
Scratchpad Allocation for Concurrent Embedded Software

Vivy Suhendra, Abhik Roychoudhury, and Tulika Mitra
Department of Computer Science, National University of Singapore

{vivy, abhik, tulika}@comp.nus.edu.sg

ABSTRACT
Software-controlled scratchpad memory is increasingly employed
in embedded systems as it offers better timing predictability com-
pared to caches. Previous scratchpad allocation algorithms typi-
cally consider single process applications. But embedded appli-
cations are mostly multi-tasking with real-time constraints, where
the scratchpad memory space has to be shared among interacting
processes that may preempt each other. In this paper, we develop
a novel dynamic scratchpad allocation technique that takes these
process interferences into account to improve the performance and
predictability of the memory system. We model the application
as a Message Sequence Chart (MSC) to best capture the inter-
process interactions. Our goal is to optimize the worst-case re-
sponse time (WCRT) of the application through runtime reloading
of the scratchpad memory content at appropriate execution points.
We propose an iterative allocation algorithm that consists of two
critical steps: (1) analyze the MSC along with the existing al-
location to determine potential interference patterns, and (2) ex-
ploit this interference information to tune the scratchpad reloading
points and content so as to best improve the WCRT. We evaluate
our memory allocation scheme on a real-world embedded applica-
tion controlling an Unmanned Aerial Vehicle (UAV).

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-time
and embedded systems

General Terms
Design, Performance

Keywords
Scratchpad memory, WCET, Message Sequence Chart

1. INTRODUCTION
Scratchpad memory is a software-managed on-chip memory that

has been widely accepted as an alternative to caches in real-time
embedded systems, as it offers better timing predictability com-
pared to caches. The compiler and/or the programmer explicitly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

controls the allocation of instructions and data to the scratchpad
memory. Thus the latency of each memory access is completely
predictable. However, this predictability is achieved at the cost of
compiler support for content selection and runtime management.

In this paper, we address the problem of scratchpad memory
allocation for concurrent embedded software (with real-time con-
straints) running on uniprocessor or multiprocessor platforms. Our
objective is to reduce the worst-case response time (WCRT) of
the entire application. Our problem setting is representative of the
current generation embedded applications (e.g., in automotive and
avionics domain) that are inherently concurrent in nature and, at
the same time, are expected to satisfy strict timing constraints. The
combination of concurrency and real-time constraints introduces
significant challenges to the allocation problem.

Given a sequential application, the problem of content selection
for scratchpad memory has been studied extensively [9, 10, 12, 14].
However, these techniques are not directly applicable to concurrent
applications with multiple interacting processes. Figure 1 shows a
Message Sequence Chart (MSC) model [1, 3] depicting the inter-
action among the processes in an embedded application. We use
MSC model as it provides a visual but formal mechanism to cap-
ture the inter-process interactions. Visually, an MSC consists of
a number of interacting processes each shown as a vertical line.
Time flows from top to bottom along each process. A process in
turn consists of one or more tasks represented as blocks along the
vertical line. Message communications between the processes are
shown as horizontal or downward sloping arrows. Semantically, an
MSC denotes a labeled partial order of tasks. This partial order is
the transitive closure of (a) the total order of the tasks in each pro-
cess, and (b) the ordering imposed by message communications —
a message is received after it is sent.

A naive allocation strategy can be to share the scratchpad mem-
ory among all the tasks of all the processes throughout the lifetime
of the application. Allocation algorithms proposed in the litera-
ture for sequential applications can be easily adapted to support
this strategy. However, this strategy is clearly sub-optimal, as a
task executes for only a fraction of the application’s lifetime yet
occupies its share of the memory space for the entire lifetime of the
application. Instead, two tasks with disjoint lifetimes (e.g., tasks
fm0 and fm4 in Figure 1) should be able to use the same mem-
ory space through time multiplexing. This is known as dynamic
scratchpad allocation or scratchpad overlay where the scratchpad
memory content can be replaced and reloaded at runtime.

