
Software Optimization for MPSoC :
A MPEG-2 Decoder Case Study

Eric Cheung, Harry Hsieh
Dept. of Computer Science and Engineering

University of California Riverside
Riverside, CA 92521

{chuncheung,harry}@cs.ucr.edu

Felice Balarin
Cadence Design Systems
San Jose, California 95134
felice@cadence.com

ABSTRACT
Using traditional software profiling to optimize embedded software
in an MPSoC design is not reliable. With multiple processors run-
ning concurrently and programs interacting, traditional profiling on
individual processors cannot capture useful execution information
to assist software optimization. A new method to model parallel
executions of interacting programs is needed. In this paper, we con-
sider the software optimization problem for throughput-constrained
MPSoC designs. We define the “longest delay path” as a sequence
of steps leading to a throughput constraint violation and propose
an algorithm to build up the path dynamically during simulation.
Using an industrial-strength MPEG-2 decoder design in our case
study and custom instructions for software optimization, we show
that we can optimize the software efficiently in MPSoC designs
using frequently executed statement information from the longest
delay path.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided software
engineering; C.4 [Performance of Systems]: Design studies

General Terms
Algorithms, Design, Performance

1. INTRODUCTION
Multiprocessor System-on-a-Chip (MPSoC) has emerged as the

most promising architecture for future embedded system designs.
MPSoC provides high performance and low power for data-intensive
multimedia applications that are not possible in single-processor
architecture. An MPSoC design contains multiple interacting em-
bedded programs. Software optimization is difficult because the
programs run in parallel instead of in series. Researches on MP-
SoC design optimization focus on custom hardware [4], intercon-
nects [9], interfaces [16], etc. Software optimization for MPSoC
has not been well-studied.

Software optimization techniques based on traditional software
profiling [3, 6] are not reliable for MPSoC designs. Traditional

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

software profiling assumes the programs in a design run sequen-
tially, hence reducing the execution time on any part of the pro-
grams reduces the overall execution time of the design. Traditional
software profiling weights each statement execution equally and
tries to find the statements that execute most frequently. However,
this assumption does not apply to MPSoC designs because pro-
grams run in parallel. Some statement executions are more impor-
tant than the others for the overall execution time. Therefore, tra-
ditional software profiling results on individual processors do not
reveal the statements that are critical for the overall execution time
of MPSoC designs. A new method to accurately determine the im-
portant statements is needed.

In this paper we try to find the statements that are critical for
the overall execution time in a throughput-constrained MPSoC de-
sign. The design is composed of interacting programs running on
separate processors. Programs block and unblock each others dur-
ing execution, which allow necessary communication and synchro-
nization between the programs. We use a symbolic model to ana-
lyze an execution of the design and define the longest delay path as
the execution path among the programs that leads to a throughput
constraint violation. We show that the longest delay path contains
very different information from the traditional software profiling.
We also propose an iterative algorithm to build up the longest de-
lay path dynamically during simulation with reasonable simulation
time overhead. Using custom instructions to speed up the most
frequently executed statements in the path, we demonstrate the ef-
ficiency of software optimization in an industrial-strength MPEG-2
decoder.

The rest of the paper is organized as follows. In Section 2, we
present some related works. In Section 3, we specify the through-
put constraints in an MPSoC design. In Section 4, we describe our
assumptions and the problem statement. In Section 5, we define
the software execution model for the longest delay path. In Section
6, we propose an iterative algorithm to find the path during simula-
tion. In Section 7, we show how the model applies to Kahn Process
Network as well as other models of computation. In Section 8, we
present a case study on an MPEG-2 decoder design. We conclude
the paper in Section 9.

2. RELATED WORK
Traditional software profiling information on individual proces-

sors has been extensively used in optimizing software. During sim-
ulation, execution frequencies of statements are recorded [3, 6],
and the most frequently executed statements (hotspots) in the pro-
grams are determined for optimization. However, such profiling
information is only applicable for single-processor designs where
all statements run sequentially. Traditional software profiling does
not provide accurate hotspot information for MPSoC.

