
Decoupled Root Scanning in Multi-Processor Systems

Wolfgang Puffitsch
Institute of Computer Engineering

Vienna University of Technology, Austria
wpuffits@mail.tuwien.ac.at

ABSTRACT
Garbage collection (GC) is a well known approach to simplify soft-
ware development. Recently, it has started to gain acceptance also
in the real-time community. Several hard real-time GC algorithms
have been proposed for uniprocessors. However, the growing pop-
ularity of multi-processors for real-time systems entails that algo-
rithms and techniques have to be developed that allow hard real-
time GC on multi-processors as well.

We propose a novel root cache, which aggregates information of
the processor-local root sets in multi-processor systems. It allows
that the root scanning phase of the garbage collector is decoupled
from the root scanning phase of working threads. Thread-local root
scanning can be scheduled flexibly, without impeding the garbage
collector. Additionally, the new cache lowers both the blocking
time and the memory bandwidth consumption due to the root scan-
ning phase of GC.

The proposed solution has been implemented for evaluation in a
chip multi-processor system based on the Java Optimized Proces-
sor. We show how bounds on the garbage collector period can be
extended to take into account the root cache. We also present ex-
perimental results, which highlight the advantages and limits of the
proposed approach.

Categories and Subject Descriptors
D.3.4 [Programming languages]: Processors—Memory man-
agement (garbage collection); B.3.2 [Memory Structures]:
Design Styles—Cache memories; C.3 [Special-Purpose and
Application-Based Systems]: Real-time and embedded systems

General Terms
Design, Theory, Experimentation

Keywords
multi-processor, garbage collection, real-time

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

1. INTRODUCTION
GC reliefs the programmer from the task of manually manag-

ing memory and is part of a number of programming languages.
However, simple garbage collectors cause pauses, which are hardly
acceptable for interactive applications. This problem was an in-
centive for the development of early real-time garbage collectors,
which focused on keeping interruptions small rather than achiev-
ing temporal predictability. Especially the use of Java in real-time
systems has drawn new attention to this area, now also focusing on
hard real-time systems, where temporal predictability is of utmost
importance.

The authors of the Real Time Specification for Java (RTSJ) [4]
were not convinced of the GC techniques available at the time – the
specification efforts started in the late 1990s – and introduced a spe-
cial programming model for memory management to Java, through
the use of scoped memory. The programming model with scoped
memory is however unusual to most programmers and forces the
Java virtual machine (JVM) to check all assignments to references.
Failing to adhere to the programming model will trigger run-time
exceptions – arguably a different level of safety than most Java pro-
grammers would expect. Therefore, hard real-time GC – although
not being strictly necessary – is still considered a valuable goal for
designers of real-time JVMs.

While there are hard real-time GC algorithms for uniprocessors
[20, 15, 2], the known algorithms for multi-processor GC rather
focus on soft real-time systems [13, 6], if considering this topic at
all.

In this paper we present a novel cache, which is used for caching
the references each processor in a chip multi-processor (CMP) sys-
tem accesses; a garbage collector can use the information in this
cache to construct its root set without interrupting the working
threads. Therefore, the cache allows the temporal decoupling of
the garbage collector and the working threads in a CMP system.
It also lowers the number of memory accesses for each processor,
removing some pressure on the memory bandwidth, a typical bot-
tleneck in CMP systems.

This paper is organized as follows: the rest of this section high-
lights the challenges of real-time GC on multi-processor systems.
Section 2 describes the proposed cache and its implications; it is
evaluated in Section 3. Related work is covered in Section 4, and
Section 5 concludes the paper.

1.1 Garbage Collection Algorithms
Traditionally, there are three approaches to GC: reference count-

ing, mark-sweep algorithms and copying algorithms [10].
Reference counting counts the number of references to each ob-

ject and frees them, when this count drops to zero. While this looks
appealing on the first sight, the approach suffers from problems

91

with cyclic references. The solutions to circumvent these prob-
lems rely on a certain programming model, require a considerable
amount of overhead, or need a mark-sweep phase to reclaim cyclic
structures. As we are not convinced that these work-arounds are
feasible for real-time systems, reference counting will not be dis-
cussed further in this paper.

Mark-sweep and copying algorithms differ in a number of de-
tails, but share the same concept: First, a set of roots is determined,
which contains all objects that are directly accessible. Starting from
this root set, the object graph is traversed to find all reachable ob-
jects. The objects not discovered in this second phase are obviously
garbage and can be recycled. Mark-sweep garbage collectors suffer
from heap fragmentation, but can be extended with a compaction
phase to circumvent this problem; they are then usually referred to
as mark-compact garbage collectors.