As timing predictability is the main motivation behind the choice
of scratchpad memory over caches, it should be maintained even in
the presence of scratchpad overlay. This implies that in a concur-
rent system (e.g., as shown in Figure 1), two tasks t1 and t2 should
be mapped to the same memory space only if we can guarantee

37

Figure 1: Message Sequence Chart (MSC) model of the adapted UAV control application

Figure 2: Workflow of WCRT-optimizing scratchpad allocation

that t1 and t2 have disjoint lifetimes. Otherwise, t1 and t2 may
preempt each other, leading to scratchpad reloading delay at every
preemption point. We can trivially identify certain tasks with dis-
joint lifetimes; for example, based on the partial order of an MSC,
if task t1 “happens before" task t2, clearly t1 and t2 have disjoint
lifetimes. However, there may exist many pairs of tasks that are
incomparable as per MSC partial order but still have disjoint life-
times. Moreover, as scratchpad allocation reduces execution times
of the individual tasks, the lifetimes and the interference among
the tasks may change. Therefore, an effective scratchpad alloca-
tion scheme attempting to minimize the WCRT of the application
should consider the process interference as well as the impact of
allocation on process interference.

In this paper, we propose an iterative allocation algorithm (Fig-
ure 2) consisting of two critical steps: (1) analyze the MSC along
with existing allocation to estimate the lifetimes of tasks and hence
the non-interfering tasks, and (2) exploit this interference informa-
tion to tune scratchpad reloading points and content so as to best
improve the WCRT. The iterative nature of our algorithm enables
us to handle the mutual dependence between allocation and process
interaction. As we ensure a monotonic reduction of WCRT in every
iteration, our allocation algorithm is guaranteed to terminate.

Concretely, our main contribution in this paper is a novel dy-
namic scratchpad allocation technique that takes process interfer-
ences into account to improve the performance and predictability
of the memory system for concurrent embedded software. Our
case study with a complex embedded application controlling an

Unmanned Aerial Vehicle (UAV) reveals that we can achieve sig-
nificant performance improvement through appropriate content se-
lection and runtime management of the scratchpad memory.

Related Work. The problem of content selection for scratchpad
memory has been studied extensively for sequential applications.
Most of these works [10, 14] aim to minimize average-case exe-
cution time or energy consumption through scratchpad allocation.
Scratchpad content selection for minimizing the worst-case exe-
cution time (WCET) has been addressed as well [9, 12]. How-
ever, these techniques are not applicable when the scratchpad space
needs to be shared among multiple interacting processes.

The work by Verma et al. [15] presents a set of scratchpad shar-
ing strategies among the processes for energy consumption mini-
mization. However [15] simply assumes a statically defined sched-
ule whereas we consider priority driven preemptive scheduling.
Moreover, the scratchpad sharing decisions in [15] are not based
on interactions and interference among the processes, which are
critical in our case to provide real-time guarantees.

Scratchpad sharing among different processing elements (PEs)
in a multiprocessor system-on-a-chip has also been investigated.
Here the focus is more on mapping of codes/data to the private
scratchpad memories of the PEs so as to maximize the benefit from
the scratchpad allocation [4]. Other techniques include exploration
of scratchpad hierarchy [2, 13] and runtime customization of scratch-
pad sharing and allocation among the PEs [5].

Finally, this work complements the research on cache-related
preempted delay (CRPD) [6, 7], which provides timing guarantee
for concurrent software by analyzing interferences in cache mem-
ory due to process interactions. Our work, on the other hand, elim-
inates interference in memory through scratchpad allocation.