43



Traces are normally used in post-simulation analysis for MPSoC
designs [12]. Visualization and debugging tools such as Vampir [5]
and Paje [8] provide interfaces to visualize the executions of the
programs in MPSoC simulation. These tools focus on efficient gen-
eration, synchronization and interpretation of multiple traces from
multiple processors. They do not create hotspot information for the
programs and no automatic analysis has been proposed for software
optimization.

Longest path finding in parallel computation is common for hard-
ware designs. Critical paths in logic [1] and gate level [7] have been
extensively used to estimate the shortest clock cycle possible in a
synchronous digital circuit. Throughput analysis has been applied
to Synchronous Data-Flow graphs [2] without the need of simu-
lation. These works rely on well-define semantics of the parallel
executing elements that do not exist in many richer models of com-
putation such as Kahn Process Network. We consider MPSoC de-
signs which consist of multiple programs that are large and require
long simulation to activate meaningful execution paths.

Custom instructions [15], hardware accelerators [11, 14] and li-
brary routines [13] are common techniques to speed up software
executions. They provide speedups by replacing the hotspots with
faster executions in specific software or hardware. Since hotspot
information for MPSoC is necessary to apply these techniques, cor-
rectly identifying hotspot information in the programs is crucial to
optimize software in limited design time.

3. THROUGHPUT CONSTRAINT
In this paper, we focus on throughput constraints in MPSoC de-

signs. MPSoC is a common implementation platform for multime-
dia and signal processing applications. Simulation is typically used
to examine whether a design satisfies the throughput constraints.
The input of the simulation can be an input benchmark for the ap-
plication, or an input that may violate the constraints constructed by
a property checking tool based on the abstract model of the design.

We consider the system as the implementation of the design and
the environments as the external controls. In an MPSoC design,
the system consists of multiple processors and interconnects. The
environments are the input/output components of the system, such
as sensors, networks and monitors. The environments are indepen-
dent of the execution of the system, and expect inputs and outputs
to follow pre-defined performance constraints.

3.1 Buffered Input/Output
To maintain steady flows between the system and the environ-

ments, inputs and outputs are buffered as shown in Figure 1. The
environments put data to the input buffers and consume data from
the output buffers in pre-defined rates. Buffered I/O provides more
implementation freedom to the system by allowing the system and
the environments to read and write asynchronously.

The time which the environments read and write from the buffers
is independent of the system. The system does not have any con-

Figure 1: Buffered Input/Output

trol over the time which the environments are expected to put input
data or consume output data. If the system can affect the reads
and writes of the environments, the impact should be modeled in-
side the system such that the system and the environment are inde-
pendent. Such independency is very important to define consistent
throughput constraints.

3.2 Throughput Constraint Violation
A throughput constraint is violated when an input buffer over-

flows or an output buffer underflows. The input buffers and output
buffers are sized in the system such that they withstand the asyn-
chronous reads and writes from the system and the environments.
However, if the system is too slow to consume data from the input
buffers or produce data to the output buffers in the pre-defined rates,
the input buffers will eventually be full of data when the environ-
ments write (overflow), or the output buffers will be empty when
the environments read (underflow). A throughput constraint is vi-
olated when an overflow or an underflow happens. Therefore, the
simulation checks the input buffers for overflow and output buffers
for underflow to determine whether the MPSoC design satisfies the
throughput constraints.

4. PROBLEM STATEMENT
Problem Statement. Assist the designers in software optimization
by automatically narrowing the correct hotspots to a small number
of statements.

If MPSoC simulation shows that a throughput constraint is vio-
lated, we try to help the designers to resolve the constraint viola-
tion with software optimization by automatically generating correct
hotspot information. Similar to traditional software profiling infor-
mation for single-processor designs, such hotspot information for
MPSoC allows designers to focus on small number of statements
to optimize their software.