In order to lower the blocking time of GC, incremental algo-
rithms have been developed, which allow interleaved execution of
working threads and the garbage collector. The working threads
have to execute read barriers [3] or write barriers [24] when ac-
cessing memory to ensure the correctness of GC.

Figure 1 shows how the execution of an incremental mark-sweep
or copying garbage collector may look like in a multi-processor
system. One CPU is responsible for GC, while three other CPUs
execute working threads (we assume one thread per CPU for sim-
plicity here). At point A, the garbage collector initiates a new GC
cycle. This has to be atomic with regard to interactions of the work-
ing threads with the memory management, namely the creation of
new objects and the execution of barriers. The garbage collector
then (at B1) scans its own stack for root references and waits until
all other threads have done so as well; static variables are scanned
afterwards (at B2). While the scanning of thread stacks has to be
atomic per thread, the scanning of static variables does not neces-
sarily have to be so. At C, the garbage collector starts to trace the
object graph and to copy the used objects or sweep the unused ob-
jects, depending on the algorithm. When the GC is finished at D,
the GC thread goes idle until the start of the next GC cycle at A′.

When using an incremental garbage collector, the working
threads can continue with their work throughout all phases of GC.
They only need to be halted while their local root set is scanned.

A crucial point in Figure 1 is that GC may not proceed until all
threads have scanned their stacks. One could interrupt all threads
and force them to scan their stacks; obviously this will result in a
low waiting time, but means that even highest-priority threads must
be interruptible. One could also signal them that they should scan
their stack and wait until they have done so. From a threads per-
spective, stack scanning ideally takes place at the end of its period,
because its stack is usually low then and virtually no overhead has
to be put into checking when to do a stack scan; such a strategy
however will result in a long waiting time for the garbage collector.
The implications of letting threads scan their local roots sets at the
end of their periods are analyzed in [14].

1.2 Real-Time Garbage Collection
Real-time GC has to ensure three fundamental properties:

bounded blocking times, acceptable utilization of working threads
and bounded memory consumption. While the last requirement
does not refer to timing in the first place, a thread that runs out of
memory cannot provide its result on time – it will provide no result
at all. Blocking times from GC have several reasons:

1. Retrieval of the root set

2. Copying of objects

3. Scanning of objects for graph traversal

4. Access to data structures which are shared between the work-
ing threads and the garbage collector

The access to shared data structures such as the mark stack must
inevitably be synchronized to ensure these structures are not cor-
rupted. However, the access to them appears only at certain well
defined instructions (from the working threads’ perspective) and
the critical section is typically only a few instructions long. This
blocking has to be taken into account for instructions that allocate
objects (e. g., new in the JVM) and instructions that may execute a
read or write barrier.

The issue of object scanning is a problem only for certain algo-
rithms. Using an appropriate algorithm, the blocking time can be
reduced to the access to shared data structures.

Copying of objects is an issue for copying and mark-compact
garbage collectors, because copying must be atomic to ensure
the consistency of the involved data. Traditional mark-sweep al-
gorithms are not considered feasible for hard real-time systems
(where memory consumption must be bounded) due to their prob-
lems with fragmentation. A mark-sweep garbage collector has been
proposed in [21] to eliminate copying and external fragmentation
at the expense of internal fragmentation. In [18], hardware support
for non-blocking copying of objects is proposed. Extending this
solution to multi-processors however remains future work.

The retrieval of the root set is not considered for the blocking
time of a garbage collector in many papers. Incremental root scan-
ning algorithms have been proposed to lower the blocking time for
uniprocessor systems [5, 22, 25], but it is not clear if these can
be extended to multiprocessors without introducing a considerable
overhead to ensure the consistency of the root set. They are also
more costly than traditional root scanning schemes; in [22], more
than one million references have to be saved each second to “root
arrays” and a runtime overhead of 11.8% is estimated. Further-
more, root scanning usually induces memory accesses proportional
to the size of the stack, rather than to the overall memory consump-
tion. A computationally expensive thread that rarely accesses mem-
ory can therefore cause a considerable amount of traffic, unneces-
sarily increasing the pressure on the memory bandwidth in a CMP
system.