2. PROBLEM FORMULATION
The input to our problem is in the form of Message Sequence

Chart (MSC) [1, 3] that captures process interactions correspond-
ing to a concurrent embedded application. We assume a preemp-
tive, multi-tasking execution model. The application is periodic in
nature. The MSC represents interactions within one such invoca-
tion where all processes involved should adhere to a common pe-
riod and deadline. The underlying hardware platform contains one

38

Figure 3: Sample MSC, task lifetimes and interference graphs before and after scratchpad allocation

or more processing elements (PEs), each associated with a private
scratchpad memory. A process (a vertical line in the MSC) typi-
cally corresponds to a specific functionality. It is thus natural to
assign all the tasks in a process to one PE. The order in which the
tasks appear on the process lifeline reflects their order of execution
on the PE. In this paper, we assume zero communication delay be-
tween processes. However, our analysis can be easily adapted to
include non-zero communication delays.

Each process is assigned a unique static priority. The priority of
a task is equal to the priority of the process it belongs to. A task
t1 in a process P may get preempted by a task t2 from a higher
priority process P ′. The assignment of static priorities to processes
and the mapping of processes to PEs are inputs to our framework.
Note that statically assigned priorities do not guarantee a fixed ex-
ecution schedule at runtime. The preemptions and execution time
variations depending on input lead to varying completion times of
a task. This, in turn, gives rise to different execution schedules.

We now formalize the problem definition. Let t1, . . . , tN denote
the tasks belonging to all the processes in the application. Each
task ti (1 ≤ i ≤ N) is associated with a period pi, a static priority
ri (the range of ri is [1, R] with 1 being the highest priority), and
mapping to a PE PEi (the range of PEi is [1, Q] where Q is the
number of PEs in the system). As mentioned before, all the tasks
belonging to a process have the same priority and are mapped to
the same PE. Further, let ci denote the uninterrupted worst-case
execution time (WCET) of the task ti running on PEi in isolation.
The estimation of ci does not assume any scratchpad allocation,
i.e., all the accesses incur the main memory latency.

Let S be a particular scratchpad allocation for the application. In
this work, we consider allocating program codes into the scratch-
pad. The method applies similarly to data allocation. S consists
of two components: (1) the amount of scratchpad space space(ti)
allocated to each task, and (2) the allocation of space(ti) among
the code blocks of ti. Note that as we allow scratchpad overlay,
the same scratchpad memory space can be allocated to two or more
tasks as long as they have disjoint lifetimes. Let Memi denote
the set of all code blocks of ti available for allocation. Given
space(ti), the allocation Alloc(ti) ⊆ Memi is the set of most
profitable code blocks from ti to fit the capacity. Finally, WCET of
ti as a result of allocation S is denoted as wcet(ti,S).

Given an allocation S and the corresponding WCET of the tasks,
we can estimate the lifetime of each task, defined as the interval

between the lower bound on the start time Start(ti,S) and the
upper bound on the finish time Finish(ti,S) of the task. This
estimation should take into account the dependencies among the
tasks (total order among the tasks within a process and ordering
imposed by message communication) as well as preemptions. The
WCRT of the whole application is now given by

WCRT = max1≤i≤N Finish(ti,S)−min1≤i≤N Start(ti,S)
(1)

Our goal is to construct the scratchpad allocation S that minimizes
the WCRT of the application.

3. METHOD OVERVIEW
Our proposed method is an iterative scheme (Figure 2), which

we will elaborate below. Figure 3(a) shows an MSC extracted from
our case study for the purpose of illustration.

Task Analysis. We analyze each task to determine its WCET with
a given scratchpad allocation (initially empty), along with the area
and the gain of allocating each of its code blocks. The WCET will
serve as input to the WCRT analysis, while the memory profile will
be used to choose the scratchpad content for the task at the alloca-
tion step. We handle code allocation in this paper, for which possi-
ble choices of granularity are a basic block (which we use here) or a
function. The gain of allocating a block of code, in terms of execu-
tion time saving, is the execution frequency of the block multiplied
by the reduction in latency required to fetch the block from scratch-
pad instead of from main memory. As we are considering systems
with real-time constraints, the execution frequencies correspond to
the worst-case execution path, which in turn is obtained via static
analysis [11]. Worst-case execution path may shift as allocation de-
cisions change; thus task profiles should be updated following each
change in the course of the iterative improvement. We adapt our
previous work on WCET-centric allocation of data for a single task
to scratchpad memory [12] for this purpose.

