Check(true), Check(false)} = [δ,∆];
b(Check(true), {Close}) = [τ, T ];
b(Close, {Open}) = [c, C];

—————————————————————–

Figure 2: Gate automaton

action) within the time interval [τ, T ] after a successful check. The
gate becomes open again (Open action) withing the time interval
[c, C] after it becomes closed.

The safety property that we want to verify is that the train passes
the crossing only when the gate is closed. We use a monitor au-
tomaton SM (safety monitor) that monitors output actions Pass,
Open, and Close from Train and Gate, and set its state variable
propertyViolated to true if Pass occurs when the gate is open
(see [30] for a formal description). The invariant (safety property)
we want to check is: for any reachable state of Train||Gate||SM,
SM.propertyViolated = false.

3. SPECIFYING EVENT ORDERS
In this section, we introduce a formal way of specifying an event

order that needs to be excluded for system correctness. We first
consider a simple way of specifying an event order, and then extend
an event order specification by introducing “don’t-care” events. The
notion of these “don’t-care” events are important in order to treat
a repetition of events in a single system (as we will see in the case
study for the train-gate example in Section 7.1) and in order to ig-
nore events by a process that is unrelated to a key local behavior in
concurrent or distributed systems (as we will see in the case study
for the Fischer mutual exclusion in Section 7.4).

An event order (without “don’t-care”) simply specifies the order
of consecutive actions in an execution of a TIA. For example, the
event order “Request-Pass” for the automaton (Train||Gate) of
Example 1 matches any execution of (Train||Gate) that contains
a Request action immediately followed by a Pass action. We
give a formal definition of a match between an automaton execution
and an event order in Definition 9, after introducing “don’t-care”
events. An event order may start with a ⊥ symbol, which specifies
that the event order matches a finite prefix of an execution of an
underlying automaton. In other words, an event order that start

with ⊥ specifies the very first sequence of events that occurs after
the automaton starts executing.

Definition 6. (Event order) An event order of a time-interval au-
tomaton (A, b) is a sequence of actions of A, possibly starting with
a special symbol ⊥.

Example 2. (Event order). An example of event orders that we
want to exclude in Train||Gate||SM of Example 1 is
⊥-Check(false)-Request-Check(true)-Pass. In this event order,
the gate module first failed to detect a request from the train since
a request has not been made yet. After the train makes a request,
the gate module succeeds in detecting it. However, the request is
detected too late relative to the time for the gate module to close
the gate, and consequently the train passes the crossing before the
gate becomes closed (that is, before the Close event occurs).

For a system that exhibits an unbounded repetition of events
(such as the train-gate example in Example 1 and a biphase mark
protocol that we study in Section 7), some event orders to be ex-
cluded cannot be represented in a form of a simple event order like
the ones we consider above. Consider the event order “⊥-Pass”
for (Train || Gate). This event order needs to be excluded for an
obvious reason: the train passes the crossing even before the train
requests that the gate be closed. Considering that the gate is do-
ing a busy-loop checking of a request, this Pass event can possibly
be preceded by multiple failing checks (Check(false)). Indeed,
since the relation between the frequency of these checks (δ and ∆)
and the time when a request is made (r and R) is unknown, the
number of possible failing checks that precede the Pass event is
unbounded. What we want to do is to ignore these failing checks
in between ⊥ and Pass in the event order. By using a regular-
expression-like language, this event order can be expressed by “⊥-
(Check(false))∗-Pass”, where ‘∗’ is a symbol of repetition. The
following event order using an ignored event specification (IES)
is more comprehensible when an event is ignored for a specific
event-index interval, not just in between two consecutive events:
E2 = “⊥-Pass: insert {Check(false)} to[0, 1]”. Informally, the
ignored event specification (statement after insert)) in the above
event order E2 specifies that when checking a match between an
automaton execution and the event order, we ignore in that execu-
tion (possibly multiple) occurrences of Check(false) in between
the beginning of the execution (e0) and the first occurrence of Pass

(e1). A formal definition of an IES is as follows.
Definition 7. (Ignored event specification). An ignored event

specification (IES) for an event order is in the following form:
insert (Ym to [im, jm])r

m=1, where Ym represents a set of events
that are ignored in the interval between eim and ejm .