2. ROOT CACHE
The root set for a garbage collector consists of any references

that are “always” accessible (any references in static variables in
Java) and thread-local references. The latter comprise any refer-
ences in local variables, the operand stack and CPU registers. In
the JVM, all this data is part of the run-time stack. As a running
thread constantly modifies this data, it is impossible to get a con-
sistent view of it without cooperation; usually, execution is stopped
until all relevant data is saved. Registers of a processor may not be
accessible to other processors in a CMP system, so a processor has
to scan them for references by itself. The view of the root set also
has to be consistent such that no reachable object appears unreach-
able to the garbage collector; establishing this consistency makes it
necessary to use some form of synchronization.

The idea behind the proposed cache is that in Java, a proces-
sor cannot “invent” a reference. As there is no pointer arithmetic
in Java, references can only point to previously allocated objects.
There are only two possibilities how a reference can enter a pro-
cessor: either it is read from main memory or it is created by the
memory management. It is evident that in the first case the memory
access is observable from outside the processor. In the latter case,
the interaction between a working thread and the memory manage-
ment ensures that the reference cannot remain undetected.

92

A DCB1 B2 A’ B1’

CPU0

CPU3

CPU2

CPU1

scan

thread stacks

scan

static variables

mark-sweep

or copy

idle

time

init

Figure 1: Multi-processor garbage collection

Execution

Scanning

Update

Execution

Start

Scanning

Update

Execution

Figure 2: Algorithm for a single processor

This fact is utilized by snooping memory accesses of running
processors and marking the detected references as live in a cache.
In a second step, a processor scans the thread-local data, and marks
the references it finds in a different color. After it has marked
the cache entries, the references marked only during snooping can
be marked as unused again, because they are known to be dead.
The cache narrowing by the processor ensures that the amount of
marked references in the cache is bounded.

In the following, we will use the colors white, yellow and red
for marking. These colors were chosen to avoid confusion with
Dijkstra’s tricolor abstraction [8], which uses white, grey and black
for marking. Gray scale reproductions of Figures 2 and 3 will show
yellow as light gray and red as dark gray.

Figure 2 shows the algorithm for a single processor. Upon start-
up, all references are marked as unused (white). The processor
then starts execution, and references it accesses are marked yel-
low. When the processor scans its stack, it marks the references it
finds red, usually leaving some entries yellow. These entries are re-
moved in the next step, where all yellow entries are reset to white.
When the processor starts execution again, red entries become yel-
low again and, as in the previous execution phase, accessed refer-
ences are marked yellow.

Note that a color always corresponds to the same bit pattern
in the cache. Changing the interpretation of patterns would have
resulted in a considerably larger hardware implementation than
changing the values in the cache.

CPU0

CPU1

CPU3

CPU2

Aggregated

Figure 3: Snapshot of execution with four CPUs

The algorithm ensures that a superset of all references which are
contained in a root set is marked yellow or red. During execution,
a reference is marked when it is accessed – as a reference has to be
accessed to become live, all references which are live at some point
of execution are marked yellow after that point. When the proces-
sor scans the thread-local data, it marks all live references red; af-
ter the cache narrowing, all yellow references are known to be dead
and can be marked as unused again. When execution continues, red
entries are reset to yellow, so they are not erroneously identified as
live when the cache entries are narrowed the next time. Updating
the references from red to yellow and from yellow to white is done
by the hardware.

In a CMP system, the information of the caches for each pro-
cessor has to be combined somehow. It also has to be ensured that
the gathered information is consistent such that no reference in the
root set can remain undetected. This is achieved with a memory in
which the content of the per-processor caches is aggregated. In this
memory, a reference is marked if it is marked yellow or red in any
per-processor cache. The aggregate state computation is essentially
a logical OR of the entries in the processor-local caches, which can
be implemented efficiently in hardware.

In Figure 3, an intermediate state is shown; while the individual
processors are in different phases of execution, the aggregate state
reflects all references which may be part of a local root set. The
aggregate state corresponds to the union of all processor-local root
sets and can be used by the garbage collector to construct the global
root set at any time.

2.1 Scheduling of Local Root Scans
There is no need to synchronize the root scanning of individual

processors to achieve a consistent view of their root sets. Different
strategies can be used for different threads, without changing the
garbage collector. The most appropriate strategy can therefore be
chosen for each thread.

A simple strategy is to use a timer interrupt to trigger a cache
narrowing from time to time. This however introduces some jitter,
which may not be tolerable for some applications.