WCRT Analysis. The WCRT of a task ti is a function of its WCET
value and the delay caused by higher priority tasks whose lifetimes
overlap with that of ti. A fixed-point iteration computes this value
by finding the root to the equation

x = g(x) = wcet(ti,S) +
X

tj∈intf(ti)

wcet(tj ,S)× ˚
x

‹
pj

ˇ

39

intf(ti) =
˘

tj
˛̨
rj < ri AND (2)ˆ

Start(tj ,S), F inish(tj ,S)
˜ ∩ ˆ

Start(ti,S), F inish(ti,S)
˜ �= ∅ ¯

If we denote this WCRT value as wcrt(ti,S), we have for each
task ti: Finish(ti,S) = Start(ti,S) + wcrt(ti,S). Further, the
partial ordering of tasks in the MSC imposes the constraint that a
task ti can start execution only after all its predecessors have com-
pleted execution. In other words, Start(ti,S) ≥ Finish(u,S)
for all tasks u preceding ti in the partial order of the MSC. Ob-
serving these rules, the WCRT analysis computes the lifetimes of
all tasks in all processes. After the analysis, we construct the task
interference graph for the purpose of scratchpad allocation. Figure
3(b) shows the task lifetimes computed by the WCRT analysis and
the constructed interference graph given the MSC in (a). An edge
between two nodes in the interference graph implies overlapping
lifetimes of the two tasks represented by the nodes.

Scratchpad Sharing Scheme & Allocation. Based on the inter-
ference pattern resulting from the WCRT analysis, we can construct
a scratchpad sharing scheme among tasks on the same PE. One pos-
sible scheme is illustrated in Figure 3(c), which shows the space
sharing among tasks as well as the dynamic overlay over time. The
schemes will be elaborated in the next section. The sharing scheme
determines the space allocated to each task, and the memory pro-
files obtained in the first step are used to select the most beneficial
scratchpad content. The selection strategy is based on our previous
work that aims to minimize the task WCET, taking into account the
possible shift in worst-case execution path [12]. After allocation is
performed, the task analysis is re-applied to find the new WCET.

Post-Allocation Analysis. Given updated task WCETs after al-
location, the WCRT analysis is performed once again to compute
updated task lifetimes. There is an important constraint to be ob-
served in the WCRT analysis when the allocation decision has been
made. The new WCET values have been computed based on the
current scratchpad allocation, which is in turn decided based on the
task interference pattern resulting from the previous analysis. In
particular, scratchpad overlays have been decided among tasks de-
termined to be interference-free. Therefore, these values are only
valid for the same interference pattern, or for patterns with less in-
terference. To understand this, suppose the interference graph in
Figure 3(b) leads to the allocation decision in (c). The reduction
in WCET due to the allocation in turn reduces task response times
and changes task lifetimes to the one shown in (d). However, this
computation of lifetimes is incorrect, because it assumes the WCET
value of fs0 given that it can occupy the assigned scratchpad space
throughout its execution. If fm4 is allowed to start earlier, right af-
ter its predecessor fr1 as shown in (d), it may in fact preempt fs0,
flushing the scratchpad content of fs0 and causing additional delay
for reload when fs0 resumes. Indeed, we see that the interference
graph in (d) has an added edge from fm4 to fs0.

To avoid this unsafe assumption, we need to maintain that tasks
known not to interfere when allocation decision is made will not
become interfering in the updated lifetimes. This is accomplished
by introducing slack that forces the latter task to “wait out” the
conflicting time window. The adapted WCRT analysis consults
existing interference graph and adjusts Start(fm4,S) such that
Start(fm4,S) ≥ Finish(fs0,S). Figure 3(e) shows the ad-
justed schedule, which maintains the same interference graph as
(a) by forcing fm4 to start after fs0 has completed.

