SoC-C: Efficient Programming Abstractions for
Heterogeneous Multicore Systems on Chip

Alastair D. Reid
Krisztian Flautner
Edmund Grimley-Evans
ARM Ltd

ABSTRACT

The architectures of system-on-chip (SoC) platforms found in
high-end consumer devices are getting more and more complex
as designers strive to deliver increasingly compute-intensive ap-
plications on near-constant energy budgets. Workloads running
on these platforms require the exploitation of heterogeneous par-
allelism and increasingly irregular memory hierarchies. The con-
ventional approach to programming such hardware is very low-
level but this yields software which is intimately and inseparably
tied to the details of the platform it was originally designed for,
limiting the software’s portability, and, ultimately, the architec-
tural choices available to designers of future platform generations.
The key insight of this paper is that many of the problems experi-
enced in mapping applications onto SoC platforms come not from
deciding how to map a program onto the hardware but from the
need to restructure the program and the number of interdepen-
dencies introduced in the process of implementing those decisions.
We tackle this complexity with a set of language extensions which
allows the programmer to introduce pipeline parallelism into se-
quential programs, manage distributed memories, and express the
desired mapping of tasks to resources. The compiler takes care
of the complex, error-prone details required to implement that
mapping. We demonstrate the effectiveness of SoC-C and its
compiler with a “software defined radio” example (the PHY layer
of a Digital Video Broadcast receiver) achieving a 3.4x speedup
on 4 cores.

Categories and Subject Descriptors: D.3.3 [Software]:
Programming Languages

General Terms: Languages

1. INTRODUCTION

In the next five years the peak available bandwidth to mo-
bile phones is expected to increase from less than 5 Mbps
today to 100 Mbps in 2012. The signal-processing through-
put to implement these protocols is expected to increase to
beyond 25 giga-operations per second. Commodity cameras
on phones already support 10M pixel resolution which fur-
ther drives the need for high-speed multimedia image pro-
cessing, high-definition video coding and 3D graphics. To
maintain the same form-factor, this massive performance
must be achieved without increasing battery size which lim-
its the power consumption to around 1 Watt.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CASES 08, October 19-24, 2008, Atlanta, Georgia, USA.

Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

99

Yuan Lin
University of Michigan

Modern DSP designs are starting to achieve the required
energy efficiency. For example, ARM’s prototype data pro-
cessing engine can sustain over 10 GMAC/s at less than
300mW in 65nm technology. The main problem is not cre-
ating energy-efficient hardware but creating efficient, main-
tainable programs to run on them. In order to save energy
and, to some extent, silicon area, high performance embed-
ded systems eschew features that characterize today’s high-
end multiprocessor systems: Homogeneous processors are
replaced by a heterogeneous mix of specialized processors
tuned to particular parts of the expected workload; General-
purpose processors programmed in C, C++, etc. are supple-
mented by special-purpose accelerator engines which may be
fixed-function, configurable or programmable using a C sub-
set; Shared memory is replaced by multiple private memo-
ries to decrease latency and energy and increase bandwidth;
and Hardware cache coherency is omitted to save area and
power consumed by cache coherence protocols. Omitting
these features from high performance embedded systems re-
quires programmers to adopt a very low-level, error-prone
programming style that limits portability and maintainabil-
ity. The key insight of this paper is that these problems come
not from deciding how to map the application onto the hard-
ware but from the restructuring of the code and the number
of interdependencies introduced in the process of implement-
ing those decisions. Rather than abandon features because
of their hardware cost, SoC-C moves their implementation
into the language so that the programmer can reason about
and optimize the mapping at a high level while the compiler
takes care of the complex, error-prone details required to
implement that mapping.

SoC-C is a set of language extensions that enables pro-
grammers to express efficient system-on-chip programs that
exploit the parallelism available in the platform, provides
programmers with control over how the many different pro-
cessing elements in the platforms are used, and requires lit-
tle or no restructuring when the application is subsequently
ported within a family of platform architectures.

This paper makes the following contributions: We de-
scribe channel-based decoupling: a novel spin on existing
ways to automatically introduce pipeline parallelism that
allows programmers to tradeoff determinism for scheduling
freedom and is capable of handling the complex control flow
that real applications require. We propose a novel way of ex-
pressing the data copying that must happen in a distributed
memory system. Our annotations express the programmer’s
intent allowing the compiler to detect missing or incorrect
copy operations. We describe an inference mechanism that



// Data placement

declaration ::= type variable @ { memoryi, ...

expression ::= variable @ memory

statement ::= SYNC (variable[,memory[,memory]]
) @ processor ;

memory, } ;

// Code placement
expression ::= identifier( expression, ...
) @ processor
// Fork-join parallelism
statement ::= parallel_sections {
section { compound-statement } ;

expression

section { compound-statement } ;

// Pipeline parallelism
statement ::= pipeline { compound-statement }
statement ::= FIFO ( variable ) ;

Figure 1: SoC-C syntax extensions.

significantly reduces the amount of annotation required to
map an application onto a hardware platform. We identify
the critical optimizations required to support the high level
programming model. With these optimizations, SoC-C can
achieve accelerator utilization levels of 94% and a speedup
of 3.4x on a platform with 4 accelerators on a real workload.
The paper is structured as follows. Section 2 describes a
set of obvious minimal extensions to C to support heteroge-
neous, distributed parallel systems and introduces an exam-
ple to illustrate why these extensions are necessary but in-
sufficient for programming complex SoCs. Thus motivated,
Sections 3-6 make a series of improvements showing how
each extension improves the running example and we eval-
uate the expressiveness of the extensions in Section 7. Sec-
tions 8 and 9 discuss optimizations and performance. Sec-
tion 10 discusses related work and Section 11 concludes.
This paper does not address how the best application
mapping can be generated automatically using program anal-
ysis, profiling, iterative compilation, etc. for two reasons.
The first is that the mechanism used to choose a mapping
is largely orthogonal to the mechanism used to act on those
decisions. The second is that there is no single obvious prop-
erty to optimize for in embedded systems. Depending on the
system one may want to optimize for some combination of
battery life, low-latency user experience, meeting real-time
deadlines, reducing number of retransmits, code size, etc.

2. A MINIMAL EXTENSION TO C

This Section considers minimal extensions to C to support
heterogeneous multiprocessor systems with distributed mem-
ory and shows that whilst these or similar extensions are
necessary (and form the basis of SoC-C), they are not suffi-
cient for creating high performance, maintainable programs.
This sets the stage for later sections which describe further
extensions and optimizations to tackle these problems.