4.1 Assumption
We assume each program in the design runs on one processor

in MPSoC. With multiple processors in the system, each processor
has a well-defined role and is dedicated to one job. Each program
runs on one processor only. We are currently investigating the ef-
fect when multiple programs run on a processor.

We further assume the program steps in the MPSoC design have
strictly precedence relationships. The programs run cooperatively
instead of independently. If we consider the execution of a program
as a sequence of steps, certain steps have dependencies to other
steps in other programs. These steps have to wait for their depen-
dent steps in other programs to finish before they can execute. Such
assumption is reasonable for MPSoC designs and applies to many
models of computation. We will show the symbolic model for the
relationships in Section 5 and how the relationships are applied to
Kahn Process Network designs in Section 7.

4.2 Longest Delay Path
To reveal the correct hotspot information in the programs for

software optimization, we first need to determine the execution path
that leads to the constraint violation. We consider a violation step
as the step where the starting time comes late and does not meet the
throughput constraint. For an input buffer, the violation step is the
step that reads from the input buffer after the buffer overflows. Sim-
ilarly, for an output buffer, the violation step is the step that writes
to the output buffer after the buffer underflows. The violation step
is said to be responsible for the constraint violation because the
constraint would not have been violated had the step started earlier.

44



Figure 2: Longest Delay Path

We define the longest delay path with respect to a processing
step in a program as the sequence of executed statements among all
programs that contributes to the earliest starting time of the step.
As each program runs sequentially and some steps wait until their
dependent steps in other programs finish under the strictly prece-
dence relationships, there is an execution path among the programs
that leads to the earliest starting time of the step. Reducing the ex-
ecution time on any part of the path allows an earlier starting time.

An example of the longest delay path with respect to a violation
step is shown in Figure 2. p1 to p4 are four programs running on
an MPSoC system. In the figure, block means a processing step in
a program cannot execute right away because of the strictly prece-
dence relationships. When the dependent steps are later finished,
the step is unblocked. The figure shows the blocking and unblock-
ing between the programs over the execution time. In the example,
the input buffer overflows because an input read from p1 comes too
late. The longest delay path of the violation step, as highlighted
in the figure, is the execution path among the programs that leads
to the earliest starting time of the violation step. According to the
path, program p2 is responsible for majority of the delay that leads
to the constraint violation. Therefore, software optimization should
focus on the statements on p2. On the other hand, optimizing p3
cannot resolve the constraint violation. Definition of the longest
delay path will be shown in Section 5.3 and algorithms to find such
path will be shown in Section 6.

5. MPSOC EXECUTION MODEL
In this section, we describe the symbolic model to analyze an

execution of an MPSoC design. We model each program in an
MPSoC system as a step transition, and we use strictly precedence
relationships to model interactions between the programs.

5.1 Execution Model
For each program in the MPSoC design, we model it as a step

transition. Each non-repeating step σ represents a processing step
in a program. σP

i ∈ S is the step i in program P and σP
0 is the

beginning of the program. S is the set of all steps in all programs.
τP

i ∈ R+ is the starting time of the step σP
i , and δP

i ∈ R+ is the
execution time (delay) of the step σP

i .
A step represents execution of a set of statements in the program

and its execution history (hence non-repeating). A statement that
can be blocked by other programs always start a step, and a state-
ment that can unblock other programs always end a step. Therefore,
blocking and unblocking always occur between steps.

Property 1. Step sequence in a program:

For all steps σP
i , i ∈ [0,∞) in a program P,

the step sequence is σP
0 σP

1 σP
2 ...