With a more sophisticated sharing/allocation scheme and sched-
ule adjustment as we will introduce next, we can sometimes re-
move existing task interferences without adding interference else-
where. When this happens, we iterate over the allocation and anal-

fm1 fm2 fm4fr0 fr1fs0

(a) Profile-based Knapsack (PK) (b) Interference Clustering (IC)

tim
e

scratchpad spacescratchpad space fm1 fm2 fm4fr0 fr1fs0

tim
e

(c) Graph Coloring (GC) (d) Critical Path Interference Reduction (CR)

scratchpad space

tim
e

fm1 fm2 fm4fr0 fr1fs0 scratchpad space

tim
e

fm1 fm2 fm4fr0 fr1fs0

Figure 4: PK, IC, GC, and CR allocation schemes

ysis steps to enhance current decision, until no more improvement
can be made (Figure 2). As task interferences are enforced to be
non-increasing, the iteration is guaranteed to terminate.

4. ALLOCATION METHODS
This section describes the scratchpad allocation routine, which

is the focus of our paper.
As only one task will be running on the PE at any given time,

we can actually utilize the whole scratchpad space for the single
executing task. The concern arises when a task is preempted, as
flushing the scratchpad content will cause additional reloading de-
lay when the task resumes. In that case, it may be beneficial to
reserve a portion of the scratchpad for each of the tasks (space-
sharing), thus avoiding the need to flush and reload the scratchpad
memory at each preemption/resume. On the other hand, two tasks
guaranteed to never interfere with each other can share the same
space via overlay (time-sharing). In Figure 3(b), tasks fm2 and
fr0 are space-sharing tasks, while task fm1 in time window W1

has a time-sharing relationship with all tasks in time window W2.
The various schemes are illustrated in Figure 4. The left side of

each picture shows task lifetimes as determined by the WCRT anal-
ysis, and the right side sketches the state of the scratchpad memory
due to the different allocation schemes. For the purpose of compar-
ing the scratchpad state, the lifetime of each task has been drawn
with the same height across the different schemes (with the excep-
tion of CR). In reality, the heights (representing the length of task
runtime) will vary due to the different allocation decisions.

Profile-based Knapsack (PK). As the baseline method, we con-
sider a profile-based static allocation method. In this scheme, all
tasks executing on the same PE will share the PE’s scratchpad space
throughout application lifetime. The allocation decision does not
consider the possible interferences (or lack thereof) within the PE.

Partitioning and scratchpad allocation for each PE q can be si-
multaneously optimized via an Integer Linear Programming (ILP)
formulation. The objective is to minimize the combined WCET
weighted by task periods, defined asX

ti:PEi=q

wcet(ti,S)
‹
pi

wcet(ti,S) = ci −
X

b∈Alloc(ti)

freqb × areab ×Δ

40

Recall that ci is the running time of ti when all code blocks are
fetched from the main memory, and Alloc(ti) ⊆ Memi is the
selected set of code blocks of ti in scratchpad allocation S. freqb

and areab are respectively the execution frequency in the worst-
case path and the area occupied by block b. The term Δ defines
the savings in execution time per unit area due to the scratchpad
allocation. Given the scratchpad size of capq attached to PE q, the
capacity constraint is expressed as0

@ X
ti:PEi=q

X
b∈Alloc(ti)

areab

1
A ≤ capq

For allocation of program code into the scratchpad, an additional
constraint is needed to maintain correct control flow [10]. If two se-
quential basic blocks are allocated in different memory areas (i.e.
one in scratchpad and one in main memory), then a jump instruc-
tion should be inserted at the end of the earlier block.