93

Another solution is to wait until a thread waits for its next period,
as proposed in [19]. As the stack is almost empty then and no over-
head has to be put into checking when a stack scan should be done,
this is a very convenient strategy from a threads perspective. For
traditional root scanning schemes, this introduces a considerable
waiting time to the garbage collector (see Figure 1). The proposed
cache however allows one to use such a strategy without introduc-
ing waiting times.

A third solution is to scan the thread-local data upon thread
switches. The state of the old thread has to be saved and the state of
the new thread has to be read from main memory, so the overhead
for narrowing the cache in the course of doing so can be kept small
for some processors. Again, such a strategy would have caused
considerable waiting times in the garbage collector for traditional
root scanning schemes, but does not do so for the proposed cache.

2.2 Garbage Collection Period
The temporal decoupling of local and global root scanning

comes at the cost of longer life times of references. A reference
which is not contained in a thread’s stack may still be marked in
the root cache. In this section, we will show how this influences
the requirements for the GC period of a copying garbage collector.
The formulas can easily be extended to a mark-compact garbage
collector.

An upper bound for the memory consumption is provided by the
worst case memory consumption of all processors before they scan
their stacks plus the amount of memory they allocate during the
worst case execution time (WCET) of two GC cycles. It is neces-
sary to take into account the GC cycle twice, because a GC cycle
which started just before stack scanning cannot free the respective
memory. This bound is therefore dependent on the allocation rate
of individual threads and the GC period TGC.

In [17], it is shown that for a copying garbage collector the fol-
lowing inequation must hold for situations where data is generated
by one thread (“producer”) and consumed by a different thread
(“consumer”):

TGC ≤
HCC−2∑

n
i=1 aili−2∑

n
i=1 ai

2∑
n
i=1

ai
Ti

(1)

HCC is the overall heap size, Ti is the period of a thread τi, ai the
amount of memory allocated during each period by τi and li the
“life time factor”. It takes into account that data produced by one
thread is consumed by another thread. It is defined as1

li =

{
1 for normal threads τi⌈ 2Tc

Ti

⌉
for producer τi and consumer τc

(2)

If cache narrowings take place at the end of a task’s period,
the lifetime of objects is not extended artificially beyond a period.
Therefore, the assumptions of the equations above are fulfilled and
these formulas can be applied to the proposed GC algorithm.

If cache narrowings are triggered by an interrupt, the definition
of li has to be extended such that the time between the narrowings
of the cache is taken into account. With Tu.i as time between these
cache narrowings w. r. t. a thread τi and Cu as WCET of such a

1This is reformulation of the original definition

li =
{

1 for normal threads τi
2
⌈ Tc

Ti

⌉
for producer τi and consumer τc

which provides tighter bounds but is still safe.

narrowing, it can be redefined as

l′i =

{
1+
⌈ Tu.i+Cu

Ti

⌉
for normal threads τi⌈ 2Tc+Tu.c+Cu

Ti

⌉
for producer τi and consumer τc

(3)

By replacing li in Equation 1 with l′i , an upper bound for the GC
period for a copying garbage collector can be computed.

Due to the limited size of the caches, we do not only have to meet
restrictions on the available heap memory, but also on the number
of references. A copying garbage collector using the presented root
scanning scheme also has to fulfill the following inequation:

TGC ≤
ĤCC−2∑

n
i=1 âil′i −2∑

n
i=1 âi

2∑
n
i=1

âi
Ti

(4)

where ĤCC means the maximum number of references and âi is the
number of objects a thread τi allocates each period.

2.3 Design Considerations
It would be resource intensive and inefficient if the references

had to be stored in the cache along with the colors. Therefore,
it is necessary that there is a simple mapping between references
and positions in the cache. This is the case if the object layout is
regular, e. g., if a dedicated area for object handles is used (like in
JOP [16]) or if fixed size blocks for objects are used (such as in
the JamaicaVM [21]). By making use of this mapping, two bits are
needed in the cache for each reference to store the colors.

It also would be very resource intensive to update the coloring of
the references (red → yellow, yellow → white) and the aggregate
state in a single cycle. This task hence has to be spread across sev-
eral cycles. Moreover, these updates should not delay the proces-
sors’ execution to keep the jitter as low as possible. The solution is
time-multiplexed access to the caches. In the first cycle, the proces-
sor may access the values; in the second cycle, the update “demon”
updates the coloring and computes the aggregate state. This entails
that access to the caches has to be at least two times faster than
access to main memory in order not to affect performance. The
“demon” runs continuously and does not need to be triggered in
any way. The time until a color change in a processor local cache is
reflected in the aggregate state is therefore dependent on the num-
ber of entries in the caches, the number of entries updated in one
step of the “demon” and the time for one step.