The extensions considered in this Section are those re-
quired to introduce parallelism, control sharing of resources
and variables, communicate between threads, map data onto
memories and map code onto processors/accelerators. Our
descriptions of the extensions are brief because they are
based on extensions found in other languages such as OpenMP
(which inspired our notation), Concurrent Pascal, etc. Fig-
ure 1 summarizes all the extensions discussed in this paper.

Parallel sections introduce fork-join parallelism where
a single master thread forks multiple child tasks (which may
also fork child tasks) and waits for all children to complete.

100

complex_t samples[2048];

bool bits[3024];

int8_t bytes[378];

int timing_correction = 0;
while (1) {

ADC_get (&adc,&samples,2048) ;
AdjustTiming(timing_correction,samples);
FFT(samples) ;

timing_correction += FindTimeOffset (samples);
Demodulate(bits,samples) ;

ErrorCorrect (bytes,bits);

Figure 2: A simplified OFDM radio receiver.

The statement

parallel_sections{
section{ statementl }
section{ statement2 }

}

executes statementl and statement2 in parallel and com-
pletes when both statements complete. Parallel sections can
be implemented by forking one thread per section and then
waiting for all threads to complete. Since this is the basic
mechanism for expressing all parallelism, it is the program-
mer’s responsibility to avoid race conditions, deadlock, etc.

Channels synchronize/communicate between threads.
FIFO channels provide two operations: “fifo_put” atomi-
cally transfers data into the channel and “fifo_get” opera-
tions atomically transfers data out (blocking if the channel
is full/empty). This atomic-transfer semantics ensures that
each thread has exclusive access to the data.

Data placement annotations map variables to memo-
ries. A variable declaration of the form

type V@ M ;

instructs the SoC-C compiler and linker to place the variable
‘V’ in memory ‘M.

Code placement annotations perform RPCs. A func-
tion call of the form

function(expril, . exprm) @ P

is compiled into a synchronous remote procedure call: the
function is invoked on processing element ‘P’. Unlike most
RPC implementations, the call-frame (i.e., which function to
call and any scalar and pointer arguments) is copied to the
processing element but bulk data structures are not copied.
This reflects our design goal of giving the programmer con-
trol over data copying to let them tune memory use and the
impact on timing.

To illustrate these minimal extensions, consider mapping
the sequential program in Figure 2 onto the architecture
shown in Figure 3. This program displays two different
types of data dependency which must be handled when par-
allelizing the program. There is forward dataflow within
a loop iteration carrying complex samples from the ADC
through timing correction, an FFT, demodulation and error
correction. There is also feedback loop from one iteration to
the next which continuously monitors changes in the timing
offset between the transmitter and the receiver (caused by
slight differences in clock rates, Doppler effects, etc.) which
is used to control timing correction in future iterations. For
simplicity, this example deals with fine timing correction
(errors less than half the sample rate which are dealt with
by applying a rotation to the complex samples) but ignores
coarse timing correction (which would adjust the ADC in-



MO PEO
—> SIMD PE
M1 PE1
BN
M2 PE2
—DM SIMD PE
M3 PE3
—> SIMD PE

(™ [Turbo
Mem Turbo PE
Global
> Global Mem

Figure 3: The architecture of a communication-
processing subsystem. This system consists of one RISC
processor and five processing elements (highlighted in
gray), five private memories and one shared memory.

teraction) and channel equalization (which would correct for
some frequencies being received more strongly than others).

In SoCs with heterogeneous processors, the principal form
of parallelism used is pipeline parallelism: each engine is
dedicated to performing a set of tasks and engines commu-
nicate with each other via FIFO channels. Figure 4 shows
how the program can be rewritten to express pipeline paral-
lelism using the minimal subset of SoC-C described in this
Section. As can be seen, the parallel version of the program
is significantly longer than the sequential version and has
several more variables (both buffers and FIFOs). Looking
more closely, we identify the following problems:

FIFO channels create excessive synchronization In the
sequential version of the program, a feedback loop carries
the timing correction back for use in the next iteration. To
achieve exactly the same semantics, the parallel program
would need to use a FIFO channel but this would have forced
the first three sections to run sequentially because section 1
could not start the next iteration until section 3 had sent
the new timing correction — a problem known as loss of
decoupling [1]. To avoid this, the programmers used their
knowledge of radio systems to confirm that timing correc-
tions change slowly and so it would be acceptable to use
a slightly older timing correction if that leads to greater
parallelism. Since FIFO channels create too much synchro-
nization, they chose the other inter-thread communication
method of a shared variable accessed in a critical section.
Section 3 addresses this by supporting user defined channels
and zero-copy optimization.

Structure of the program is significantly changed. While
the sequential program was a single, short loop, the paral-
lel program contains four loops, the code is dominated by
communication and parallelism constructs and it takes more
effort to determine the flow of data through the program.

Equally seriously, this major restructuring was performed
to suit one particular architecture and achieve a reasonable
load balance given the current speed of each function. If the
architecture were to change or a function were optimized,
the program would have to be restructured accordingly — a
significant and error-prone undertaking. Section 4 addresses
this using decoupling to automatically introduce pipeline
parallelism under programmer control.

Fragmentation of variables. Each individual variable in
the sequential program has been fragmented into many sep-

101

int timing_correction = 0;
parallel_sections{
section{
complex_t samples1[2048] @ {MO};
int t1;
while (1) {
ADC_get (&adc,&samples1,2048) ;
critical(offset){
t1 timing_correction;
}
AdjustTiming(t1,samplesi) @ PO;
fifo_put(&f1,samplesl);
}
}
section{
complex_t samples2[2048] @ {MO};
complex_t samples3[2048] @ {M1};
while (1) {
fifo_get(&f1,samples2);
memcpy (samples3, samples2,sizeof (samples2)) @ DMA;
FFT (samples3) @ P1;
fifo_put (&f2,samples3);
}
}
section{
complex_t samples4[2048] @ {M1};
complex_t samples5[2048] @ {M2};

bool bits1[3024] @ {M2};
int t2 = 0;
while (1) {

fifo_get (&f2,samples4);
memcpy (samplesb, samples4,sizeof (samples4)) @ DMA;
t2 += FindTimeOffset (samples5)@P2;
critical(offset){
timing_correction2 = t2;
}
Demodulate(bitsl,samples5) @ P2;
fifo_put(&£f3,bitsl);
}
}

section{

bool bits2[3024] @ {M2};

bool bits3[3024] @ {M3};

int8_t bytes[378] @ {M3};

while (1) {
fifo_get (&£f3,bits2);
memcpy (bits3,bits2,sizeof (bits2)) @ DMA;
ErrorCorrect (bytes,bits3) @ Viterbi;

}

}
}

Figure 4: A parallel version of the program in Figure 2.

arate variables in the parallel program. This fragmentation
comes from two distinct sources: replicating variables that
are communicated between threads and replicating variables
between memory spaces. Whilst the replication is necessary,
the burden on the programmer is significant: they may use
the wrong version of a variable, they may fail to copy from
one version of a variable to the other, or they may perform
the copy but in the wrong direction. Sections 4 and 5 sepa-
rately address the two sources of fragmentation.