Figure 4(a) shows the partitioned scratchpad by PK. As the allo-
cation decision does not depend on task interference, PK will only
execute for one round; no iterative improvement can be made.

Interference Clustering (IC). In this second method, we use task
lifetimes determined by the WCRT analysis to form interference
clusters. Tasks whose lifetimes overlap at some point are grouped
into the same cluster. They will share the scratchpad for the entire
duration of the common time window, from the earliest start time
to the latest finish time among all tasks in the cluster. The same
partitioning/allocation routine used in PK is employed among all
tasks in the same cluster. The left part of Figure 4(b) shows the
clustering decision for the given task schedule. fm1 as well as
fm4 have been identified as having no interference from any other
task. Each of them is placed in a singleton cluster and enjoys the
whole scratchpad space during its lifetime.

Graph Coloring (GC). The IC method is prone to produce large
clusters due to transitivity. In Figure 4(b), even though fm2 and
fs0 do not interfere with each other, their independent interfer-
ences with fr0 end up placing them in the same cluster. Because of
this, simply clustering the tasks will likely result in inefficient deci-
sions. The third method attempts to enhance the allocation within
the clusters formed by the IC method by making use of the task-
to-task interference relations captured in the interference graph. If
we apply graph coloring to this graph, the resulting colors will give
us groups of tasks that do not interfere with each other within the
cluster. Tasks assigned to the same color have disjoint lifetimes,
therefore can reuse the same scratchpad space via further overlay.

Graph coloring using the minimum number of colors is known
to be NP-Complete. We employ the Welsh-Powell algorithm [16],
a heuristic method that assigns the first available color to a node,
without restricting the number of colors to use. Given the interfer-
ence graph, the algorithm can be outlined as follows.

1. Initialize all nodes to uncolored.

2. Traverse the nodes in decreasing order of degree, assigning
color 1 to a node if it is uncolored and no adjacent node has
been assigned color 1.

3. Repeat step 2 with colors 2, 3, etc. until no node is uncolored.

After we obtain the color assignment, we formulate the scratchpad
partitioning/allocation with the refined constraint that a task ti with
assigned color ki can occupy at most the space allocated for ki,
denoted by area(ki). The scratchpad space given to all K colors
used for PE q add up to the total capacity capq , as expressed below.

X
b∈Alloc(ti)

areab ≤ area(ki);

KX
k=1

area(ki) ≤ capq

Figure 4(c) shows the further partitioning within the second clus-
ter formed by IC. fm2 and fs0 have been assigned the same color,
and allocated the same partition of the scratchpad to occupy at dif-
ferent time windows. The similar decision applies to fr0 and fr1.
The partition will be reloaded with the relevant task content when
execution transfers from one task to another.

1 repeat
2 CT := ∅;
3 foreach task t on the critical path of current schedule do
4 CT := CT ∪ { (t, u) | u ∈ intf(t) };
5 /* intf(t): the set of higher priority tasks whose lifetimes

overlap with t’s (Equation 2) */

6 if CT �= ∅ then
7 Find any (tm, um) in CT such that

wcet(um,S) ≥ wcet(u,S) for all pairs (_, u) in CT ;
8 /* eliminate this interference by imposing slack */
9 Set constraint Start(tm,S) ≥ Finish(um,S);

10 Run WCRT analysis to propagate lifetime shift;

until CT = ∅;

Algorithm 1: The CR algorithm

Critical Path Interference Reduction (CR). While the above three
schemes try to make the best out of the given interference pattern,
the final method that we propose turns the focus to reducing the
interference instead. This is motivated by the observation that al-
location decisions are often compromised by heavy interference.
When the analysis recognizes a potential preemption of one task
by another, both tasks will have to do space-sharing; in addition,
the lifetime window of the preempted task must make allowance
for the time spent waiting for the preempting task to complete. In
an extreme case, if a task t1 is released right before a higher prior-
ity task t2, it must wait for practically the entire execution duration
of t2. In this case, suppressing the release time of t1 until t2 com-
pletes can only be beneficial: t1’s waiting time is still the same, yet
no preemption cost is incurred, and a better allocation decision can
be made for both tasks. In general, this is a good strategy when the
waiting time far outweighs the actual computation time of the task.

