
Model Checking SystemC Designs Using Timed Automata

Paula Herber
Software Engineering for

Embedded Systems Group
Technical University of Berlin

Germany
pherber@cs.tu-berlin.de

Joachim Fellmuth
Software Engineering for

Embedded Systems Group
Technical University of Berlin

Germany
fellmuth@cs.tu-berlin.de

Sabine Glesner
Software Engineering for

Embedded Systems Group
Technical University of Berlin

Germany
glesner@cs.tu-berlin.de

ABSTRACT

SystemC is widely used for modeling and simulation in hard-
ware/software co-design. Due to the lack of a complete for-
mal semantics, it is not possible to verify SystemC designs.
In this paper, we present an approach to overcome this prob-
lem by defining the semantics of SystemC by a mapping from
SystemC designs into the well-defined semantics of Uppaal

timed automata. The informally defined behavior and the
structure of SystemC designs are completely preserved in the
generated Uppaal models. The resulting Uppaal models
allow us to use the Uppaal model checker and the Uppaal

tool suite, including simulation and visualization tools. The
model checker can be used to verify important properties
such as liveness, deadlock freedom or compliance with tim-
ing constraints. We have implemented the presented trans-
formation, applied it to two examples and verified liveness,
safety and timing properties by model checking, thus show-
ing the applicability of our approach in practice.

Categories and Subject Descriptors

B.6.3 [Logic Design]: Design Aids — verification; F.3.2
[Logics and Meanings of Programs]: Semantics of Pro-
gramming Languages

General Terms

Verification

Keywords

SystemC, Timed Automata, Model Checking

1. INTRODUCTION
Embedded systems are usually composed of deeply inte-

grated hardware and software components, and they are de-
veloped under severe resource limitations and high quality
requirements. Thus, a language is required that supports
design space exploration and quality assurance efficiently

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-470-6/08/10 ...$5.00.

throughout the whole design process even for large and het-
erogeneous systems. SystemC [11] is such a language, where
simulation is used for performance evaluation, design space
exploration, and for validation and verification. For quality
assurance, however, simulation is necessary but not suffi-
cient. It requires formal verification techniques to guarantee
liveness, safety and timing properties. A vital precondition
to verify such properties is a formal semantics.

In this paper, we address the problem of defining a formal
semantics for SystemC. We require our formal semantics to
fulfill the following criteria: First, the behavioral semantics
of SystemC informally defined in [11] must be completely
preserved. Second, to maintain comprehensibility, the struc-
ture of a given SystemC design has to be preserved. Third,
we want the formal model of a given SystemC design to
be generated automatically. Fourth, the formal semantics
must be suitable for model checking, and fifth, there should
be tool support to edit, visualize and simulate the formal
model of a given SystemC design.

In our approach, we obtain such a formal semantics by a
mapping from SystemC designs into the well-defined seman-
tics of Uppaal timed automata [3]. The Uppaal tool suite
enables model checking, simulation and animation of timed
automata models. Furthermore, Uppaal timed automata
have the expressiveness to represent the full semantic scale
of SystemC designs, except for dynamic process or object
creation and under the restriction that only bounded inte-
ger data variables are used. As we will see, these are minor
restrictions. Interactions between parallel processes, includ-
ing dynamic sensitivity and timing behavior, can be natu-
rally modelled. Compared to other state based modeling
languages, Uppaal especially well-suited to model and to
verify timing behavior. This is vital, as system designs often
contain synchronous hardware and asynchronous software.
In both the SystemC design and the Uppaal model sys-
tems are regarded as networks of communicating processes.
In our transformation approach, we map SystemC processes
to Uppaal processes. The execution of these processes is
controlled by a timed automaton that models the SystemC
scheduler. We use parameterized timed automata for events
and for primitive channels. The timed automata modeling
SystemC processes, events, channels and the scheduler are
synchronized by Uppaal channels. Our method to ensure
the correctness of the transformation is twofold. On the one
hand, we ensure that the transformation of SystemC pro-
cesses into timed automata processes preserves their infor-
mally defined behavior. On the other hand, we ensure that
the semantics of interactions between processes is preserved.