Splitting updates into several cycles is not problematic with re-
gard to references which move from one processor to the other,
because the state for a reference is always updated within a single
cycle. What could pose problems is the fact that the aggregate state
may not reflect a recently created object. This may however be
circumvented by either allocating new objects in an area which is
not garbage collected in this GC cycle or by coloring objects upon
allocation. After the start of a GC cycle, the garbage collector has
to wait until the update “demon” has computed the aggregate state
for all references, i. e., until all objects created before the start of
the GC cycle are reflected in the aggregate state. Otherwise, ob-
jects that were created just before the start of the GC cycle could
be garbage collected even though they are live.

A different issue with the split update is that processors have to
wait after scanning their stack, until the update has unmarked all
yellow entries. If it does not wait long enough, the update will only
be partial, and stale objects may be considered live. It is however
safe to use this data, as no live root object is marked as unused.
If it can be guaranteed that the time between successful updates is
bounded, the amount of stale objects is bounded as well.

94

RAMArbiter

CPU 0

ORlocal

root

cache

aggregate

state

Figure 4: Block diagram

3. EVALUATION
We implemented the root caches in a CMP system based on Java

Optimized Processor (JOP) [16, 11, 12]. While the principal al-
gorithm is not tied to any specific processor, the results presented
in this paper were obtained with this implementation and will be
different in some places for other processors.

In our implementation, a single CPU takes care of garbage col-
lection. While it would be possible to distribute the work load to
more than one processor, we do not expect any gains from doing
so, due to the synchronization overhead and the fact that access to
shared memory rather than computation power appears to be the
main limiting factor for GC in a CMP system.

Apart from the CPU dedicated to GC, all other CPUs are free to
execute real-time threads. Figure 4 shows a block diagram of the
individual components. The components we added to the standard
configuration are shaded. While each CPU updates its state pri-
vately, one CPU can access the aggregate state to perform garbage
collection. Accessing the per-processor caches and the main mem-
ory can be done in parallel.

We used a CMP based on JOP with 8 cores for evaluation. The
CMP comprises 8 JOP cores, an arbiter for access to the shared
memory, and synchronization and I/O modules. The board we
used features an Altera Cyclone-II field programmable gate array
(FPGA) and 512 KB SRAM with a 16-bit interface. The processor
is clocked at 100 MHz; 32-bit accesses to the SRAM take 6 cycles.
Each core includes 1 KB of on-chip memory for the method cache
(a special instruction cache) and 1 KB for the stack cache. The root
cache for each processor is also 1 KB in size, allowing for 4096
objects to be under the control of the garbage collector.

The GC algorithm used by JOP [19] is an incremental garbage
collector, with a snapshot-at-beginning write barrier [24]. It is
based on the copying collector by Baker [3], but uses a forward-
ing pointer placed in object handles to avoid the costly read barrier.

Memory arbitration is done by a time-sliced arbiter, which makes
it possible to reason about the worst case latency of memory ac-
cesses. We chose a slot size of 6 cycles, which equals the time for
one 32-bit memory access. As copying of objects must be atomic,
the worst case memory access latency is however not only depen-
dent on the slot size. Rather, the worst case memory latency for
a CPU depends on the length of the atomic operations of all other
CPUs. For the CPU that does GC, the longest atomic operation is
the copying of the largest object in the system. For all other CPUs,
it is the access to arrays, which includes three back-to-back mem-
ory accesses. Hardware support to eliminate the blocking due to
copying is proposed in [18]. Future work will have to extend this
solution to multi-processors.

3.1 Resource Consumption
Two bits are needed for each reference to realize the three possi-

ble colors. The number of objects depends on the application and
is constrained by the overall heap size. JOP uses a dedicated area
for object headers, a forwarding pointer and other GC information;
each of these object handles is 8 words in size. Therefore, even if
only objects that do not carry any data are created, no more than
heapSize

4∗8 objects can exist. This number will typically be lower, be-
cause objects consume memory as well, decreasing the maximum
possible number of objects. Note that not all of the main memory
is heap memory, because it contains also the bytecodes and class
descriptions. Even very small Java programs occupy several dozen
KB of main memory with such data.