To formally define a match between an automaton execution and
an event order with an IES, we need an ignored event set IE

k that
represents the set of the ignored events in the interval between the
k-th and (k+1)-st events inE (⊥ is considered as the zero-th event).

Definition 8. (Ignored event set). For an event order with an
IES, E = (⊥)e1 · · · en : insert (Ym to [im, jm])r

m=1, we define
IE

k =
S

im≤k<jm
Ym for 0 ≤ k ≤ n− 1.

Definition 9. (Match between a timed execution and an event or-
der with an IES). Consider a timed execution α = s0, (π1, t1), s1, · · ·
of an time-interval automaton (A, b). Let α′ be the sequence of ac-
tions that appear in α, that is, α′ = π1π2π3 · · · . We say that α
matches an event order with an IES, E = e1 · · · en :
insert (Ym to [im, jm])r

m=1, if there exists a finite subsequence
β of α′ such that β can be split into β0πk1

β1πk2
β2 · · ·βn−1πkn ,

where, for all i, 1 ≤ i ≤ n, πki
= ei, and βi is a sequence of

actions and all actions that appear in βi are in IE
i .
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A match for an event order that starts with ⊥ is defined similarly
to Definition 9 (an additional condition k1 = 1 is added to the
definition). For an event order without an IES, all βi’s in Definition
9 are empty sequences.

We refer to an execution that matches E as an E-matching exe-
cution.

4. IDENTIFYING BAD EVENT ORDERS
In this section, we illustrate how the user can extract bad event

orders from counterexamples obtained from untimed model-checking
of the discretized model.

We use the train-gate example. The safety property we want to
check is that the gate is closed whenever the train passes the gate.

We first specified the following set of bad event orders as a can-
didate4:

A1. ⊥-Pass : insert {Check(false)} to [0, 1]

A2. ⊥-Request-Pass : insert {Check(false)} to [0, 1]

A3. ⊥-Request-Check(true)-Pass : insert {Check(false)} to [0, 1]

The above event orders A1, A2, and A3 represent a situation
that the train passes the crossing before the gate becomes closed.
A1 specifies a situation that the train passes the gate even before it
requests the gate be closed. A2 specifies a situation that the train
has requested the gate be closed, but the gate automaton does not
detect a request before the train passes the crossing. A3 specifies
the situation that the gate automaton successfully detects a close
request, but the gate does not become closed before the train passes
the crossing. Here we used our human insight into the underly-
ing system that an unbounded number of Check(false) events can
appear before the Request event.

We manually constructed event order monitors, {EOMi}
3
i=1, for

these event orders, and then model-checked the untimed model un-
der the assumption that the above orders do not appear in system
executions. In Linear Temporal Logic (LTL) [23], this condition
can be expressed by: UntimedTrain||UntimedGate||SM |=

�(¬
W

3

i=1
EOMi.flag) ⇒ �(¬SM.propertyViolated). A coun-

terexample that can be obtained from a LTL expression in this form
starts with a system execution that leads to a bad state, followed by
a cycle in which the flags of all monitors never become true. This is
because we use the “always” � operator for the ordering assump-
tion. The user can basically ignore the cycle part and can just focus
on the first part of the counterexample that contains information
about a bad event order.

When we model-checked the safety property with the ordering
assumption that A1, A2, and A3 do not occur, we obtained the fol-
lowing counterexample execution: Request - Check(true) - Close -
Open - Pass, followed by a cycle in which

W

3

i=1
EOMi.flag never

becomes true. This execution represents a situation that the gate
successfully becomes closed before the train passes the crossing,
but becomes open again too fast. Since we knew that multiple
Check(false) events could have appeared before the Request event
and after the Open event in this execution, we identified the follow-
ing bad event order.