131

There have been several approaches to give SystemC a
formal semantics. A definition of the simulation semantics
based on abstract state machines is given in [15, 16]. The
purpose of their work is to provide a precise description of
the SystemC scheduler. However, the system design itself,
as built from modules, processes and channels, is not cov-
ered and therefore cannot be verified with this approach.
In [17], a denotational semantics for the SystemC sched-
uler and for SystemC processes is presented, but only for a
synchronous subset. Similarly, in [7, 8] some work on for-
mal verification of SystemC designs is done, but only for
the synthesizable subset. In contrast to our approach, they
are not able to cope with dynamic sensitivity or timing. In
[10, 9], program transformations from SystemC into equiva-
lent state machine are proposed. In these approaches, time
is ignored, and the transformation is performed manually.
Besides, the state machine models do not reflect the struc-
ture of the underlying SystemC designs. In [13], the formal
language SystemCFL is proposed, which is based on process
algebras and defines the semantics of SystemC processes by
means of structural operational semantics style deduction
rules. SystemCFL does not take dynamic sensitivity into
account, and considers only simple communications. The
concept of channels is neglected. A tool to automatically
transform SystemC to SystemCFL is presented in [14]. How-
ever, it does not handle any kind of interaction between pro-
cesses. In [12], SystemC designs are verified using a petri-net
based representation. This introduces a huge overhead be-
cause interactions between subnets can only be modeled by
introducing additional subnets.

With our approach we can handle all relevant SystemC
language elements, including process execution, interactions
between processes, dynamic sensitivity and timing behav-
ior. The informally defined behavior and the structure of
SystemC designs are completely preserved. The mapping
from SystemC designs into Uppaal timed automata is fully
automated, introduces a negligible overhead, produces com-
pact and comparably small models and enables the use of
the Uppaal model checker and tool suite. This paper is
organized as follows: In Section 2 and 3, we briefly review
SystemC and Uppaal. In Section 4, we present our trans-
formation from SystemC to Uppaal. In Section 5 we show
the applicability of the approach by experimental results,
and we conclude in Section 6.

2. SYSTEMC
SystemC [11] is a system level design language and a

framework for HW/SW co-simulation. It allows for the mod-
eling and execution of system level designs on various lev-
els of abstraction, including classical register transfer level
hardware modeling and transaction-based design. SystemC
is implemented as a C++ class library which provides the
language elements and an event-driven simulation kernel. A
SystemC design is a set of communicating processes, trig-
gered by events and interacting through channels. Mod-
ules and ports are used to represent structural information.
SystemC also introduces an integer-valued time model with
arbitrary time resolution.

The execution of a SystemC design is controlled by the
SystemC scheduler. It controls the simulation time, the ex-
ecution of processes, handles event notifications and updates
primitive channels. Like typical hardware description lan-
guages, SystemC supports the notion of delta-cycles. Delta-

cycles are used to impose a partial order on simultaneous
actions and split the concurrent execution of processes into
two phases. In the first phase, concurrent processes are
evaluated, i. e., their method body is executed. This may
include read and write accesses to primitive channels, which
store changes in temporary variables. In the second phase,
the actual channel state is updated. A delta-cycle lasts an
infinitesimal amount of time, and a finite number of delta-
cycles may be executed at one point in simulation time.

The simulation semantics of a SystemC design can be
summarized as follows: 1. Initialization: each process is ex-
ecuted once, 2. Evaluation: all processes ready to run are
executed in arbitrary order, 3. Update: primitive channels
are updated, 4. if there are delta-delay notifications, the
corresponding processes are triggered and steps 2 and 3 are
repeated, 5. if there are timed notifications, simulation time
is advanced to the earliest pending timed notification and
steps 2 – 4 are repeated, 6. if there are no timed notifications
remaining, simulation is finished. For a more comprehensive
description of the SystemC simulation semantics, we refer to
[6, 15, 16].

3. UPPAAL TIMED AUTOMATA
Timed Automata [1] are a timed extension of the classi-

cal finite state automata. A notion of time is introduced
by clock variables, which are used in clock constraints to
model time-dependent behavior. Systems comprising multi-
ple concurrent processes are modelled by networks of timed
automata, which are executed with interleaving semantics
and synchronize on channels. Uppaal [3, 4, 2] is a tool set
for the modeling, simulation, animation and verification of
networks of timed automata. The Uppaal model checker en-
ables the verification of temporal properties, including safety
and liveness properties. The simulator can be used to visu-
alize counterexamples produced by the model checker.