Performance issues In addition to the impact on the struc-
ture of the application, the choice of synchronous RPCs,
threads and FIFOs to express parallelism is convenient but
runs the risk of a high overhead from copying data and
swapping thread contexts. Section 8 shows that existing
optimizations can be used to allow the use of high-level con-
structs without excessive overhead.

3. USER DEFINED CHANNELS

In Section 2, we observed that FIFO channels introduced
too much synchronization and therefore used shared vari-



typedef struct { lock_t lock; int data; } atomic_int_t;

void atomic_int_init(atomic_int_t *a, int x)
{ lock_init(&a->lock); a->data = x; }

void atomic_int_put(atomic_int_t *a, int x)
__attribute(( PUT(a, x) IN(x) ))
{ lock(&a->lock); a->data = x; unlock(&a->lock); }

void atomic_int_get(atomic_int_t *a, int *x)
__attribute(( GET(a, x) OUT(x) ))
{ lock(&a->lock); *x = a->data; unlock(&a->lock); }

Figure 5: Implementation of atomic channels showing
their dataflow annotations.

ables instead to achieve parallelism. The problem with us-
ing shared variables to communicate between threads is that
it is harder to determine the direction of dataflow through
shared variables, which makes it harder for programmers to
understand and makes dataflow analysis less precise. To ad-
dress this issue, SoC-C allows programmers to define new
channel types to express directional dataflow.

SoC-C provides the usual array of thread primitives (locks,
condition variables, etc.) to allow programmers to create
their own channel operations. More importantly, SoC-C pro-
vides annotations to allow the programmer to specify that a
function performs directional communication. Figure 5 con-
tains a simple example: an “atomic channel” which allows
one thread to pass data to another thread atomically. The
most important aspect of this example is the annotations.
The PUT (a,x) attribute specifies that the function argument
‘a’ is a channel used to communicate between threads and
that the function argument ‘x’ is the data transferred into
the channel. The PUT and GET attributes provide important
information for the decoupling transformation described in
Section 4 and the zero-copy transformation described in Sec-
tion 8.1. IN and OUT attributes indicate dataflow through
arguments in the usual way.

The PUT and GET attributes were originally added to
SoC-C to let us quickly prototype new types of channel
without the usual effort of having to add new intrinsic func-
tions to tables in the compiler. We have since realized that
most inter-thread communication and communication be-
tween threads and stream-oriented devices like Analog-to-
Digital Convertors (ADCs) is directional and can be mod-
elled as channels using our annotations. In addition to
atomic channels, some examples of channels we use are:

Channel interfaces to ADCs and DA Cs High rate ADCs
usually write data continuously into a circular buffer in mem-
ory. In addition to the channel and buffer arguments, it
takes a size argument indicating how many samples are re-
quired.

void ADC_get(adc_t *adc, buffer_t *buf, unsigned sz);

Although it interacts with hardware, this function has the
same semantics as any other “get” function: if the data is not
yet available, the thread blocks until the data is available.

Timed channels provide time-indexed access to data. FIFO
channels and atomic channels are at opposite ends of the
spectrum on how puts and gets are matched: a FIFO chan-
nel matches each get with a unique put; while an atomic
channel matches gets with the most recent put. Timed chan-
nels provide an intermediate semantic: data is timestamped
and a get is matched with the put closest to the requested
time.

102

void ts_put(tschan_t *c, int timestamp, void* v);
void ts_get(tschan_t *c, int timestamp, void* v);

The ts_get operation returns the entry with the closest
timestamp to the one specified. All ts_put operations must
use strictly increasing times and all ts_get operations must
use strictly increasing times. This restriction allows entries
to be discarded when they can no longer be accessed. Timed
channels allow for more parallelism between threads since,
after the first ts_put is performed, ts_get operations never
block because there is always an entry with a closest times-
tamp. The cost of this increased performance is less precise
synchronization between threads than with FIFO channels:
applications that use timed channels are unlikely to give de-
terministic results.

4. DECOUPLING

In Section 2, we observed that manually introducing pipeline
parallelism requires a significant restructuring of the pro-
gram. There are many papers on avoiding this cost by au-
tomating the transformation: Smith [10] applies the tech-
nique manually to Cray assembly code which they referred
to as “decoupling”; and Palacharla and Smith [9] use pro-
gram slicing to automatically decouple a program into two
threads communicating via FIFO channels: one containing
load-store operations, the other containing all other opera-
tions. Subhlok et al. [11] have proposed syntax extensions
for marking the start and end of pipeline stages within a
loop body. These tools allow the programmer to identify
what code should be in each section and then the compiler
inserts FIFO channel operations as required.

SoC-C’s approach is similar in that it requires the pro-
grammer to indicate the boundaries between threads. It
differs in that the programmer indicates the boundaries by
inserting the communication between sections and the com-
piler determines which code must be in each section — the
exact opposite of previous work. In practice, the difference
in annotations is usually small: we insert similar annotations
at similar parts of the program. We believe our emphasis on
communication brings an important benefit: the program-
mer is able to select an appropriate channel type in order
to reduce synchronization between sections . These decisions
necessarily involve the programmer because using any chan-
nel other than a FIFO channel can change the meaning of
the program. A secondary benefit is that our channel-based
decoupling transformation can be applied to code containing
complex control flow and is not restricted to being applied
to loops — constraints applied by most prior work.

Figure 6 shows the program in Figure 4 rewritten to use
our pipeline construct. There are three major differences.
(1) It is possible to write the program as a single loop be-
cause decoupling can automatically split it into four parallel
copies of the loop. (2) It is not necessary to introduce as
many intermediate variables (samples2, samples4, bits2)
because our transformation performs range-splitting to split
any local variable with disjoint live ranges into multiple vari-
ables. (3) It is necessary to use an atomic channel to express
the direction of dataflow for the a_timing variable.