B1. ⊥-Request-Check(true)-Close-Open-Pass :
insert {Check(false)} to [0, 1], {Check(false)} to [4, 5]

In this way, the user can continue identifying bad event orders
using both counterexamples from untimed model-checking and hu-
man insight. We present the entire set of bad event orders for the
train-gate example in Section 7.1.
4Of course, the user could instead start by model-checking the untimed model with
no ordering constraint, and build up sufficient event orders. Nevertheless, if the user
knows partial information about what bad event orders might be, he/she can use human
insight to set up a candidate set of bad orders at the beginning, as in the presented case.

5. DERIVING TIMING CONSTRAINTS
In this section, we present a scheme to derive a timing parameter

constraint to exclude an execution that matches a given event order.
The scheme just uses the bound map of an underlying TIA, but not
the state-transition structure of it.

Derivation of a timing parameter constraint for a given event or-
der is taken in the following three steps:

1. We enumerate bounds on a pair of events in the event order
that are immediately derivable from the bound map b of an
underlying TIA and the bound conditions in Definition 3.

2. We combine enumerated individual bounds to form a time
bound for larger interval of events in order to derive a mean-
ingful constraint in the next step.

3. We find a matching pair of combined upper bound and lower
bound, and then derive a timing constraint.

As we show in Section 6, this scheme forms the basis for the pro-
totype implementation. More specifically, each step of the above
described scheme is systematic, and can be easily automated. We
present a more detail of each of the steps in the following.

Enumerating bounds: Given an event order E and the bound
map b of a TIA, we first enumerate the upper and lower bounds
between the time of occurrence of two events in E from the up-
per and lower bound conditions in Definition 3. The bound sets
UE

i,j and LE
i,j defined in Definitions 10 and 11, respectively, con-

tain upper and lower bounds between the times of occurrence of
the actions that match ei and ej in E, respectively, that are im-
mediately derivable from the bound map b and the upper and lower
band conditions in Definition 3 (the ⊥ symbol is treated as the zero-
th event e0). The bounds are tagged with the event-index interval
for which they are derived. Note that, for a pair (π,Π) of an action
and an action set with a bound, an upper bound for an event-index
interval [i, j] is found from the fact that the i-th event is π, and
an event in Π does not appear in [i, j], whereas a lower bound for
[i, j] is found from the fact that the i-th event is π, and an event in
Π appears at the j-th event. This is consistent with the upper and
lower bound conditions in Definition 3. For any E-matching exe-
cution α = s0(π1, t1)s1 · · · , the matched subsequence of actions
β = β0πk1

β1 · · ·βkn−1
πkn

(in Definition 9) satisfies tkj
− tki

≤ u

for (u, [i, j]) ∈ UE
i,j , and tkj

− tki
≥ l for (l, [i, j]) ∈ LE

i,j (this
fact is proved as a key lemma for Theorem 1 in [30]).

Definition 10. (Upper bound set). For i and j, 0 ≤ i < j ≤ n,
U

E
i,j = {(u, [i, j]) | u =upper(ei,Π) such that

(ei,Π) ∈ Domain(upper) ∧

(j = i+ 1 ∨

ei+1 · · · ej−1 contains no action in Π) ∧

∪j−1

k=i I
E
k contains no action in Π.}

Definition 11. (Lower bound set). For i and j, 0 ≤ i < j ≤ n,
L

E
i,j = {(ℓ, [i, j]) | ℓ =lower(ei,Π) such that

(ei,Π) ∈ Domain(lower) ∧

ej ∈ Π}

Note that the bound map of an underlying TIA is used only in
this first enumeration step.

Example 3. (Upper and lower bound sets). We show an example
of UE

i,j and LE
i,j . The underlying automaton is Train||Gate||SM

discussed in Example 1, the train-gate model with a busy-loop
checking. As discussed in Example 2, one of the event order that

6



Check(false) Request Check(true) Pass

Up
pe
r 
Bo
un
ds
:

Lo
we
r 
Bo
un
ds
:

∆

∆

δ

R

R

r

δ

T

p

δ

e1 e2 e3 e4(e0)

P

P

P

P

∆

(R,[0,1]) :

(R,[0,2]) :

(∆,[0,1]) :

(∆,[1,2]) :

(∆,[1,3]) :

(T,[3,4]) :

(P,[0,1]) :

(P,[0,2]) :

(P,[0,3]) :