Property 2. Starting time restriction on consecutive step:

For all steps σP
i , i ∈ [1,∞) in program P,

τP
i−1 + δP

i−1 ≤ τP
i

Property 1 specifies that each program executes sequentially. Each
step σP

i is an execution of a set of statements and δP
i is the execu-

tion time of the statements. A program runs sequentially and subse-
quent step cannot start before the previous step finishes. Therefore
a program is executed following the step sequence and the earliest
starting time of each step is restricted by Property 2.

We also define environment events σE
i as a sequence of steps

from the environments. σE
0 is an event representing the beginning

of the execution. σE
i , i > 0 are steps that read and write from

the buffered inputs and outputs. Since the environments are in-
dependent of the system, all starting time and execution time of
the environment events (τE

i and δE
i ) are pre-defined based on the

throughput constraints.

Property 3. Starting time restriction on precedence relation:

Step σQ
j strictly precedes step σP

i

→ τQ
j + δQ

j ≤ τP
i

Interacting programs have strictly precedence relationships. If a
dependency is implied such that the step i in program P cannot start
before the step j in program Q finishes, we can specify the depen-
dency as a starting time restriction. Property 3 shows the starting
time restriction of a strictly precedence relation. The relation limits
the earliest starting time of the steps in addition to the restriction
shown in Property 2.

5.2 Earliest Starting Time
With each program runs on a processor, program steps start as

soon as possible after all restrictions in Property 2 and 3 are satis-
fied. For a step σP

i that depends on steps σQ
j and σR

k , its starting
time is the latest of the finish time for its previous step σP

i−1 in the
same program and all the dependent steps.

τP
i = max(τP

i−1 + δP
i−1, τ

Q
j + δQ

j , τR
k + δR

k )

Step σP
i is called blocked when it cannot start immediately af-

ter its previous step σP
i−1. i.e. τP

i−1 + δP
i−1 �= τP

i . The step is
unblocked by one of the dependent steps σQ

j when τQ
j + δQ

j = τP
i .

We define Pre : S → S as the immediate prior step relation-
ships. If a step is not blocked, Pre(σP

i ) = σP
i−1 because the step

immediately follows its previous step in the same program. If it is
blocked, Pre(σP

i ) = σQ
j where σQ

j is the step that unblocks σP
i .

We assume no one step is unblocked by two steps at the same time.
Therefore, the immediate prior step of the step σP

i is defined as
follows:

∀σP
i , i ∈ (0,∞), P re(σP

i ) = {σP ′
i′ |σP ′

i′ unblocks σP
i }

Immediate prior step of a step σP
i can come from the environ-

ments if σP
i is blocked by reading from an input buffer when the

buffer is empty or by writing to an output buffer when the buffer is
full. In such case, Pre(σP

i ) = {σE
j } where σE

j is the environment
event. The immediate prior step of any environment event σE is ∅.

5.3 Definition of Longest Delay Path
The longest delay path of a processing step can be defined using

the symbolic model. The longest delay path is the sequence of

45



statements that contributes to the earliest starting time of the step.
The path can also be represented by a set of steps in S. Since the
earliest starting time of step σP

i depends on the step Pre(σP
i ), we

can define the longest delay path of the step σP
i as follows.

LDP (σP
i ) = {σP ′

i′ |(σP ′
i′ = σP

i )

∨ (σP ′
i′ = Pre(σ ∈ LDP (σP

i )))}
The longest delay path of the violation step for a constraint vi-

olation is used to determine hotspot information for software op-
timization. The violation step σPv

iv is either a read from an input
buffer or a write to an output buffer. LDP (σPv

iv ) represents the
execution path among the programs that leads to the constraint vi-
olation. Such path provides designers important information on
where to optimize their software in order to resolve the violation.

6. ALGORITHM

6.1 Naïve Algorithm
Since the longest delay path has a recursive definition, a naïve al-

gorithm uses traces from simulation and back-tracks the execution
path from the step of the constraint violation. Such algorithm can
be used alongside with trace-based analysis tools [5, 8]. Starting
from the violation step σPv

iv , we use the simulation traces to back-
track the immediate prior step Pre(σPv

iv ). The immediate prior
step is responsible for the lateness of the starting time of the step
σPv

iv . We can build up the longest delay path of the violation step
by recursively back-tracking until the immediate prior step is an
environment event (i.e. a write in the input buffer or a read from
the output buffer). The naïve algorithm is shown in Algorithm 1.