SoC-C uses the syntax

pipeline{

compound_statement

}
to indicate that the body of the compound statement is to be
transformed into an equivalent set of parallel sections which



atomic_int_t a_timing;
atomic_int_init(&a_timing,0);
pipeline {
complex_t samples1[2048] @ {MO};
complex_t samples3[2048] @ {M1};
complex_t samples5[2048] @ {M2};

bool bits1[3024] Q@ {M2};
bool bits3[3024] @ {M3};
int8_t bytes[378] @ {M3};
int t1;

int t2 = 0;

while (1) {

ADC_get (&adc,&samples1,2048) ;
atomic_int_get(&a_timing,&t1);
AdjustTiming(t1,samplesl) @ PO;
fifo_put(&fl,samplesl);

fifo_get (&f1,samplesl);

memcpy (samples3,samplesl,sizeof (samplesl)) @ DMA;
FFT(samples3) @ P1;

fifo_put(&f2,samples3);

fifo_get (&f2,samples3);

memcpy (samplesb,samples3,sizeof (samples3)) @ DMA;
t2 += FindTimeOffset (samples5)@P2;
atomic_int_put(&a_timing,t2);
Demodulate(bitsl,samples5) @ P2;

fifo_put (&f3,bitsl);

fifo_get (&f3,bits1);

memcpy (bits3,bitsl,sizeof (bitsl)) @ DMA;
ErrorCorrect (bytes,bits3) @ Viterbi;

Figure 6: A version of the program in Figure 2 written
using the pipeline construct.

communicate (only) using the channel operations already
present in the program. Since communication lies at the
boundaries between threads, the compiler uses a dataflow
analysis which “colors in” the code that lies between the
boundaries. This analysis identifies the set of operations
that are on the “producer” side of a channel and the set of
operations on the “consumer” side of a channel. Repeat-
ing this for all channels and considering shared variables,
the compiler partitions the operations into sets of opera-
tions which must be in the same thread. The body of the
pipeline construct is then transformed into parallel sections
replicating control flow and variables as required.

The decoupling algorithm must make two essential deci-
sions: “What variables and operations to replicate?” and
“What operations to place in the same thread?”.

The task of decoupling is to split the region of code into
as many threads as possible, without introducing timing-
dependent behaviour, using channels to communicate be-
tween threads. Comparing Figure 4 with Figure 6 we ob-
serve that the generated threads do not strictly partition
the statements in the original code: some variables and op-
erations (principally those used for control) have been pri-
vatized (i.e., replicated in multiple threads) while others re-
main shared. The choice of what to privatize is an essential
part of the transformation: if too much code or data is priva-
tized, the transformed program can run more slowly and use
more memory than the original program. While these deci-
sions could be controlled using annotations on every variable
and statement, SoC-C applies some simple default rules that
give the programmer control without requiring excessive an-
notation. By default, scalar variables and variables declared
inside the pipeline annotation may be privatized. Opera-
tions other than function calls may be privatized unless they
have side-effects or modify a non-duplicable variable.

The other essential decision that the transformation must

103

make is “What operations must be in the same thread as
each other?”. To avoid introducing timing-dependent be-
haviour, the compiler applies the following three rules:

1. To preserve data and control dependencies, any dependent
operations must be in the same thread as each other un-
less the dependency is from a ‘put’ operations to a ‘get’
operation on the same channel. This special treatment of
dependencies on channel operations has the effect of cut-
ting edges in the dataflow graph.

. To avoid introducing race conditions, any operations which
write to a shareable, non-channel variable must be in the
same thread as all operations which read from or write to
that variable. Channels are excluded because all channel
operations are required to atomically modify the channel.

. To avoid introducing unwanted non-determinism, all puts
to a given channel must be in one thread and all gets from
a given channel must be in one thread.

Our implementation of decoupling finds the unique, max-
imal solution in four stages: live range splitting of privati-
zable variables, dependency analysis, merging, and thread
production. To illustrate our method, we consider the fol-
lowing simple example.

1 pipeline{

2 for(int i=0; i<100; ++i) {
3 int x = foo();

4 if %2 1!1=0 {

5 fifo_put(&f,x);

6 fifo_get (&f,&x);

7 bar(x);

8 }

9 X

10 }

The dependency analysis stage forms a large number of can-
didate threads by computing a backward data and control
slice [16] from each unprivatized operation ignoring data de-
pendencies on channel operations but including all other op-
erations in the slice. That is, we repeatedly apply rules (1-3)
to form candidate threads. In our running example, there
are four candidates: one each for foo(), fifo_put(&f,x),
fifo_get (&f,&x) and bar(x).
For example, the candidate for foo() is:

2 for(int i=0; i<100; ++i) {
3 int x = foo();
9 }

the candidate for fifo_put (&f,x) is:

2 for(int i=0; i<100; ++i) {

3 int x = foo();

4 if %2 1!1=0 {
5 fifo_put(&f,x);
8 }

9 }

and the candidate for bar (x) is:

2 for(int i=0; i<100; ++i) {

3 int x;

4 if (1% 2 1!=0) {
6 fifo_get (&f,&x);
7 bar (x) ;

8 }

9 }

The merging stage combines candidate threads by merging
threads that contain the same un-privatizable operation or
variable. For example, the candidate for foo() is merged



with the candidate for the operation fifo_put (&f,x) be-
cause they both contain the operation foo(). This results
in the candidate thread:

2 for(int i=0; i<100; ++i) {
3 int x = foo();

4 if (1% 2 1!=0) {

5 fifo_put(&f,x);

8 }

9

This is identical to the candidate for fifo_put(&f,x) be-
cause the candidate already contained the x=foo() oper-
ation. Similarily, the result of merging the candidate for
bar (x) with the candidate for the operation fifo_get (&f ,&x)
is identical to the candidate for bar(x).

The thread production stage converts candidate threads
to threads by privatizing variables and combining the result
using parallel sections.

Syntactic sugar We have found that it is common for
pairs of put and get operations to be adjacent. In recog-
nition of this, we added a small piece of syntactic sugar:
“FIF0(x);”. This is equivalent to a put followed by a get
on variable x and that also declares and initializes a fifo
channel. This syntax is illustrated in Figure 7.

5. COMPILER-SUPPORTED COHERENCY

In Section 2, we saw that distributed memory leads to
variable fragmentation: if functions running on different pro-
cessors access the same variable, we must create a version
of the variable for each memory region. This is tedious and
error prone because it is hard to understand the original de-
sign intent. To address this problem, we extend the data
placement notation to allow the programmer to express the
fact that the additional variables are just versions of the
same variable. This preserves the structure of the original
design and allows the compiler to detect errors using a single
compile-time coherence protocol.