(P,[0,4]) :

(δ,[0,1]) :

(r,[0,2]) :

(δ,[1,3]) :

(δ,[0,3]) :

(p,[0,4]) :

<

<

>

<

<

<
<

<

<

<

<

>

>

>

>

Figure 3: Upper and lower bounds for the event order E1

we want to exclude is E1 =
⊥-Check(false)-Request-Check(true)-Pass. Figure 3 depicts the
upper bounds in UE1

i,j and lower bounds in LE1

i,j .
Upper bound example: We have an upper bound (R, [0, 1]) for
the interval between e0 (⊥) and e1 (Check(false)) since we have
an upper bound upper(⊥, {Request}) = R defined in the bound
map, and the event Request is not performed between e0 and e1.
For a similar reason, we have an upper bound (R, [0, 2]) between
e0 (⊥) and e2 (Request). The upper bound set UE1

0,1 for the inter-
val between e0 and e1 is: {(R, [0, 1]), (P, [0, 1]), (∆, [0, 1])}.
Lower bound example: We have a lower bound (δ, [1, 3]) for the in-
terval between e1 (Check(false)) and e3 (Check(true)) since we
have a lower bound
lower(Check(false), {Check(false),Check(true)})) = δ defined
in the bound map.

Combining bounds: We need a notion of a covering upper bound
set and a distributed lower bound set to combine individual bounds
in Ui,j and Li,j , respectively, so that we can synthesize a mean-
ingful timing constraint. Informally, a covering upper bound set
U for an event interval Γ is a set of upper bounds such that when
we take a union of all intervals that tag upper bounds in U , the
union becomes Γ (tagged intervals of upper bounds in U cover Γ).
A distributed lower bound set L for an event interval Γ is a set of
lower bounds such that each interval that tags a lower bound inL is
contained in Γ, and all intervals that tag lower bounds in L do not
overlap (tagged intervals of lower bounds in L are distributed in Γ,
without overlapping).

Definition 12. (Covering upper bound set). Consider a set of
upper bounds S = {(uk, [ik, jk])}m

k=1 for a time-interval automa-
ton (A, b) and an event order E (possibly with an IES), where
(uk, [ik, jk]) ∈ UE

ik,jk
for k, 1 ≤ k ≤ m. We say that S cov-

ers the interval between ev and ew if for any event pointer p, v ≤
p ≤ w − 1, there exists an upper bound (uk1

, [ik1
, jk1

]) ∈ S such
that ik1

≤ p and p+ 1 ≤ jk1
.

Definition 13. (Distributed lower bound set). Consider a set of
lower bounds S = {(lk, [ik, jk])}m

k=1 for a time-interval automa-
ton (A, b) and an event order E (possibly with an IES), where
(lk, [ik, jk]) ∈ LE

ik,jk
for k, 1 ≤ k ≤ m. We say that S is dis-

tributed in the interval between ev and ew if the following two
conditions hold:

1. For any lower bound (lk1
, [ik1

, jk1
]) ∈ S, v ≤ ik1

and
jk1

≤ w.

2. For any two lower bounds (lk1
, [ik1

, jk1
]), (lk2

, [ik2
, jk2

]) ∈
S, jk1

≤ ik2
or jk2

≤ ik1
.

Example 4. (A covering upper bound set and a distributed lower
bound set). Let us look at Figure 3 again. The set of upper bounds
{(R, [0, 2]), (∆, [1, 3]), (T, [3, 4])} covers the interval between e0
and e4 ([0, 2] ∪ [1, 3] ∪ [3, 4] = [0, 4]). Each lower bound by
itself constructs a lower bound set that is distributed in the interval
between e0 and e4, but any set with two or more lower bounds is
not distributed in the same interval, since we have some overlap of
the intervals for which the lower bounds are defined.

Deriving bounds: The following Theorem 1 implies that if we
find a covering upper bound set and a distributed lower bound set
for the same interval, then we can obtain the timing constraints by
the third condition in the theorem (the sum of the upper bounds is
strictly less than the sum of the lower bounds). A formal proof of
this theorem appears in [30].