With 1 MB of heap memory, 32768 objects can exist at most;
furthermore, the payload of objects has to be taken into account,
and – for a copying collector – that only one semi-space can con-
tain live objects. An average object size of 33 Bytes is reported in
[9], so a reasonable estimate for the number of handles would be

heapSize
4∗(8+8.25∗2) , yielding 10700 handles for 1 MB of heap memory.

A safe limit can however only be determined by proper memory
analysis. Such an analysis is necessary in any case to confirm that
the heap is large enough to satisfy all allocation requests. Deter-
mining the maximum number of objects is even simpler than this
analysis – using an object size of 1 for all objects, the “memory
consumption” equals the number of objects.

As a concrete example, consider the system we used for evalua-
tion, with eight CPUs and 512 KB main memory. Allowing 4096
handles, this yields a memory consumption of 2∗4096

1024∗8 =1 KB for
each per-CPU cache. The aggregate state cache is 0.5 KB in size.
For the whole system, 8.5 KB of on-chip memory are required for
the root caches, which is an overhead of 1.66% when comparing
it to the size of the main memory. In the JOP-based CMP system,
other on-chip memories (method cache, stack cache and microcode
ROM) occupy 4.625 KB per processor. The overall memory con-
sumption is 45.5 KB, of which the root caches occupy 18.7%.

The system in consideration is balanced with regard to the num-
ber of handles and the available heap memory for average object
sizes of 8 to 9 words for medium sized applications (about 100 KB
of non-heap data). These figures are consistent with the average
object sizes reported in [9].

For the configuration presented above, 32 entries can be updated
in one cycle without inferring additional memory blocks (one cache
consists of two 4 Kbit memory blocks, which together allow 64 bit
access in one cycle). An update consequently takes 256 cycles, or
2.56 µs at 100 MHz. This time has to be taken into account for the
blocking time of a processor for root scanning.

The whole CMP system occupies 26546 logic cells (LCs). Each
processor core consumes about 2600 LCs; arbitration, synchroniza-
tion and I/O modules consume about 3150 LCs. The update logic
occupies 2588 LCs, which is 9.7% of the total LC count. This num-
ber could have been lowered by updating fewer entries in one cycle
at the expense of a longer update period.

3.2 Execution Time
In the presented scheme, every processor only has to access the

cache memory during stack scanning, which is not shared with
other processors. The processors do not have to wait for their mem-
ory slot and stack scanning therefore has the same WCET regard-
less of the number of processors (i. e., it is as fast as on a single pro-
cessor system). The presented scheme however infers a delay for
waiting until the update is finished; the length of the delay depends
on the configuration, but a value of 2.56 µs (see Section 3.1) is rea-
sonable. This overhead is an order of magnitude smaller than the

95

Table 1: Measured execution times
BCET WCET

Traditional Root Scan 23 µs 87 µs
Cache Narrowing 13 µs 37 µs

WCET for stack scanning with time-multiplexed access to the main
memory. A system consisting of 8 CPUs running at 100 MHz with
256 stack entries and a memory with 6 cycles access time needs at
least 122.88 µs until all processors have written the contents of their
stacks to main memory. Manual analysis of the bytecodes for cache
narrowing resulted in a WCET of around 39 µs on JOP. Note that
the figures presented in Section 3.3 are lower, because 64 words of
the stack cache are not used for the run-time stack.

3.3 Experimental Results
For our measurements, we used the already mentioned CMP

based on JOP, with 8 cores and 512 KB main memory. While
one core was responsible for GC, the other seven cores executed
the working threads.

Table 1 compares measurements for the best case execution time
(BCET) and WCET for traditional root scanning and the proposed
solution. These were obtained by triggering a stack scan at a period
of 1 ms, while a task that occupied the stack was executed at vari-
ous periods. The traditional root scanning was emulated by writing
the stack contents to a dummy memory location. While the execu-
tion time of traditional root scanning depends on the access to main
memory, the proposed scheme accesses only local memory and
does not need to rival with other processors for this resource. The
WCET for this task is therefore less than half for the proposed solu-
tion, compared to traditional stack scanning. The difference might
be even bigger for arbitration schemes where some processors are
preferred over others with regard to memory requests. While the
preferred processors may have a lower WCET for cache narrow-
ings, the memory access latencies (and hence the WCET) for other
processors are inevitably increased.

Tables 2, 3 and 4 show our experiments with different cache nar-
rowing policies. In the experiments for Tables 2 and 3, the cache
narrowing is triggered periodically, with periods of 1 and 10 ms,
respectively. For Table 4, the root cache is narrowed at the end of
each period of a working thread.