The method proceeds as shown in Algorithm 1. We first work
on the schedule produced by the WCRT analysis to improve the in-
terference pattern. In choosing which interference to eliminate, we
naturally look at the critical path of the application, as determined
by the WCRT analysis. We consider all interferences in which
tasks on the critical path are preempted or have to wait for tasks
with higher priority (line 4). From these, we choose the interfer-
ence that occupies the longest time window, that is, one in which
the higher-priority task has the longest WCET (line 7). We elimi-
nate this interference by forcing a delayed start time for the affected
task (line 9), then propagate the shift to all tasks by re-running the
WCRT analysis. Certainly, new interferences are not allowed to
arise in this step. From the new schedule, we again consider pre-
emptions on the critical path, which may or may not have shifted.
The elimination and re-analysis are iterated until no more interfer-
ences can be eliminated from the critical path. We then proceed to
perform scratchpad partitioning/allocation as in the GC scheme on
this improved interference graph. In Figure 4(d), the interference
between fs0 and fr1 has been eliminated by letting fr1 wait out
the lifetime of fs0 instead of starting immediately after the com-
pletion of its predecessor fr0. This improvement frees fr1 from
all interference. It can now occupy the whole scratchpad memory
throughout its lifetime.

41

Figure 5: WCRT of the benchmark application after allocation
by PK, IC, GC, and CR, along with algorithm runtime

5. EXPERIMENTS AND DISCUSSION
We use as case study the UAV control application from PapaBench

[8], adapted into a distributed implementation. The controller con-
sists of two main functional units (fly_by_wire, autopilot) and
operates in one of two modes: manual and automated. Figure 1
shows the active processes in one of the scenarios under the man-
ual mode. The original implementation as shown uses 2 PEs with a
total of 5KB scratchpad memory space. For the purpose of observa-
tion, we vary the number of PEs from 1 to 4. In the 4-PE case, pro-
cesses FBW Main and Radio Control are assigned to the 1st PE,
Servo Control and FBW-SPI Control to the 2nd PE, AP Main

and AP-SPI Control to the 3rd PE, and the remaining processes
to the 4th PE. Total scratchpad size (for instructions) is varied from
512B to 8KB, distributed evenly among the PEs. The table in Fig-
ure 1 gives the codesizes and uninterrupted runtimes of each task,
obtained via WCET analysis of the program code assuming all in-
structions are fetched from the main memory. We assume uniform
execution time of 1 cycle per instruction, and that it takes 1 cycle
to fetch a 16-byte block from the scratchpad, 100 cycles from the
main memory.

Figure 5 shows the final WCRT of the application for various
scratchpad configuration, after applying the four discussed schemes.
The three charts correspond to the cases where the tasks are dis-
tributed on 1, 2, and 4 PEs. Obviously, with more PEs, less in-
terference is observed among the tasks. On the other hand, it also
means less scratchpad space per PE for the same total scratchpad
size, which limits the maximum space utilizable by a task.

When only 1 PE is utilized, most tasks are interfering with each
other. We can see a drastic WCRT improvement from 1-PE to 2-PE
setting for all schemes, which confirms the observation that task in-
terferences significantly influence application response time. With
1 PE, IC does not give significant improvement over the baseline
PK, as the transitive interference places most tasks into the same
space-sharing cluster. With more PEs, IC is able to perform better
than PK. GC performs no worse than IC in all cases, as it has a more

refined view of interference relation among individual tasks. CR
in turn is never worse than GC. The respective improvements are
particularly pronounced in the 1-PE setting where interference is
heavy. With 4 PEs employed, task interference is reduced, and GC
has only slight advantage over IC, as does CR. Comparing the same
scheme for the same total scratchpad size over increasing number
of PEs, the smaller scratchpad size per PE limits the area utilizable
by each task, and gives less runtime improvement in some cases.