THEOREM 1. Consider an event order E, possibly with an IES.
A time-interval automaton (A, b) exhibits noE-matching execution
if there exists a set of upper bounds U = {(um, [im, jm])}p

m=1

where (um, [im, jm]) ∈ UE
im,jm

, a set of lower bounds L =

{(lr, [ir, jr])}
q
r=1 where (lr, [ir, jr]) ∈ LE

ir ,jr
, and two events ev

and ew such that the following three conditions hold:
1. U covers the interval between ev and ew.
2. L is distributed in the interval between ev and ew.
3.

Pp

m=1
um <

Pq

r=1
lr .

Example 5. (Timing constraint derivation for an event order with-
out an IES). Again, consider the event order depicted in Fig. 3. As
discussed in Example 4, the upper bound set {(R, [0, 2]), (∆, [1, 3]),
(T, [3, 4])} covers the interval between e0 and e4. In addition,
the lower bound set {(p, [0, 4]} is distributed in the same interval.
From Theorem 1, if p > R+ ∆ + T , then (Train || Gate) exhibits
no E1-matching execution.

Example 6. (Timing constraint derivation for an event order with
an IES). Consider the event orderE2 = “⊥-Pass: insert Check(false)
to(0, 1)”. We have a lower bound lower(⊥, {Pass}) = p, and ⊥
appears at e0 and Pass at e1. Thus we have a lower bound p be-
tween e0 and e1 (from Definition 11). We have an upper bound
upper(⊥, {Request}) = R defined for Train||Gate, and the Re-
quest event is not ignored in the interval between e0 (⊥) and e1
(Pass) – only Check(false) is ignored. Thus we have a valid up-
per bound R between e0 (⊥) and e1 (Pass). Therefore, we can
derive a constraint p > R, which imposes an order constraint that a
Request event must occur before a Pass event. On the other hand,
though we have an upper bound
upper(⊥, {Check(true),Check(false)}) = ∆, we cannot derive
an upper bound ∆ between e0 and e1, since Check(false) is ig-
nored in that interval. Therefore, we cannot derive a constraint
p > ∆. Indeed, the above constraint does not exclude E2, since
the constraint just imposes that the very first Check event after each
Open event must occur before Pass of that round.

6. IMPLEMENTATION
We have implemented in Python a prototype of a timing con-

straint derivation tool (METEORS: MEchanical Timing / Event-
ORder Synthesizer, version 0.1), based on the scheme described in
Section 5. The problem that the implemented prototype tool solves
is as follows. The user gives the tool the set of time bounds defined
in an underlying TIA for which he/she wants to derive a timing pa-
rameter constraint. Then the user gives the tool (typically multiple)
bad event orders to be excluded by timing synthesis. The tool first
enumerates upper and lower bounds immediately derivable from
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the given time bound information. The computational complexity
of this enumeration process grows only linearly with respect to the
number of parameters (we need to do an enumeration for each pa-
rameter, and enumerations for different parameters are independent
of each other). The tool then searches over all possible covering
upper bound sets and distributed lower bound sets. When the tool
finds a matching pair of a covering upper bound and a distributed
lower bound set, it derives timing constraints in the same way as
demonstrated in Examples 5 and 6.

The current prototype assumes both lower and upper bounds (pi

andPi, respectively) are defined for all pairs with bounds (πi,Πi) ∈
actions(A)⊥ × P(actions(A)).5 Therefore, the underlying TIA
has the lower bound parameter set {pi}

n
i=1 and the upper bound

parameter set {Pi}
n
i=1, both of which contain the same number of

timing parameters, and a lower bound is at most as large as the
matching upper bound: pi ≤ Pi.

A linear term over lower bound parameters {pi}
n
i=1 is in the

form c1p1 + c2p2 + · · ·+ cnpn, which we also write as
Pn

i=1
cipi,

where ci is an integer constant for 1 ≤ i ≤ n. A linear term over
upper bound parameters {Pi}

n
i=1 is defined analogously.

An inequality the tool derives from one pair of a covering upper
bound set and a distributed lower bound set has the form φ > ψ,
where φ =

Pn

i=1
cipi is a linear term over lower bound parameters

and ψ =
Pn

i=1
diPi is a linear term over upper bound parameters.