We allow the programmer to assign a variable to multiple
memory regions. For example, the declaration

bool bits[2048] @ {M2,M3};

introduces two copies of the variable bits: one in memory M2
(written bits@M2) and one in memory M3 (written bits@M3).

Semantically, the different versions of a variable behave
like copies in a coherent cache: an assignment to one ver-
sion of bits (logically) invalidates the contents of the other
version. An invalid version of a variable can be made valid
by synchronizing it with a valid version of the same variable.
The statement

SYNC(bits,M3,M2) @ DMA;

makes bits@M2 valid if bits@M2 was already valid and is an
error if bits@MO was invalid. A SYNC statement is compiled
into a copy operation which, in this example, is to be per-
formed on engine DMA. Figure 7 illustrates how using variable
coherency annotations simplifies the task of keeping track of
all the different variables in Figure 6.

Adding support for multiple coherent versions of a vari-
able required the following compiler changes. Various triv-
ial changes to support the new syntax; to transform uses
of variables to use the appropriate version; and to trans-
form SYNC constructs into memcpy operations. Checking for
coherence errors is performed using a flow-sensitive, context-
insensitive, field-insensitive forward dataflow analysis:

104

—_

atomic_int_t a_timing;
atomic_int_init(&a_timing,0);

pipeline {
complex_t samples[2048] @ {MO,M1,M2};
bool bits[3024] e {M2,M3};
int8_t bytes [378] o {M3};
int t1;
int t2 = 0;
while (1) {

ADC_get (&adc,&samples@MO,2048) ;
atomic_int_get(&a_timing,&t1);
AdjustTiming(t1,samples@MO) @ PO;
FIFO(samples@MO) ;

SYNC (samples,M1,M0) @ DMA;
FFT(samples@M1) @ P1;
FIFO(samples@M1) ;

SYNC (samples,M2,M1) @ DMA;
t2 += FindTimeOffset (samples@M2)QP2;
atomic_int_put(&a_timing,t2);
Demodulate (bits@M2,samples@M2) @ P2;
FIFO(bits@M2);

SYNC(bits,M3,M2) @ DMA;
ErrorCorrect (bytes@M3,bits@M3) @ Viterbi;

Figure 7: The effect of rewriting Figure 6 using
variable coherency annotations. Changes are high-
lighted in bold.

. Each version of each variable can be valid or invalid;
. A kill makes all versions of a variable invalid;

. A def to a version of a variable makes that version valid
and all others invalid;

. A SYNC statement copies validity from one version of a
variable to another;

. A use checks that the version used is valid; and

. When flow merges, a version is valid only if it is valid in
all incoming edges.

To illustrate the kind of errors these checks detect, suppose
the programmer had accidentally reversed the first two ar-
guments in the first call to memcpy in Figure 6. Since the
programmer’s intent is not clear, it would be hard for a
compiler to detect this error. In contrast, reversing the MO
and M1 arguments in the first SYNC statement in Figure 7
is detected as a coherence error by our compiler: the FIFO
on the previous line defines samples@MO which invalidates
samples@M1 but the SYNC reads from samples@M1.

This coherency mechanism meets our primary goal of sup-
porting safe, statically checked use of distributed memory
between processors but within a single thread. Inter-thread
coherency checking would require dynamic checking of the
ownership of a variable and synchronization — which we
think is better expressed using channels. A consequence
of not supporting inter-thread coherence is that we per-
form coherence checking and transformation before decou-
pling to eliminate coherence annotations before creating new
threads.

6. PLACEMENT INFERENCE

Supporting multiple coherent versions of a variable helps
communicate the intent of the programmer and, hence, de-
tect errors but it requires that every single use of a variable
is annotated. To reduce this annotation burden, we replace
coherence checking with placement inference which exploits
the observation that the annotations contain a high degree
of redundancy:



atomic_int_t a_timing;
atomic_int_init(&a_timing,0);
pipeline {

complex_t samples[2048];

bool bits[3024];
int8_t bytes[378];
int t1;

int t2 = 0;
while (1) {

ADC_get (&adc,&samples, 2048) ;
atomic_int_get(&a_timing,&t1);
AdjustTiming(t1,samples) @ PO;
FIFO(samples);

SYNC(samples) @ DMA;
FFT(samples) @ P1;
FIFO(samples);

SYNC(samples) @ DMA;

t2 += FindTimeOffset(samples) @ P2;
atomic_int_put(&a_timing,t2);
Demodulate (bits,samples) @ P2;
FIFO(bits);

SYNC(bits) @ DMA;

ErrorCorrect (bytes,bits) @ Viterbi;

Figure 8: An OFDM radio receiver mapped onto
a complex architecture using the full set of SoC-C
annotations.

e [f P can only access one memory M, and the program con-
tains an RPC “foo(x)@P,” then variable x must be placed
in memory M and that x must have a version in memory M.

e If there is only one valid version x@M of a variable at the
site of a SYNC(x) statement, then the only legal source of
the SYNC is x@M.

e If x@M is the only version of a variable whose use is reach-
able from a SYNC(x) statement, then the only sensible tar-
get of the SYNC is x@M.

These three observations follow a common pattern: if
there is only one valid choice, assume that choice is true.
Our coherence inference algorithm is similar to flow-sensitive
type inference: it uses annotations and the memory topol-
ogy to add constraints to the system (e.g., an RPC ‘f (x) @P’
provides the constraint that ‘x’ must be in a memory accessi-
ble by 'P’ while a reference to ‘x@M0’ provides the constraint
that ‘x@MO’ is valid. Having gathered all the constraints, we
use forward-chaining inference to add additional constraints.
When no more constraints can be inferred, we choose an
open question and test all possible answers to see if they
break the constraints. If precisely one possible solution does
not break the constraints, then we assume that it is the
correct solution and repeat the inference process. This is
repeated until no more open questions can be resolved in
this way. This process results in a unique solution if there
is one because it makes an assumption only if it can prove
that all other alternatives are invalid.

In practice we find that SoCs which have multiple memory
regions also have sufficiently restricted memory topologies
that the compiler can infer most annotations. For example,
Figure 8 shows the effect of applying our annotations to the
code in Figure 7: all data placement annotations can be
inferred in this example.