Algorithm 1: Naïve Trace-based Algorithm
Input: trace,σPv

iv

Output: LDP (σPv
iv )

LDP (σPv
iv ) = {σPv

iv }1

σP
i = σPv

iv2

while Pre(σP
i ) �= σE do3

LDP (σPv
iv ) = LDP (σPv

iv ) ∪ {Pre(σP
i )}4

σP
i = Pre(σP

i )5
end6

return LDP (σPv
iv )7

Although the naïve trace-based algorithm allows the longest de-
lay path to be derived from simulation traces, the algorithm relies
on complete simulation traces and post-simulation analysis. Gener-
ating traces is very expensive in term of simulation speed and disk
space. The algorithm is not scalable for long simulation and may
generate very large traces that are difficult to analyze. Therefore,
we present an iterative algorithm to derive the longest delay path
dynamically during simulation that does not require generating any
traces.

6.2 Iterative Algorithm
The iterative algorithm comes from the definition that the longest

delay path of any step σP
i is based on the longest delay path of its

immediate prior step Pre(σP
i ). When expanding the definition of

the LDP (σP
i ), the path includes the step σP

i itself and the longest
delay path of its immediate prior step LDP (Pre(σP

i )). There-
fore, we can use the following definition to iteratively build up the
longest delay path in each step during simulation.

LDP (σP
i ) = {σP

i } ∪ LDP (Pre(σP
i ))

The algorithm used to keep track of the longest delay path in each
step dynamically during simulation is shown in Algorithm 2. When
each step starts, it copies the longest delay path from its immediate
prior step and adds itself to the path. The immediate prior step can
be an environment event σE if the step is blocked by a read or a
write from the environments.

Algorithm 2: Iterative Algorithm
Output: LDP (σPv

iv )
forall program P do1

LDP (σP
0 ) = {σE

0 }2
end3
repeat4

foreach step σP
i starts do5

LDP (σP
i ) = {σP

i } ∪ LDP (Pre(σP
i ))6

end7

until σP
i violates a throughput constraint8

return LDP (σP
i )9

Only the longest delay path of the currently executing step in
each program is needed to be kept to determine the longest delay
path of the step for a constraint violation. We do not keep the paths
for other steps since we are only interested in the violation step. As
the violation step executes after a constraint is violated, we know
immediately when the step comes late. Therefore, we only need to
keep one longest delay path of the currently executing step in each
program and discard those steps that are finished.

6.3 Optimization Methodology
The longest delay path analysis should be repeated after each

software optimization is applied. After an optimization is applied,
the original longest delay path is shortened and no longer violates
the constraints. However, there may exist another path that still
violates the constraints and becomes the new longest delay path.
Therefore, the analysis should be repeated.

The software optimization methodology is shown in Figure 3.
A designer-in-the-loop approach is used to repeat the longest de-
lay path analysis after each optimization is applied to ensure that
the subsequent optimization is based on correct hotspot informa-
tion according to the updated longest delay path. The optimization
steps repeat until all throughput constraints are satisfied across all
interested inputs.

Figure 3: Software Optimization Methodology

46



7. MODEL OF COMPUTATION
Kahn Process Network (KPN) specification is a common model

of computation for MPSoC. A KPN application is modeled as a
set of processes that communicate using a set of FIFO. Reads and
writes to the FIFO are blocking. A program is blocked when it
reads from an empty FIFO or writes to a full FIFO. The program is
then unblocked when another process writes to the empty FIFO or
read from the full FIFO.