The Uppaal modeling language extends timed automata
by introducing bounded integer variables, binary and broad-
cast channels, and urgent and committed location. Timed
automata are modeled as a set of locations, connected by
edges. The initial location is denoted by ©◦ . Invariants can
be assigned to locations and enforce that the location is left
before they would be violated. Edges may be labeled with
guards, synchronizations and updates. Updates are used to
reset clocks and to manipulate the data space. Processes
synchronize by sending and receiving events through chan-
nels. Sending and receiving via a channel c is denoted by
c! and c?, resp. Binary channels are used to synchronize
one sender with a single receiver. A synchronization pair
is chosen non-deterministically if more than one is enabled.
Broadcast channels are used to synchronize one sender with
an arbitrary number of receivers. Any receiver that can syn-
chronize must do so. Urgent and committed locations are
used to model locations where no time may pass. Urgent
locations are graphically depicted by the symbol ©∪ , com-
mitted locations by the symbol ©c . Leaving a committed
location has priority over leaving non-committed locations.

A Uppaal model comprises three parts: global declara-
tions, parameterized timed automata (TA templates) and a
system declaration. In the global declarations section, global
variables, constants, channels and clocks are declared. In the
system declaration, TA templates are instantiated and the
system to be composed is given as a list of timed automata.

132

m_ctrl?
lvar = m_result

m_ctrl!
m_param = lval

m_ctrl!
m_result = lval

// method body

m_ctrl?
lvar = m_param

Figure 1: Method transformation

4. DESIGN TRANSFORMATION
In this section we describe how we map SystemC language

elements to timed automata representations and how these
mappings are embedded in the complete design transforma-
tion. The transformation preserves the (informally defined)
behavioral semantics and the structure of a given SystemC
design. Our approach requires two minor restrictions. First,
we do not handle dynamic process or object creation. This
should hardly narrow the applicability of the approach, as
dynamic object and process creation are rarely used in Sys-
temC designs. Second, Uppaal supports only bounded in-
teger variables. This is a minor restriction as well, as most
data types used in SystemC designs can be converted to
bounded integers.

4.1 Method Transformation
Executable SystemC code is solely contained in meth-

ods. Each method is translated into a single TA template.
To model call-return semantics, we use a synchronization
channel m_ctrl as shown in Fig. 1. The given two au-
tomata behave as in classical call-return semantics. The
caller, depicted on the left, hands control over to the callee
with m_ctrl!, waits until the method body of the callee is
executed, and resumes execution when receiving m_ctrl?.
Fig. 1 also shows how an argument m_param and a return
value m_result are transferred to and from the method,
resp. The control transfer channel and the input and out-
put parameters of a method are visible as parameters of the
TA templates of the method and the caller. This enables
multiple instantiations of a method and the connection with
different callers in the system declaration.

The method body is a list of statements, which can be
of type return, arithmetic, if-else, while, continue, break, or
method call. For each statement, we append transitions and
locations. In the following, we use the term current location

to refer to the lastly appended location in each transforma-
tion step. We also keep a reference to the initial location. If
we reach a return statement, we connect the current loca-
tion with the initial location and label this transition with
m_ctrl! and possibly with the assignment of the return
value as shown in Fig. 1. A return statement aborts the
transformation of the current block, and subsequent state-
ments are dead code. We adopt arithmetic statements as
updates at transitions in the TA template. Therefore, we
make the current location urgent, append a transition with
the arithmetic statement as update label, and use a new lo-
cation as target location. To transform if-else statements,
we append two outgoing edges as shown on the left in Fig. 2,
one of them labeled with the if-condition, the other with the
negated if-condition. We make the current location urgent
because the evaluation of the if-condition takes no time. We
append the statements of the if-body to the if-location and
the statements of the else-body to the else-location. If there

new current location

elseif

current location

// else
// body

// then
// body

!condcond

while_end

while_begin

!cond
// loop body

cond

Figure 2: If-else and while transformation

is no return statement in both branches, they are joined in
a new current location. If there is a return statement in one
of the branches, we use the last node of the other branch as
new current location. If there are return statements in both
branches, transformation of the current block is finished. We
model the condition of while loops like if-else conditions,
as shown on the right in Fig. 2. The statements in the loop
body are appended to the location reached by the fulfilled
while-condition. For return statements, the current loca-
tion is connected with the initial location, for a continue

statement with the location while_begin, and for a break

statement with while_end.