The tool in general finds in a given event order multiple match-
ing pairs of covering upper bound sets and distributed lower bound
sets, for each of which it can derive a linear inequality. In such a
case, multiple inequalities can be derived, and the given event order
appears in no system execution if at least one of the inequalities is
satisfied. Thus, the tool derives a disjunction of linear inequalities
for one given event order.

The user typically needs to exclude multiple bad event orders.
All specified event orders can be excluded if all disjunctions of lin-
ear inequalities derived from the event orders are satisfied. There-
fore, a timing constraint derived by the tool forms a conjunction of
disjunctions of linear inequalities – in a form similar to conjunc-
tive normal form of Boolean logic, but in our case we have linear
inequalities instead of Boolean variables:

V

i∈I

W

j∈Ji
Li,j , where

Li,j is a linear inequality.
The constraint derived by the tool may first contain some un-

realizable inequalities (for example, an upper bound for a specific
action set is strictly smaller than a lower bound for the same ac-
tion set), or redundant inequalities (for example, one inequality is
weaker than or equivalent to another inequality in a disjunction).
We use a simple simplification algorithm to prune these inequal-
ities. The details of this simplification algorithm is described in
[30].6

Scalability experiment: To obtain a rough idea of the scalability
of the constraint derivation process of the prototype with respect
to the event order length, we conducted an experiment on deriving
a constraint for randomly generated event orders of the train-gate
example. This experiment (and all other experiments in this paper)
was conducted on a desktop computer with an Intel CoreTM2 Quad

5After obtaining a constraint simplified by the tool, the user can manually substitute
pi = 0 for (πi, Πi) with only an upper bound, and can substitute Pi = ∞ for
(πi, Πi) with only a lower bound. The current prototype does not make use of this
information of “unbounded in one side” in a simplification of a constraint, and this is
our future work.
6Note that this simplification process is completely independent of constraint deriva-
tion process, and is provided by the tool for user’s convenience. The user could instead
manually simplify the derived constraint or could use external linear-logic simplifica-
tion tools as well. This is different from the timed/hybrid model-checkers like HyTech,
RED, TRex, and LPMC which inherently need an intelligent linear-logic simplifica-
tion scheme to conduct a fixed-point calculation for reachable states symbolically ex-
pressed by a linear logic expression.

at 2.66 GHz and 4GB memory. We experimented with ten ran-
domly generated event orders with length of thirteen, and the tool
finished the constraint derivation process within one second for all
experiments. Considering that the length of the event orders that
we identified for the case studies presented in Section 7 are all less
than ten, the results of these experiments are satisfactory. However,
we have to conduct more case studies in order to examine the order
of the length of the bad event orders in larger real-time systems.
Discussion: Though the current prototype does not treat a “dis-
junctive” language construct (such as ∪ of a regular expression), it
is easy to derive a constraint for an event order that uses such a con-
struct at the top level. For example, suppose we want to exclude a
(pseudo) event order e1e2{e13, e13}e4, which specifies that the third
event order is either e13 or e23. We can simply treat this event order
as two distinguished event orders e1e2e13e4 and e1e2e23e4.

Similarly, to exclude an execution that matches both of two event
orders E1 and E2 (E1 ∩ E2 in a regular expression), we can indi-
vidually derive constraints for E1 and E2, and then disjunct them
to obtain a constraint (at least one of E1 and E2 needs to be ex-
cluded to exclude E1 ∩ E2). Since we disjunct disjunctions of
linear inequalities derived forE1 and E2, the derived constraint for
E1∩E2 is a disjunction of linear inequalities. Thus, derivation of a
constraint from E1 ∩E2 (among other ordinary event orders) does
not destruct the conjunction-of-disjunctions structure of the final
constraint.

7. CASE STUDIES
7.1 Train-Gate Problem

In this section, we illustrate the user of EOA and the prototype
tool using the train-gate example Train||Gate||SM that we have
used in earlier sections of the paper.