The computation model of KPN complies with our software model
with strictly precedence relationships. Each process in KPN is a se-
quential program that only communicates to other processes using
FIFO. A FIFO f is an ordered queue where data is produced and
consumed in the same order. A FIFO contains a sequence of data.
The i-th data in the FIFO f is denoted as f i. The Prod(f, i) and
Cons(f, i) denote production (writing) and consumption (reading)
of the data f i.

The semantics of a FIFO restrict the starting time of produc-
tion and consumption of the data. Specifically, the production of
the data f i+1 must happen after the production of the data fi (i.e.
τProd(f,i) ≤ τProd(f,i+1)), and the consumption of the data has
to be in the same order (i.e. τCons(f,i) ≤ τCons(f,i+1)). In ad-
dition, the data must be produced before it can be consumed, i.e.
τProd(f,i) ≤ τCons(f,i). If a process tries to consume the data
from the FIFO before the data is produced, the process has to wait
until the data is available. This is commonly referred to as “block-
ing reads”. For a FIFO f with size N , the production of the data
f i+N cannot occur before the consumption of the data fi. As a
result τCons(f,i) ≤ τProd(f,i+N). This is commonly referred to
as “blocking writes”. These restrictions can be represented in our
software model as strictly precedence relationships.

blocking unblocking
shared variable spinwait write

message-passing blocking read/write write/read
handshaking synchronize synchronize

Table 1: Blocking Mechanism

Blocking mechanism is also very common in other multiproces-
sor models of computation. As shown in Table 1, blocking and
unblocking are commonly used in MPSoC to synchronize multiple
asynchronously executing programs. In symmetric multiprocess-
ing, blocking can be achieve by a spinwait on a shared variable,
and the spinwait is unblocked with a proper write to the variable.
Although such blocking and unblocking mechanisms are not as ex-
plicit as in KPN, they can still be modeled for the longest delay
path analysis.

8. MPEG-2 DECODER CASE STUDY
An MPEG-2 decoder design is used to demonstrate the effective-

ness of software optimization using the hotspot information from
the longest delay path. The MPEG-2 decoder is manually designed
such that high-level parallelism of the application is explicitly de-
fined. The decoder is developed in KPN with complex controls and
operations. The MPEG-2 decoder design consists of 9 processes
and 63 FIFO. The process network is shown in Figure 4. The con-
troller process controls the dataflow of the MPEG-2 stream through
the decoding stages. The stream is first parsed with variable length
decoding into frames and macro-blocks. Each of them is then de-
coded through inverse scan, inverse quantization and inverse dis-
crete cosine transform. Prediction processes predict the frames and
motion compensation. Output processes combine the results and
produce a raw video stream.

Figure 4: MPEG-2 Decoder Design

In the experiments, we use Tensilica’s Xtensa LX2 processors
with a typical configuration. The processors are extensible such
that we can design custom instructions and integrate them into the
processor datapaths using Tensilica Instruction Extension language
(TIE) [15]. Processors in the MPSoC design become heteroge-
neous by adding custom instructions into the processors.

8.1 Statement Execution Frequency
In the first experiment, we compare the hotspot results between

the traditional software profiling and the longest delay path. To
introduce a constraint violation, we set a very tight constraint to
decode one group of pictures of an MPEG-2 stream. Each group of
pictures contains half a second of video.

program line # profiling (%) LDP (%) diff (%)
Twritemb 299-300 9.96% 0.02% -99.80%
Tpredict 400-401 7.56% 14.66% +93.92%
Toutput 401-402 6.51% 0.71% -89.09%
Tidct 203-237 5.79% 10.51% +81.52%

Tpredict 382-390 5.48% 14.31% +161.13%
Tadd 266-268 5.30% 0.59% -88.87%
Tadd 278-285 4.59% 0.20% -95.64%

Tpredict 367-369 2.72% 5.07% +86.40%
Tpredict 338-339 2.17% 3.93% +81.11%
Tpredict 351-357 2.01% 5.28% +162.69%