4.2 The Scheduler
The execution of SystemC designs is controlled by the

scheduler. The basic execution units are processes. The
scheduler works in delta-cycles, i. e., in evaluation and up-
date phases. In the evaluation phase, processes which are
ready to run are executed in non-deterministic order. In the
update phase, primitive channels are updated by taking over
new values.

The TA model we use to model the scheduler is given in
Fig. 3. Initialization is implicit in Uppaal, i. e., processes
and methods are executed once before the main simulation
loop. We can also handle dont_initialize, but this is omit-
ted here due to space limitations. The scheduler starts in
the evaluation phase depicted by the location evaluate. If
there are any processes ready to run, the scheduler sends an
activation event activate!. Processes ready to run receive
this event and resume their execution. We use a binary
channel for the activation to ensure that only one process
is executed at a time and that processes are executed in a
non-deterministic order. To ensure that the scheduler sends
the activation event once for each process ready to run, each
process increments a counter ready_procs when triggered,
and decrements the counter when suspending itself. When
there are no more processes ready to run, i. e., ready_procs
== 0, the scheduler starts the update phase by going to lo-

next_delta

time_progress

update

evaluate
ready_procs > 0

update_requests == 0
delta_delay!

update_end?

deactivate?

advance_time?

ready_procs == 0

update_requests > 0
update_start!

ready_procs > 0
activate!

ready_procs == 0
delta_count++

Figure 3: TA model of the scheduler

133

cation update. In the update phase, update requests are ex-
ecuted in non-deterministic order using the activation event
update start. Immediate notification is not allowed dur-
ing the update phase. If there are no more update re-
quests, the scheduler starts the next delta-cycle, see location
next_delta. When leaving the update phase, the scheduler
informs events with pending delta-delay notifications that
a delta-cycle is finished by sending delta_delay!. If there
are delta-delay notifications, the corresponding processes are
immediately triggered and become ready to run. They will
be executed in the next delta-cycle, which is started by the
scheduler without time progress. If there are no processes
triggered by delta-delay notifications, i. e., ready_procs ==

0, simulation time must be advanced to the earliest pending
timed notification. There are two types of timed notifica-
tions in SystemC: events may be notified with a delay by
calling e.notify(t), and processes may be delayed for a
given time interval by calling wait(t). In SystemC, the
timing behavior is completely managed by the scheduler. In
the TA model, we have the possibility to wait locally for
a given time. Therefore, it is more suitable to model time
within processes and event objects. A simple way to wait
for the earliest pending timed notification in the scheduler is
to let the processes and events with timed behavior send a
broadcast synchronization advance_time! when their delay
expires. The scheduler receives advance_time? and starts a
new delta-cycle, i. e., executes processes which became ready
to run through the timed notification.

The TA model of the scheduler behaves exactly like the
SystemC scheduler. The binary channels used to control
process execution and channel updates guarantee that the
model checker considers every possible serialization. The lo-
cations used for the execution of delta-cycles are urgent and
thus take no simulation time. We ensure that no scheduling
phase is started before the preceding phase is completed us-
ing counters and committed locations. The counters guar-
antee that pending executions are completed. The use of
committed locations in event notification (as shown in the
next section) ensures that event triggering is prioritized over
state changes in the scheduler.

4.3 Events
If an event object e is notified by its owner, processes that

are sensitive to the event resume execution. SystemC sup-
ports three types of event notifications. An immediate noti-

fication, invoked by e.notify(), causes processes to be trig-
gered immediately in the current delta cycle. A delta-delay

notification, invoked by e.notify(0), causes processes to be
triggered at the same time instant, but after updating prim-
itive channels, i. e., in the next delta-cycle. A timed notifica-

tion, invoked by e.notify(t) with t > 0, causes processes
to be triggered after the given delay t. If an event is notified
that already has a pending notification, only the notification
with the earliest expiration time takes effect. That means
that immediate notifications override all pending notifica-
tions, delta-delay notifications override timed notifications,
and timed notifications override pending timed notifications
if their delay expires earlier.