Throughout all tests, the garbage collector is executed in a loop
with a gap of 1 ms between iterations to allow for logging to be
done. The working threads allocate various data structures, to test
different aspects of the garbage collector. They also check the in-
tegrity of the allocated data to provide evidence for the correctness
of the garbage collector.

The minimum periods were determined in two ways: on the one
hand we measured the WCET, on the other hand we lowered the
task periods every 100 seconds, until the system ran out of memory.
The lowest period at which the system operated correctly, without
missing any deadlines, is shown in the tables. The allocation rate
shown is the rate reported by the test for this minimum period. The
jitter displayed is the maximum release jitter we measured through-
out the full run of a test.

ObjectTest is a “best case” example: The working threads allo-
cate one simple object in each period. The objects do not need to
be scanned and the tracing of the object graph is effectively a non-
issue. ObjectTest is the only test which reaches the empirically de-
termined WCET. For ListTest, the working threads allocate a linked
list with 100 elements each period. For TreeTest, a tree structure

Table 2: Measurements with narrowing period of 1 ms
Test Min. Period Allocations Jitter

(ms) (Objects/s) (µs)
ObjectTest 0.25 26977 90
ListTest 27.5 25416 52
TreeTest 27.5 23954 51
ArrayTest 1.2 5654 206

Table 3: Measurements with narrowing period of 10 ms
Test Min. Period Allocations Jitter

(ms) (Objects/s) (µs)
ObjectTest 0.25 26428 79
ListTest 37.5 18665 40
TreeTest 30.0 21970 49
ArrayTest 1.7 3870 259

Table 4: Measurements with narrowing at end of task period
Test Min. Period Allocations Jitter

(ms) (Objects/s) (µs)
ObjectTest 0.25 27325 26
ListTest 30.0 23365 26
TreeTest 30.0 21952 26
ArrayTest 1.1 6229 62

comprising 94 elements is allocated. Obviously, the object graph
for these structures is more complex than for ObjectTest. ArrayTest
allocates integer arrays with 256 elements, resulting in a memory
consumption of 1 KB for each array. While the object graph for
this test is simple, it challenges the garbage collector through the
size of the objects which must be copied.

ObjectTest, ListTest and TreeTest achieve similar allocation rates.
ObjectTest is however bounded by its WCET, while ListTest and
TreeTest run out of memory at higher execution frequencies. Fur-
ther tests showed that the garbage collector can keep up with an
allocation rate of 34884 objects per second and a minimal period
of 160 µs for ObjectTest if the WCET is ignored. ArrayTest has a
low allocation rate in terms of objects. This is not surprising, tak-
ing into account that it allocates large objects and thus the limiting
factor is its allocation rate in terms of bytes rather than in terms of
objects.

The release jitter for ListTest and TreeTest is lower than for Ob-
jectTest. The sources for the release jitter are however the same.
Consequently, we have to assume that the measurement is too op-
timistic for ListTest and TreeTest. The release jitter ArrayTest is
considerably worse, compared to the other tests. This is due to the
atomic copying of objects and arrays, which causes a release jitter
proportional to the size of the largest object or array.

Table 3 shows the effect of a longer narrowing period: the
achievable allocation rate is lowered, while on average, the jitter
remains the same. The lower allocation rate can be explained by
the extended life time of objects in the root cache. As more objects
are live at the same time, the system runs out of free memory ear-
lier. The effect is not the same for all tests: while the minimum
period for ListTest and ArrayTest is considerably increased, there
is only a small increase for TreeTest. ObjectTest again reaches its
WCET. An advantage of the longer narrowing period is however
that the relative overhead for narrowing the cache is decreased.

96

Narrowing the root cache at the end of the task period yields
similar minimal periods as narrowing the cache at a period of 1 ms.
While for ListTest and TreeTest, the minimal period is only slightly
higher, it is slightly lower for ArrayTest. For ObjectTest the WCET
is reached again. The advantage of this policy is however, that the
release jitter is lowered considerably. This is due to the fact that
the thread stacks are almost empty at the end of a period. The
measurement for ArrayTest seems to be too optimistic; we assume
that this is caused by advantageous thread phasings. While the jitter
may seem to be negligible when comparing it to the task periods of
ListTest and TreeTest, it is an issue for a task with sub-millisecond
periods such as ObjectTest. The relative overhead for narrowing the
cache increases for smaller periods with this strategy.