We identified the following ten event orders to exclude all bad
executions in the same way as described in Section 4.
A1. ⊥-Pass : insert {Check(false)} to [0, 1]
A2. ⊥-Request-Pass : insert {Check(false)} to [0, 1]
A3. ⊥-Request-Check(true)-Pass : insert {Check(false)} to [0, 1]
A4. Pass-Open-Pass : insert {Check(false)} to [2, 3]

A5. Pass-Open-Request-Pass : insert {Check(false)} to [2, 3]
A6. Pass-Open-Request-Check(true)-Pass :

insert {Check(false)} to [2, 3]
A7. Pass-Pass

B1. ⊥-Request-Check(true)-Close-Open-Pass :
insert {Check(false)} to [0, 1], {Check(false)} to [4, 5]

B2. Pass-Open-Request-Check(true)-Close-Open-Pass :
insert {Check(false)} to [2, 3], {Check(false)} to [6, 7]

C1. Close-Pass-Request

We can classify these event orders into three groups. The first
group (A1 - A7) represents a situation that the train passes the
crossing before the gate becomes closed. A1, A2, and A2 are the
event orders used as a first candidate set of bad event orders in
Section 4. In A4, A5, and A6, the ⊥ symbol in A1, A2, and A3,
respectively, is replaced by Pass-Open, so that they specify situa-
tions similar to A1, A2, and A3, but after at least one Pass events
have been performed. A7 is like A4, but without Open after Pass.
The second group (B1 and B2) represents a situation that the gate
becomes open too fast after it becomes closed, and thus the gate is
open when the train passes the crossing. B1 and B2 intrinsically
represents the same situation, but the ⊥ symbol in B1 is replaced
by Pass-Open, so that B2 specifies a situation after at least one
Pass events have been performed. The third group (C1) represents
a situation that the gate becomes open again too late, that is, after
the train makes a next request. Since all state variables of the gate
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automaton are reset when the gate becomes open (by Open event),
if the gate becomes open after a request from the train, the request
information is reset, and thus the gate would not become closed.

In this bad order identification process, we manually constructed
a monitor (a classical finite state machine) for each of the identi-
fied ten event orders. Each monitor raises a flag exclude when
it finds a subsequence of actions that match the underlying event
order in a current automaton execution. Actually, we could (manu-
ally) combine some of the monitors7 and needed to construct only
six monitors (EOM1 - EOM6) at last. Model-checking for each
refinement step took less than one second. At the end of the bad
order identification step, we successfully model-checked the prop-
erty �(¬bad_event_order) ⇒ �(¬SM.propertyViolated) for
Train||Gate||SM||EOM1|| · · · ||EOM6, using a SAL symbolic model-
checker [9], where bad_event_order = EOM1.flag ∨ EOM2.flag
∨ · · · ∨ EOM6.flag.

For event orders A2, A3, A5, and A6, we had to do a “decom-
position” of an event order. For example, we cannot directly de-
rive a meaningful constraint from A3. In A3, unlike the event or-
der E1 depicted in Figure 3, we have possibly unbounded number
of Check(false) events before Request, and these Check(false)
events are ignored. Thus, the bounds corresponding to (∆, [0, 1]),
(∆, [1, 2]), (∆, [1, 3]), (δ, [0, 1]), and (δ, [1, 3]) in Figure 3 are
removed from the set of enumerated bounds for deriving a con-
straint for A3, and therefore we cannot derive the same constraint
as in Example 5. Decomposing A2 into the following two event
orders resolved this problem: one with no Check(false): A′

3 =
⊥-Request-Check(true)-Pass, and one with one or more Check(false)
events: A′′

3 = ⊥-Check(false)-Request-Check(true)-Pass :
insert {Check(false)} to [0, 1]. A′′

3 still has an IES, but for this
event order, an upper bound removed from the upper bound set of
E1 in Figure 3 is only (∆, [0, 1]), and thus we can derive the same
constraint p > R + T + ∆ as in Example 5. We decomposed A3,
A5, and A6 similarly to the case of A2 described above. We man-
ually decomposed event orders for this case study, and automation
of this decomposition is future work. More detailed analysis and
automation of this decomposition process is our future work.