We model event objects as shown in Fig. 4. The TA tem-
plate is instantiated for each event object declared in a given
SystemC design. Its template parameters are the synchro-
nization channels notify_imm, notify and wait, and the in-
teger variable t. Initially, the event just waits to be notified.

x <= ndelay

x < ndelay

x == ndelay

ndelay != 0
advance_time?

ndelay == 0
delta_delay?

x + t >= ndelay

notify?

notify?
ndelay = t, x = 0

x == ndelay &&
 ndelay != 0

advance_time!

notify_imm?

x + t < ndelay
ndelay = t,
x = 0

wait!

notify_imm?

Figure 4: TA model of an event object

If it is immediately notified, it receives notify_imm?, and im-
mediately sends wait! on a broadcast channel. If the event
object is notified by a delta-delay or a timed notification, it
receives notify? and copies the parameter t to a local vari-
able ndelay, which yields the notification delay. At the same
time, a local clock x is reset. The committed location that
is now reached is used to reinitialize ndelay and to reset x if
a subsequent delta-delay or timed notification overrides the
notification delay. We then have to wait until: 1. an imme-
diate notification overrides the current pending notification,
2. we receive delta_delay? from the scheduler if ndelay

== 0, or 3. the current delay expires, i. e., x == ndelay &&
ndelay != 0. Subsequently, we send wait! and go back
to the initial location. When a timed notification expires,
we have to inform the scheduler to start the next evaluation
phase by sending advance_time!. Due to the use of a broad-
cast channel advance_time!, only the first advance_time is
received by the scheduler if the delays of multiple events
expire at the same time. As mentioned before, the preser-
vation of the SystemC semantics requires that the scheduler
must not start the evaluation phase before event notifica-
tion is completed. To ensure this, event objects with pend-
ing timed notification also synchronize with advance_time?

as receivers. If they receive advance_time? and their delay
expires in the same time instant, i. e., if x == ndelay, they
immediately trigger pending processes. Otherwise, nothing
happens. The semantics of broadcast synchronization en-
sures that events with expiring delays reach the committed
location in the same semantic step as the scheduler reaches
the evaluation phase. The committed location ensures that
events are prioritized in the next semantic step.

4.4 Processes and Sensitivity
Processes are the basic execution unit in SystemC. Each

process is associated with a method to be executed. There
are two types of processes: method processes and thread pro-

cesses. A method process, when triggered, always executes
its method body from the beginning to the end. It is trig-
gered by a set of events given in a static sensitivity list. The
TA model we use to wrap a method process is shown on the
left in Fig. 5. A thread process may suspend its execution
and dynamically wait for events or a given time delay. It is
triggered only once at the beginning of the simulation and
runs autonomously from the time on. The TA model we use
to start a thread process is given on the right in Fig. 5.

134

deactivate!
ready_procs--

sensitive?
ready_procs++

activate?

ctrl?

ctrl!

deactivate!

activate?

ctrl?

ctrl!

Figure 5: Process templates

A thread process may suspend its execution by calling a
wait function. If wait() is called without parameters, it
waits for one of the events in the static sensitivity list. If
the process calls wait(e) with an event e as argument, the
static sensitivity list is temporarily overridden by e. If the
process calls wait(t), it is delayed by t time units. If the
process calls wait(t,e), it waits for event e for t time units.

We model event sensitivity in Uppaal using synchroniza-
tion channels as shown in Fig. 6. A process calling wait(e)

is shown on the left. It suspends its execution, i. e., synchro-
nizes with deactivate!, decrements a counter ready_procs,
and then waits to be triggered, i. e., synchronizes with the
wait channel of the event object. When e_wait? is received,
the process increments the counter ready_procs and waits
to be activated by the scheduler. We can also handle wait-
ing for composed events such as e1 & e2 or e1 | e2. Static
sensitivity is very similar to dynamic sensitivity, but when
wait() is called the process waits for one of the statically
known events from the sensitivity list. We model sensitiv-
ity lists by waiting for one of the given events and sending
sensitive! on a broadcast channel, as shown on the right
in Fig. 6. To ensure that immediate event notifications take
effect immediately, we use a committed location. How we
model static sensitivity within a sensitive process is shown
in the middle of Fig. 6. Compared to dynamic sensitivity,
e_wait? is replaced by sensitive?.