7. EVALUATING SOC-C ANNOTATIONS

Having completed our presentation of SoC-C, we consider
how effective the annotations are at expressing SoC pro-
grams. Comparing Figure 8 with the sequential code, we

105

see that to map and parallelize we added: 8 code placement
annotations; 0 data placement annotations; 3 SYNC state-
ments; 3 FIFO statements to pass data between threads;
and 2 put/get operations on atomic operations.

While annotations and additional statements have been
inserted, the structure of the code is unchanged; to port the
parallelized code to a new platform, the worst case is that
one would delete all the annotations and start again.

Most importantly, we claim that there is little redundancy
in the code: most of the changes are independent of the other
changes. This suggests that SoC-C allows programmers to
express design decisions rather than focussing on the me-
chanics of making the program correct and consistent.

8. KEY OPTIMIZATIONS

In Section 2 we identified two potential performance is-
sues in our choice of abstraction: the cost of copying buffers
into and out of channels; and the cost of using synchronous
RPC and threads. This Section describes the (previously
known) optimizations we apply to make the cost of these
abstractions acceptable.

8.1 Optimizing channels

The semantics of channels is that put operations transfer
data into the channel and get operations transfer data out.
This simple semantics ensures that each thread has exclusive
access to the data but a literal implementation would require
a lot of unnecessary data copying. Network stacks, filesys-
tems and embedded systems often provide a “zero copy” in-
terface which pass pointers instead of copying data. For
example the Task Transaction Interface [14, section 4.1.5]
splits “put” operations into two operations. “acquireRoom”
allocates the next empty buffer in a channel; the producer
should then write data into the buffer and call “releaseData”
to make the data available to the consumer. Similarily, “get”
operations are split into “acquireData” and “releaseRoom”.
Supporting this style of channel interface required three
changes. First, for all channels which hold large buffers, we
rewrote the channel implementation to support a zero-copy
interface. For example, the zero copy operations correspond-
ing to fifo_put are:
void fifo_acquireRoom(fifo_t *f, void* *room);
void fifo_releaseData(fifo_t *f, void* data);

Secondly, we added attributes to the “put” and “get” func-
tions identifying that these functions could be zero-copy op-
timized and naming the two associated functions. The aug-
mented set of attributes on the fifo_put function is:
void fifo_put(fifo_t *fifo, void *data)
__attribute(( PUT(fifo, data) IN(data)

ZEROCOPY (fifol_acquireRoom,
fifol_releaseData) ));

Finally, we modified the compiler to analyze the live range
of buffers passed to functions with ZEROCOPY attributes and
insert calls to the two functions at the starts of the live range
and at the ends of the live range.

The optimization cannot be used if the live range does not
end at a put (or start with a get), for example, if a variable is
put into multiple channels or is used after the put operation.
For bulk data types, the cost of not optimizing away the copy
may be significant so, when zero-copying cannot be used,
our compiler reports a warning prompting the programmer
to change their code.



section{

complex_t *p_samples2;

complex_t *p_samples3;

while (1) {
fifo_acquireData(&f1,&p_samples2) ;
fifo_acquireRoom(&f2,&p_samples3);
memcpy (p_samples3,p_samples2,...) @ DMA;
fifo_releaseRoom(&f1l,p_samples2);
FFT(p_samples3) @ P1;
fifo_releaseData(&f2,p_samples3);

Figure 9: The effect of zero-copy optimization.

Figure 9 shows the effect of applying zero-copy optimiza-
tion to the second code section in Figure 4. Using this trans-
formation typically reduces the channel operations to just a
small amount of book-keeping. For example, the put opera-
tion on an atomic channel is split into an operation to wait
for the buffer to become available followed later by an opera-
tion to release the buffer to other users of the channel. These
operations are exactly the same as the lock/unlock opera-
tions on a mutex that would normally have been used: our
optimizations result in the same low-level, efficient imple-
mentation that embedded programmers normally use with-
out the semantic complexity of using shared variables di-
rectly.

8.2 Optimizing thread implementation

SoC-C provides synchronous RPCs and uses threads to
express sequencing of operations and parallelism. In embed-
ded systems, it is more usual to provide asynchronous (aka
non-blocking) RPCs and use an event-driven programming
style to express sequencing of operations and parallelism.
SoC-C’s choice is simpler to use but a conventional thread
implementation would incur a large space overhead to store
thread contexts and a large time overhead performing con-
text switches when an engine sends an interrupt to signal
that it has completed a function call.

To achieve the simplicity of threads with the efficiency of
event-driven programming, we use an old trick: we trans-
form threads into event-driven programs [6]. Our compiler
transforms each thread into a state machine where states
represent points where the program may block on an event
and edges are labelled with event handlers which execute
code from the thread and update the current state. For ex-
ample, Figure 10 shows the state machine corresponding to
the code in Figure 9.

A typical execution sequence is as follows. The proces-
sor spends most of its time in a low-power state waiting
for an interrupt with all threads either blocked on a condi-
tion variable waiting for a processing element to complete
execution or blocked on a channel. On receiving an inter-
rupt signalling completion of a task, the processor invokes
an interrupt hander which acknowledges the interrupt and
invokes an event handler for the thread currently waiting for
that task to complete. This handler typically starts a new
task on a processing element and blocks waiting for the task
to complete or waiting for the processing element to become
available. If the event handler released a lock or put data
into a channel before it blocked, the handler may trigger
other event handlers: the completion of a single process-
ing element can cause a cascade of event handlers as results
propagate to other threads and buffers are freed. When all
event handlers in this cascade have executed, all threads are

106

true
>

fifo_acquireData(&f1.&p_samples2);

data_available(&f1)
>
fifo_acquireRoom(&£2.&p_samples3)

data_available(&f2)
>

memepy(p_samples3.p_samples2....) (

task_completed(DMA)
>

fifo_releaseRoom(&f1.&p_samples2);
FFT(p_samples3) @ P1;

task_completed(P1)
>

fifo_releaseData(&12,&p_samples3);

Figure 10: The state machine for Figure 9.

once more blocked on a condition variable or a channel and
the control processor returns from the interrupt handler and
reenters a low-power state.

8.3 Dataflow Analysis and Phase Ordering

Our compiler relies on the ability to perform a sufficiently
accurate dataflow analysis. Since we wish to keep the pro-
grammer “in the loop”, we limited ourselves to a simple
dataflow analysis that was easy to understand. Accord-
ingly, our analysis is flow sensitive, field-insensitive, context-
insensitive. Our pointer analysis is just sufficient to analyze
programs that use pointers to pass arguments by reference;
programmers are encouraged to create abstract data types
to hide any other use.