After the decompositions of A2, A3, A5, and A6, we had four-
teen event orders, and the tool derived the following set of con-
straints from the given event orders after automatic simplification
(the total time of derivation and simplification took less than one
second): 1. (p > R+T+∆); 2. (r+t+c > P ∨ δ+t+c > P );
and 3. (r > C). The tool indicated that the first constraint was
originally derived from a decomposed A6, the second from B1,
and the third fromC1. Therefore, we obtained a constraint for each
of the three groups we explained above.

7.2 Biphase Mark Protocol
A biphase mark protocol [25] is a lower-layer communication

protocol for consumer electronics. Several researchers have con-
ducted formal verification of this protocol (for example, [25, 31]),
but as far as we know, completely automatic verification of it has
not been done. We identified 22 bad event orders. (We successfully
model-checked the discretized model under the condition that 22
bad event orders do not occur, and model-checking for each refine-
ment step took less than one second). This number may look large,
but similarly to the train-gate example in Section 7.1, we identified
multiple event orders from a single bad situation (there were eight
bad situations). Eight event orders (derived from three situations)
had to be decomposed as in the case of the train-gate example. The
tool derived five constraints (it took less than one second). Three

7For example, by changing the initial state of the monitor for A4, we could also treat
A1 . Same for the pairs of A2 and A5; A3 and A6; and B1 and B2.

of them are equivalent to the three conditions manually derived in
[31]. The remaining two constraints are not reported in [31], but we
believe that the constraint must hold for correctness (it is needed to
exclude a simple bad scenario). In [31], the authors added an addi-
tional condition during the verification process since they could not
prove one key lemma. It seemed to us that this condition actually
contradicts one of the three conditions they manually derived and
assumed in the verification process. A more detailed report on this
case study will appear in a forthcoming publication [29].

7.3 IEEE 1394 Root Contention Protocol
The IEEE 1394 standard specifies communication infrastructure

between electric devices. By using IEEE 1394, up to 63 devices
can be connected in a tree topology. The root contention protocol
(RCP) that we studied is used at the last phase of the tree topology
identification. Though the bad scenarios to be excluded are two,
due to the interleaved process actions (events), we ended up having
42 event orders. The model-checking successfully completed under
the ordering assumption within one second. The tool derived a
set of constraints that are equivalent to those manually derived in
[27]. A more detailed report on this case study will appear in a
forthcoming publication [29].

7.4 Fischer Mutual Exclusion
The Fischer mutual exclusion algorithm ([21], Section 24.2) is

a mutual exclusion algorithm that uses a timing behavior for cor-
rectness. We identified one bad event order, by using the symmetry
among process behavior. In this event order, we focus on a specific
interleaving of events between a pair of processes. Ignored event
specifications are used to treat behavior of other processes than the
focused pair as “don’t-care”. We successfully model-checked the
discrete model under the correct ordering assumption (it took 40
seconds for a system with five processes). The tool derived the
constraint that is manually derived in [21].

8. CONCLUSION AND FUTURE WORK
In this paper, we presented the event order abstraction (EOA)

technique to parametrically verify real-time systems. By using
EOA, the user can directly make use of his/her intuition about what
kind of bad scenarios need to be prevented, by specifying bad event
orders. We demonstrated the applicability of the technique by a
simple train-gate system and a summary of three other case stud-
ies, a biphase mark protocol, the root contention protocol of IEEE
1394, and the Fisher mutual exclusion algorithm, are briefly re-
ported.

This technique can be extended by enhancing automation of ver-
ification using EOA in the following processes: construction of an
event order monitor, decomposition of an event order, and extrac-
tion of a bad event order using heuristics. An interesting future
direction is extending bad event order language to treat a partial
order of events, as well as the current sequential order.

We consider that identifying bad event orders is useful not only
for the verification/synthesis process of EOA, but also for imple-
mentation engineers to understand what kind of undesirable sce-
narios can occur in the underlying system/protocol when param-
eters are badly tuned. Along this line, identified bad event orders
could be used in model-based testing or model-based test-case gen-
eration [10, 8], in which a formally specified model is used to test
an actual implementation of a system.
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