The proposed scheme CR gives the best WCRT improvement
over all other schemes. This justifies the strategy of eliminating
critical interferences via slack enforcement, whenever any addi-
tional delay that is incurred can be overshadowed by the gain through
a better scratchpad sharing and allocation scheme. Finally, compar-
ison of algorithm runtimes in the tables of Figure 5 shows that all
schemes are reasonably efficient and no scalability issue is evident.

6. CONCLUDING REMARKS
In this paper, we have done a detailed study of scratchpad al-

location schemes for concurrent embedded software running on
single or multiple processing elements. The novelty of our work
stems from taking into account both concurrency and real-time con-
straints in our scratchpad allocation. Our allocation schemes con-
sider (i) communication or interaction among the threads or pro-
cesses of the application, as well as (ii) interference among the
threads or processes due to preemptive scheduling in the process-
ing elements. As the interactions and interference among the pro-
cesses can greatly affect the worst-case response time (WCRT) of a
concurrent application, our scratchpad allocation methods achieve
substantial reduction in WCRT as evidenced by our experiments.

7. ACKNOWLEDGMENTS
This work is partially supported by NUS research projects R252-

000-292-112 and R252-000-321-112.

8. REFERENCES
[1] R. Alur and M. Yannakakis. Model checking message sequence charts. In

CONCUR, 1999.

[2] I. Issenin, E. Brockmeyer, B. Durinck, and N. Dutt. Multiprocessor
system-on-chip data reuse analysis for exploring customized memory
hierarchies. In DAC, 2006.

[3] ITU-T. 120: Message sequence chart (MSC). ITU-T, Geneva, 1996.

[4] M. Kandemir. Data locality enhancement for CMPs. In ICCAD, 2007.

[5] M. Kandemir, O. Ozturk, and M. Karakoy. Dynamic on-chip memory
management for chip multiprocessors. In CASES, 2004.

[6] C.-G. Lee, J. Hahn, Y.-Min Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park, M. Lee,
and C. S. Kim. Analysis of cache-related preemption delay in fixed-priority
preemptive scheduling. IEEE transactions on computers, 47(6):700–713, 1998.

[7] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate estimation of
cache-related preemption delay. In CODES+ISSS, 2003.

[8] F. Nemer, H. Cassé, P. Sainrat, J-P. Bahsoun, and M. De Michiel. PapaBench: A
free real-time benchmark. In WCET, 2006.

[9] I. Puaut. WCET-centric software-controlled instruction caches for hard
real-time systems. In ECRTS, 2006.

[10] S. Steinke, L. Wehmeyer, B. S. Lee, and P. Marwedel. Assigning program and
data objects to scratchpad for energy reduction. In DATE, 2002.

[11] V. Suhendra, T. Mitra, and A. Roychoudhury. Efficient detection and
exploitation of infeasible paths for software timing analysis. In DAC, 2006.

[12] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen. WCET centric data
allocation to scratchpad memory. In RTSS, 2005.

[13] V. Suhendra, C. Raghavan, and T. Mitra. Integrated scratchpad memory
optimization and task scheduling for MPSoC architectures. In CASES, 2006.

[14] S. Udayakumaran and R. Barua. Compiler-decided dynamic memory allocation
for scratch-pad based embedded systems. In CASES, 2003.

[15] M. Verma, K. Petzold, L. Wehmeyer, H. Falk, and P. Marwedel. Scratchpad
sharing strategies for multiprocess embedded systems: A first approach. In 3rd
Workshop on Embedded Systems for Real-Time Multimedia, 2005.

[16] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number of
a graph and its application to timetabling problems. The Computer Journal,
10(1):85–87, 1967.

42