Tidct 147-181 1.90% 3.79% +99.47%
Tpredict 296-299 1.87% 4.64% +148.13%

Table 2: Profiling vs. Longest Delay Path

Table 2 shows the execution frequencies of the statements in the
traditional software profiling and the longest delay path. We com-
pare the frequencies of the 14 most frequently executed statements
in the traditional software profiling. These 14 statements are re-
sponsible for more than 50% of the total execution time in both
results. As shown in the table, although some statements take a
long time to execute (i.e. line 299-300 in writemb), the statements
do not contribute to the longest delay path. Optimizing these state-
ments does not provide any throughput improvements in the MP-
SoC design. On the other hand, some statements (i.e. line 382-390
in predict) show more significance in the longest delay path. These
statements are important in the MPSoC design and optimizing these
statements will provide substantial throughput improvements.

The overhead to keep track of the longest delay path in each
step dynamically during simulation increases the simulation time
by about 70%. Such overhead is comparable to traditional software
profiling in single-processor simulation and several times faster
than generating simulation traces for off-line analysis.

8.2 Software Optimization Result
Based on the hotspot information from both results, we apply

software optimization to the processes in the MPEG-2 decoder.
We use Tensilica’s XPRES compiler [10] to generate custom in-
structions for the most frequently executed statements. We direct
the XPRES compiler to optimize the statements according to the

47



hotspot information. We use the default options to combine mul-
tiple instructions in the original programs into a lesser number of
complex instructions. Table 3 shows the speedups of the custom in-
structions on the statements we used in the experiments. The gen-
erated custom instructions reduce the execution time of the state-
ments themselves by 36% to 55%. The table also shows the num-
bers of gates required to implement the custom instructions.

# program line # gate runtime
1 Twritemb 299-300 12,683 -42%
2 Tpredict 400-401 7,421 -38%
3 Toutput 401-402 12,693 -37%
4 Tidct 203-237 27,295 -36%
5 Tpredict 382-390 8,727 -50%
6 Tadd 266-268 12,779 -42%
7 Tadd 278-285 5,356 -38%
8 Tpredict 351-357 8,247 -47%
9 Tpredict 367-369 5,218 -55%

10 Tpredict 296-299 4,747 -40%
11 Tpredict 338-339 4,927 -55%
12 Tidct 147-181 17,861 -47%

Table 3: Speedup for Custom Instruction

We compare the throughput improvements using the hotspot in-
formation between the traditional software profiling and the longest
delay path. For the traditional software profiling, we apply the cus-
tom instructions in the order of execution frequencies shown in the
column profiling in Table 2. For the longest delay path, we iter-
atively apply custom instructions to the most frequently executed
statements shown in the longest delay path and follow the described
optimization methodology in Section 6.3. We limit the area for cus-
tom instructions to 90K gates.

The software optimization results are shown in Figure 5. Us-
ing the longest delay path, we can correctly determine the impor-
tant statements that can speed up the MPSoC design. Therefore,
a throughput improvement can be observed in every custom in-
struction we applied. On the other hand, traditional software pro-
filing does not reveal the statements that are important in the MP-
SoC design. With imprecise hotspot information, designers will
waste their time optimizing an unimportant part of the programs
and can only discover later that the optimization does not show any
throughput improvements in the simulation. As a result, the soft-
ware optimization using the longest delay path offers 50% better
throughput improvement than using the traditional software pro-
filing with 90K gates. In the scenario where 10% throughput im-
provement is required to meet the throughput constraints, custom
instructions using information from the longest delay path take 16K
gates, while custom instructions using information from traditional

Figure 5: Software Optimization Result

profiling take 69K gates. Our longest delay path analysis provides
designers correct hotspot information and allows designers to opti-
mize the software efficiently.