The dataflow analysis used for decoupling and other trans-
formations requires programmer annotations on function ar-
guments. We rely on programmer annotation to determine
whether a pointer argument is an ‘in’ argument (indicated
by C’s const qualifier), an ‘out’ argument (indicated by an
attribute) or an ‘in-out’ argument (the default). Similarily,
if a function accesses a global variable, the function proto-
type must be annotated to indicate whether it is an ‘in’, ‘out’
or ‘in-out’ variable. If a function modifies just one field in a
struct or array, the argument is recorded as an ‘in-out’ argu-
ment indicating that the function does not “kill” the entire
argument. In practice, we find that most of this informa-
tion is already documented informally or can be obtained as
a side-effect of function compilation.

Our compiler performs the transformations described in
this paper in the following order: dataflow analysis, place-
ment inference/checking, splitting variables with multiple
placements into separate variables, zero-copy optimization,
decoupling and transforming threads into state machines.
Performing dataflow analysis early is important because it
allows us to analyze the code before additional pointers are
introduced and to give accurate programmer feedback. Co-
herency checking is performed before decoupling because co-
herency checking can only be applied within a thread. Zero-
copy optimization can be performed either before or after
decoupling; to allow it to be performed before decoupling,
the ‘releaseData’ and ‘acquireData’ operations need to be
annotated with ‘PUT’ and ‘GET’ attributes.

Our SoC-C compiler is written as a source to source com-
piler implemented using Necula et al.’s wonderful CIL [7] C
processing framework, 5800 lines of O’Caml code and around
5000 lines of runtime support code including device drivers.



activity cycles
enter irq handler 10
clearing interrupts 20
start data engine 39
lock overhead 34-38
FIFO transfer overhead | 54-55

Figure 11: Performance of SoC-C Implementation

9. PERFORMANCE EVALUATION

This Section evaluates the performance of SoC-C using
two criteria: we establish the efficiency of our implementa-
tion using microbenchmarks; and we measure how perfor-
mance of a high performance “software defined radio” appli-
cation scales with the number of processors.

All measurements were based on a multiprocessor sys-
tem being developed by ARM Ltd. to implement the phys-
ical layer processing of 3.9G mobile phones. This plat-
form centres around a configurable number of moderate-
frequency, highly parallel C-programmable data processing
engines implemented using ARM’s OptimoDE design tech-
nology. These processors exploit both data-parallelism us-
ing a very wide SIMD (512-bit) datapath and and exploit
instruction-level parallelism using VLIW instruction decod-
ing. These OptimoDE engines have a 512-bit data bus to
memory and are supported by a DMA engine capable of 512-
bit wide transfers. We evaluated using a platform configured
to use between 1 and 4 of these data engines as shown in Fig-
ure 3. SoC-C code runs on a Cortex-M3 RISC processor with
a 32-bit tightly coupled memory. The primary task of the
RISC processor is to control data engines, DMA, etc. and to
interact with processors executing the higher layers of the
network protocol stack. All measurements were made us-
ing cycle-accurate models of the data engines, DMA engine,
RISC processor and memory system and cycle-approximate
models of the peripherals.

9.1 Performance of the runtime system

One of the most important metrics is how long a data
engine spends idle between tasks. The control processor
must perform the following steps: 1) Complete the current
instruction and enter the interrupt handler; 2) Acknowl-
edge the interrupt to the device; 3) Execute the appropriate
event handler including constructing a call frame and start-
ing the data engine. Using the simulator we monitored the
start/stop signals from data engines, the interrupt signals
and the program counter on the control processor and ob-
tained very precise, repeatable measurements to be made
(Figure 11). The total time that a data engine is idle be-
tween tasks is 69 cycles.

In practice, it is usually necessary to use locks to prevent
two threads from using the same engine at once. Locking
increases the idle time by 50% to 103-107 cycles. When two
threads communicate via a FIFO queue, the time between
the completion of a task on one thread and the start of a
task in the other thread is 157-162 cycles.

In comparision, our experience is that commercial RTOSs
require more than 300 cycles to enter an interrupt handler
and trigger a thread context switch. The extra 150-200 cy-
cles may appear negligible until one considers that in that
time, our SIMD data engine could have performed another
4500-6000 fixed point multiply operations.

107

cores | ideal time | actual time | utilization | speedup
1 29286 31101 94% 1.00
2 15013 16865 89% 1.84
4 7876 9077 87% 3.43

Figure 12: Scaling of DVB application.

9.2 Scalability

This Section evaluates how well performance scales as the
number of processors is varied using the inner receiver of a
Digital Video Broadcast (DVB) physical layer as a bench-
mark. This has a similar structure and dataflow to our run-
ning example but, in addition, it performs: coarse-timing
correction to maintain synchronization over long time peri-
ods, demultiplexing of data, control bits and pilot channels;
channel equalization to correct for fading of individual fre-
quency channels; de-interleaving of the data to reduce sen-
sitivity to bursts of noise. Odd and even symbols require
slightly different processing requiring the compiler to decou-
ple code containing if-statements and the two paths have
slightly different execution times. Our receiver consists of
around 9000 lines of C code split into 17 DSP functions
which execute on the SIMD data engines. The total num-
ber of cycles of the functions and three DMA transfers is
29286 cycles of which 740 cycles are DMA transfer. Task
granularity varies considerably: there are 2 tasks of almost
7000 cycles, 3 tasks of more than 3000 cycles, 1 task of 1000
cycles and the remainder are 500 cycles or less.

We used SoC-C to combine these functions into a single-
threaded application and created two pipelined versions of
the program for platforms with two and with four SIMD
data engines by inserting FIFOs and atomic channels and
changing the placement annotations.

We measured the maximum sustainable rate at which a
stream of 2K point DVB symbols can be processed mea-
sured in cycles per symbol and calculated the best possible
time for a system with one DMA engine and N cores given
our code placement decisions and function runtimes and ig-
noring data dependencies which would prevent perfect par-
allelization. Ignoring data dependencies makes this number
a little conservative (too low). We calculated utilization as
the ratio between the ideal rate and the actual rate and
calculated speedup as the ratio of actual rate against the
actual rate of the l-core variant. The results are summa-
rized in Figure 12. The results for a single core demonstrate
the effectiveness of our implementation strategy: the over-
head of using SoC-C is just 1800 cycles (6%) which matches
our expectation from the microbenchmarks. On two cores,
the application speeds up by a factor of 1.84 compared with
the single core version. We were unable to achieve perfect
speedup because the coarse granularity of tasks made it im-
possible to perfectly balance the load. On four cores, the
application speeds up by a factor of 3.43 compared with the
single core version despite coarse task granularity.