We model timed waiting with a special timeout_event.
Each process has its own timeout_event. Calls to wait(t)

are modeled as shown on the left in Fig. 7. First, a timed
notification is released to start the timeout. Second, the pro-
cess waits for the timeout to expire by synchronizing with
timeout_event_wait?. Waiting for an event until a timing
delay expires (wait(t,e)) requires to extend the TA model
by a synchronization on e_wait?, as shown on the right in
Fig. 7. To make sure that a timeout_event does not over-
ride subsequent timed notifications, we override it with an
immediate event notification if event e occurs.

activate?

e_wait?
ready_procs++

deactivate!
ready_procs--

activate?

sensitive?
ready_procs++

deactivate!
ready_procs--

sensitive!

en_wait?

...

e1_wait?

Figure 6: Event sensitivity

activate?

timeout_event_wait?
ready_procs++

deactivate!
ready_procs--

timeout_event_notify!
timeout_event_t = t

timeout_event_notify_imm!

e_wait?
ready_procs++

activate?

timeout_event_wait?
ready_procs++

deactivate!
ready_procs--

timeout_event_notify!
timeout_event_t = t

Figure 7: Timing and event sensitivity

4.5 Channels and Modules
Channels define communication methods which may be

used by processes. These are translated as described above.
Primitive channels have to implement an update()-function
and call the special function request_update() in the eval-
uation phase if they want the update()-function to be exe-
cuted in the update phase. We use a TA model to manage
update requests as shown in Fig. 8. If request_update? is
received, the update method of the corresponding channel
is called within the update phase of the scheduler. Calls
to request_update() in SystemC are modeled by sending
request_update! in the TA model.

The translation of a module or channel requires that we
adopt variables as (global) variables, allocate synchroniza-
tion channels and parameter declarations, and generate the
necessary TA templates. A module or channel may be in-
stantiated multiple times in a SystemC design. To make
method templates reusable, we take all declarations that are
visible in the module as template parameters. When a mod-
ule or channel is translated, the corresponding templates are
generated. Global and system declarations are not added to
the Uppaal model until a module or channel is instanti-
ated. Then, the TA templates generated from the module
or channel are instantiated using these declarations. Event
and process templates are generated once for the module or
channel. Methods, however, may be used in multiple concur-
rent processes. Therefore, all methods that are visible to a
module must be instantiated once for each process declared
within the module. The corresponding global declarations
are prefixed with the module name and the process name.
Member methods of channels must be instantiated once for
each process of each module which is bound to the channel.

Although there is no structural hierarchy in Uppaal, the
module structure of the SystemC design is visible through
prefixes. In combination with a one-to-one mapping of Sys-
temC to Uppaal processes, the design structure is com-
pletely transparent to the designer. This is very useful when
the model checker produces counter-examples.

update_end!
update_requests--

update_ctrl?

update_ctrl!

update_start?

request_update?
update_requests++

Figure 8: TA model for request-update

135

Table 1: Results from producer-consumer example
Verification time in seconds

Property BS 10 BS 50 BS 100 BS 1000
(1) 1.78 1.78 1.78 1.81
(2) 1.78 1.78 1.78 1.81
(3) 1.82 1.95 9.22 10851

Table 2: Results from packet switch example
Verification time(s)

Property 1m1s 2m1s 1m2s 2m2s
(1) 22.28 56.49 43.73 211.26
(2) 3.02 3.38 3.30 4.89
(3) 129.16 46.63 298.41 544.88

5. EXPERIMENTAL RESULTS
We implemented the transformation and generated Up-

paal models from SystemC designs automatically. We used
the Karlsruhe SystemC Parser KaSCPar [5] as a front-end
for the SystemC designs. We applied the transformation
and verified liveness and safety properties using the Up-

paal model checker. The experiments were run on a ma-
chine with an Intel Pentium 3.4 GHz CPU running a Linux
operating system. The first example consists of a producer
and a consumer communicating through a FIFO. The second
example is a slight modification of the packet switch exam-
ple included in the standard SystemC distribution. In both
examples the SystemC channel concept as well as static,
dynamic and timing sensitivity are used. For the producer-
consumer example, we verified the following properties: (1)
deadlock freedom, (2) the absence of buffer overflows, and
(3) the consumer reads items sent by the producer within a
given time limit. All properties were found satisfied. For the
packet switch example, we checked: (1) deadlock freedom,
(2) every packet is forwarded to all its receivers, and (3) if a
packet is forwarded, this is done within a given time limit.
Properties (1) and (3) were found satisfied, property (2) is
not satisfied. Due to the semantics of sc_signal, the change
event of signal ports is only notified if the value changes.
If subsequent messages are equal, there is no change event
at the input port of the packet switch and thus, only the
first message is forwarded. In the producer-consumer ex-
periments, we varied the buffer size (BS 10, BS 50, BS 100,
BS 1000), in the packet switch experiments the number of
masters and slaves (1m1s, 1m2s, 2m1s, 2m2s). Table 1 and
2 present the verification times averaged over 10 runs.