9. CONCLUSION
In this paper, we present a software optimization case study on an

MPSoC design. We define the longest delay path as the execution
path that is important to optimize in order to resolve a throughput
constraint violation. We present an iterative algorithm to derive
the path dynamically during simulation with reasonable simulation
time overhead. We show that the longest delay path correctly iden-
tifies the hotspots for efficient software optimization in MPSoC.

10. REFERENCES
[1] V. D. Agrawal. Synchronous path analysis in mos circuit simulator.

In DAC ’82: Proceedings of the 19th conference on Design
automation, pages 629–635, Piscataway, NJ, USA, 1982. IEEE
Press.

[2] F. Balarin, L. Lavagno, et al. Scheduling for embedded real-time
systems. IEEE Des. Test, 15(1):71–82, 1998.

[3] T. Ball and J. R. Larus. Optimally profiling and tracing programs.
ACM Trans. Program. Lang. Syst., 16(4):1319–1360, 1994.

[4] R. Banakar, S. Steinke, et al. Scratchpad memory: design alternative
for cache on-chip memory in embedded systems. In CODES ’02:
Proceedings of the tenth international symposium on
Hardware/software codesign, pages 73–78, New York, NY, USA,
2002. ACM.

[5] H. Brunst, D. Kranzlmüller, and W. Nagel. Tools for scalable parallel
program analysis - vampir ng and dewiz. pages 93–102. 2005.

[6] P. P. Chang, S. A. Mahlke, and W. mei W. Hwu. Using profile
information to assist classic code optimizations. Softw. Pract. Exper.,
21(12):1301–1321, 1991.

[7] H.-C. Chen, D. H. C. Du, et al. Critical path selection for
performance optimization. In DAC ’91: Proceedings of the 28th
conference on ACM/IEEE design automation, pages 547–550, New
York, NY, USA, 1991. ACM.

[8] J. C. de Kergommeaux and B. de Oliveira Stein. Paje: An extensible
environment for visualizing multi-threaded programs executions. In
Euro-Par ’00: Proceedings from the 6th International Euro-Par
Conference on Parallel Processing, pages 133–140, London, UK,
2000. Springer-Verlag.

[9] G. de Micheli and L. Benini. Networks on chip: A new paradigm for
systems on chip design. In DATE ’02: Proceedings of the conference
on Design, automation and test in Europe, page 418, Washington,
DC, USA, 2002. IEEE Computer Society.

[10] D. Goodwin and D. Petkov. Automatic generation of application
specific processors. In CASES ’03: Proceedings of the 2003
international conference on Compilers, architecture and synthesis
for embedded systems, pages 137–147, New York, NY, USA, 2003.
ACM.

[11] R. K. Gupta and G. D. Micheli. Hardware-software cosynthesis for
digital systems. pages 5–17, 2002.

[12] G. Martin. Overview of the mpsoc design challenge. In DAC ’06,
pages 274–279, New York, NY, USA, 2006. ACM Press.

[13] A. Peymandoust, G. D. Micheli, and T. Simunic. Complex library
mapping for embedded software using symbolic algebra. In DAC
’02: Proceedings of the 39th conference on Design automation,
pages 325–330, New York, NY, USA, 2002. ACM.

[14] G. Stitt, F. Vahid, and S. Nematbakhsh. Energy savings and speedups
from partitioning critical software loops to hardware in embedded
systems. Trans. on Embedded Computing Sys., 3(1):218–232, 2004.

[15] A. Wang, E. Killian, et al. Hardware/software instruction set
configurability for system-on-chip processors. In DAC ’01:
Proceedings of the 38th conference on Design automation, pages
184–188, New York, NY, USA, 2001. ACM.

[16] M.-W. Youssef, S. Yoo, et al. Debugging hw/sw interface for mpsoc:
video encoder system design case study. In DAC ’04: Proceedings of
the 41st annual conference on Design automation, pages 908–913,
New York, NY, USA, 2004. ACM.

48