10. DISCUSSION AND RELATED WORK

SoC-C’s major influences are stream programming languages
such as Streamlt [5] which emphasize pipeline parallelism
and have a clear separation of the communication language
from the kernel language. We maintain the separation of
communication/control layer (SoC-C) from computation (code
called by RPCs) but we chose a sequential communication
language instead of a dataflow language because we found



it hard to express global control (i.e., conditionals that span
multiple pipeline stages) over pipeline stages that execute
asynchronously with respect to each other. Using decou-
pling to introduce parallelism, gives the ease of expression of
global control that imperative languages provide combined
with the pipeline parallelism that stream languages provide.

Decoupling has been applied many times; we cite a rep-
resentative sample. Smith [10] applies the technique manu-
ally to Cray assembly code to separate load-store operations
from other operations to program Access-Execute proces-
sors; [9] automated this transformation; [4, 8, 2, 3] decouple
programs automatically based on load-balancing heuristics;
[11, 13] rely on programmer annotations to mark the begin-
ning and end of pipeline stages. All these papers rely on
partitioning of the operations into pipeline stages and then
inserting FIFO channels. Our channel-based decoupling al-
gorithm does the opposite: it relies on the programmer in-
serting channels and partitions the operations accordingly.
The difference is small but significant: making the channels
first-class concepts, instead of mere implementation details,
lets the programmer use different channel types to explicitly
relax synchronization between pipeline stages to avoid loss
of decoupling. We are not aware of any work that uses non-
FIFO channels when automatically decoupling a sequential
program though Streamlt’s “teleport messaging” [12] pro-
vides a related feature for dataflow languages.

Although SoC-C borrows syntax from OpenMP, the two
languages target very different systems and parallelism pat-
terns: OpenMP targets SMP systems and supports data
parallelism using annotations on for-loops; SoC-C targets
AMP systems and, hence, supports pipeline parallelism.

EXOCHTI [15] also tackles the problem of programming
heterogeneous multicore systems but is complementary since
they focus on coping with multiple instruction sets/toolchains,
providing shared virtual memory and dynamically allocat-
ing tasks to accelerators whereas we focus on distributed
memory, static allocation of tasks and decoupling.

There has been a large body of work on software dis-
tributed shared memory and on reducing cache-coherency
traffic between threads using compiler techniques. SoC-C’s
approach is to express inter-thread communication (which
requires dynamic checks) using channels and restrict coher-
ence checking for intra-thread, inter-processor communica-
tion (which our compiler checks statically).

SoC-C handles data copying differently from many sys-
tems: RPCs normally copy bulk data structures; FIFO chan-
nels normally copy data both on a put and a get; private
memories are often used to store local copies of variables
whose master copy is in shared memory. Instead, SoC-C
gives explicit control over data copying and SoC-C provides
support to make this less burdensome and error-prone.

11. CONCLUSIONS

Mapping an application onto low-power, high-perform-
ance SoCs is a challenging problem due to the architectural
complexity needed to achieve high energy efficiency. A com-
mon approach to the problem of complex hardware is to use
software libraries to hide the complexity from the user. To
achieve significantly higher energy efficiency we take a differ-
ent approach: SoC-C provides the programmer with explicit
control over how an application is mapped onto an archi-
tecture without requiring significant manual restructuring.
Any language requires careful implementation and choice of

108

optimizations to minimize overhead: our compiler is able to
speedup a coarse-grained, real-world application by a factor
of 3.4 on a four-core platform achieving utilization of 87%.

12. REFERENCES

[1] P. L. Bird, A. Rawsthorne, and N. P. Topham. The
effectiveness of decoupling. In International
Conference on Supercomputing, pages 47-56, 1993.
M. Bridges et al. Revisiting the sequential
programming model for multi-core. In MICRO 2007:
Proc. of Symposium on Microarchitecture, 2007.
J. Dai, B. Huang, L. Li, and L. Harrison.
Automatically partitioning packet processing
applications for pipelined architectures. In PLDI 2005,
pages 237-248, 2005.
W. Du, R. Ferreira, and G. Agrawal. Compiler
support for exploiting coarse-grained pipelined
parallelism. In Proc. of Conf. on High Performance
Networking and Computing (SC2003), page 8, 2003.
M. I. Gordon et al. A stream compiler for
communication-exposed architectures. In Proc.
Architectural Support for Programming Languages and
Operating Systems, pages 291-303, 2002.
H. Lauer and R. Needham. On the duality of
operating system structures. In Proc. Symposium on
Operating Systems, 1978.

G. C. Necula et al. CIL: Intermediate language and
tools for analysis and transformation of C programs.
In CC ’02: Proc. Int. Conf. on Compiler
Construction, pages 213—-228. Springer-Verlag, 2002.
G. Ottoni, R. Rangan, A. Stoler, and D. I. August.
Automatic thread extraction with decoupled software
pipelining. In MICRO ’05: Proc. Int. Symposium on
Microarchitecture, Nov 2005.

S. Palacharla and J. E. Smith. Decoupling integer
execution in superscalar processors. In MICRO 28:
Proc. of International Symposium on
Microarchitecture, pages 285-290, 1995.
J. E. Smith. Decoupled access/execute computer
architectures. ACM Trans. Comput. Syst.,
2(4):289-308, 1984.
J. Subhlok et al. Exploiting task and data parallelism
on a multicomputer. In Proc. of Symp. on Principles
and Practice of Parallel Programming, 1993.
W. Thies et al. Teleport messaging for distributed
stream programs. In PPoPP ’05: Proc. of Symposium
on Principles and Practice of Parallel Programming,
pages 224-235. ACM Press, 2005.
W. Thies et al. A practical approach to exploiting
coarse-grained pipeline parallelism in C programs. In
MICRO 2007, 2007.
P. van der Wolf et al. Design and programming of
embedded multiprocessors: An interface-centric
approach. In CODES+I1SS55°04: Hardware/Software
Codesign and System Synthesis, 2004.
P. H. Wang et al. EXOCHI: architecture and
programming environment for a heterogeneous
multi-core multithreaded system. In Proc. PLDI, 2007.
M. Weiser. Program slicing. In ICSE ’81: Proc. of
International Conference on Software Engineering,
pages 439-449, 1981.

2l

[13]

(14]