6. CONCLUSION
We presented an approach to translate SystemC designs

into the well-defined semantics of Uppaal timed automata.
The translation enables the usage of the Uppaal tool suite
on SystemC designs, including the Uppaal model checker
to formally verify temporal properties of SystemC designs.
Our general idea is to transform SystemC processes into
timed automata processes and to synchronize them using
channels. The execution semantics is specified using a pre-
determined model of the scheduler and specific templates for
events and processes. The translation is performed automat-
ically, and the transformation time is negligible. Thus, com-
plex and large SystemC designs can be transformed. The
informally defined behavior and the structure of a given Sys-

temC design are completely preserved in the generated up-

paal model. Moreover, the models generated by our method
are compact and easily comprehensible and can efficiently
be verified by model checking. In further research, we will
extend our translation with several optimizations. We also
plan to use the generated model for automated selection of
simulation inputs and evaluation of simulation results, which
is more scalable than model checking.

7. REFERENCES
[1] R. Alur and D. L. Dill. A Theory of Timed Automata.

Theoretical Computer Science, 126:183–235, 1994.

[2] G. Behrmann, A. David, and K. G. Larsen. A Tutorial
on Uppaal. In Formal Methods for the Design of

Real-Time Systems, LNCS 3185. Springer, 2004.

[3] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson,
and W. Yi. Uppaal — a Tool Suite for Automatic
Verification of Real–Time Systems. In Workshop on

Verification and Control of Hybrid Systems, LNCS
1066, pages 232–243. Springer, Oct. 1995.

[4] J. Bengtsson and W. Yi. Timed automata: Semantics,
algorithms and tools. In Lecture Notes on Concurrency

and Petri Nets, LNCS 3098. Springer, 2004.

[5] FZI Research Center for Information Technology.
KaSCPar - Karlsruhe SystemC Parser Suite.

[6] T. Groetker. System Design with SystemC. Kluwer
Academic Publishers, 2002.

[7] D. Grosse and R. Drechsler. Checkers for SystemC
designs. In Formal Methods and Models for Codesign,
pages 171–178, 2004.

[8] D. Grosse, U. Kuhne, and R. Drechsler. HW/SW
Co-Verification of Embedded Systems using Bounded
Model Checking. In Great Lakes Symposium on VLSI,
pages 43–48. ACM Press, 2006.

[9] A. Habibi, H. Moinudeen, and S. Tahar. Generating
Finite State Machines from SystemC. In Design,

Automation and Test in Europe, pages 76–81, 2006.

[10] A. Habibi and S. Tahar. An Approach for the
Verification of SystemC Designs Using AsmL. In
Automated Technology for Verification and Analysis,
pages 69–83, 2005.

[11] IEEE Standards Association. IEEE Std. 1666–2005,
Open SystemC Language Reference Manual, 2005.

[12] D. Karlsson, P. Eles, and Z. Peng. Formal verification
of SystemC Designs using a Petri-Net based
Representation. In DATE, pages 1228–1233, 2006.

[13] K. Man. An Overview of SystemCFL. In Research in

Microelectronics and Electronics, volume 1, 2005.

[14] K. L. Man, A. Fedeli, M. Mercaldi, M. Boubekeur,
and M. P. Schellekens. SC2SCFL: Automated
SystemC to SystemCFL Translation. In Embedded

Computing Systems: Architectures, Modeling, and

Simulation, LNCS 4599, pages 34–45. Springer, 2007.

[15] W. Müller, J. Ruf, and W. Rosenstiel. An ASM based
SystemC Simulation Semantics. SystemC:

Methodologies and Applications, pages 97–126, 2003.

[16] J. Ruf, D. Hoffmann, J. Gerlach, T. Kropf,
W. Rosenstiehl, and W. Müller. The Simulation
Semantics of SystemC. In DATE, pages 64–70. IEEE
Press, 2001.

[17] A. Salem. Formal Semantics of Synchronous SystemC.
In DATE, 2003.

136