The figures in Tables 2, 3 and 4 indicate that there is a trade-off
between the needed task period/allocation rate and the allowable
jitter and overhead. This trade-off is influenced by the allocation
behavior of a task, which therefore must be considered to find an
optimal solution.

4. RELATED WORK
While there are numerous papers on GC, only few take blocking

times due to root scanning into consideration [22, 25, 2]. The work
we are aware of in this area covers only uniprocessors. A more
recent paper [1] identifies problems with the consistency of the root
set in multi-processor systems, and suggests a special write barrier
to overcome these. It still requires that the stack of a single thread
is saved to main memory atomically.

The presented algorithm shares some concepts with reference
counting techniques like the Deutsch-Bobrow algorithm [7] and
one-bit reference counts as proposed in [23]. These algorithms use
an approximation of the reference count, which is made precise
on certain occasions. While the Deutsch-Bobrow however caches
which references are probably dead in a “zero count table”, the al-
gorithm presented in this paper caches which references are prob-
ably live. One-bit reference counts are also used to remember the
live references, but a full mark/sweep run is needed to overcome
the problems of reference counting. A fundamental difference be-
tween reference counting approaches and the proposed root cache
is however that the latter only “counts” the roots of the object graph,
while the former apply reference counting to all objects.

5. CONCLUSION AND OUTLOOK
We presented a novel root cache, which allows that thread-local

root scanning can be decoupled from the root scanning phase of a
garbage collector in a CMP system. This enables flexible schedul-
ing of thread-local stack scans without impairing the garbage col-
lector. The proposed cache also lowers the WCET of stack scans
compared to traditional root scanning techniques. Thread-local
root scanning does not occupy memory bandwidth, which is a typ-
ical bottleneck in CMP systems.

The evaluation of the root cache demonstrated that the jitter
caused by GC is reasonably low to allow even sub-millisecond task
periods if only objects and small arrays are used. Further research
is however necessary to avoid the atomic copying of larger arrays,
which causes considerable jitter.

Acknowledgement
The research leading to these results has received funding
from the European Community’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement number 216682 (JEOP-
ARD).

6. REFERENCES

[1] Joshua Auerbach, David F. Bacon, Bob Blainey, Perry
Cheng, Michael Dawson, Mike Fulton, David Grove, Darren
Hart, and Mark Stoodley. Design and implementation of a
comprehensive real-time java virtual machine. In EMSOFT
’07: Proceedings of the 7th ACM & IEEE international
conference on Embedded software, pages 249–258, New
York, NY, USA, 2007. ACM.

[2] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time
garbage collecor with low overhead and consistent
utilization. In Conference Record of the Thirtieth Annual
ACM Symposium on Principles of Programming Languages,
ACM SIGPLAN Notices, New Orleans, LA, January 2003.
ACM Press.

[3] Henry G. Baker. List processing in real-time on a serial
computer. Communications of the ACM, 21(4):280–94, 1978.
Also AI Laboratory Working Paper 139, 1977.

[4] Greg Bollella and James Gosling. The real-time specification
for java. Computer, 33(6):47–54, 2000.

[5] Perry Cheng, Robert Harper, and Peter Lee. Generational
stack collection and profile-driven pretenuring. In
Proceedings of SIGPLAN’98 Conference on Programming
Languages Design and Implementation, ACM SIGPLAN
Notices, Montreal, June 1998. ACM Press.

[6] Cliff Click, Gil Tene, and Michael Wolf. The pauseless GC
algorithm. In Jan Vitek, editor, First ACM/USENIX
Conference on Virtual Execution Environments (VEE’05),
Chicago, IL, June 2005. ACM Press.

[7] L. Peter Deutsch and Daniel G. Bobrow. An efficient
incremental automatic garbage collector. Communications of
the ACM, 19(9):522–526, September 1976.

[8] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S.
Scholten, and E. F. M. Steffens. On-the-fly garbage
collection: An exercise in cooperation. Communications of
the ACM, 21(11):965–975, November 1978.

[9] M. Teresa Higuera, Valerie Issarny, Michel Banatre, Gilbert
Cabillic, Jean-Philippe Lesot, and Frederic Parain. Memory
management for real-time Java: an efficient solution using
hardware support. Real-Time Systems Journal, 2002.

[10] Richard E. Jones. Garbage Collection: Algorithms for
Automatic Dynamic Memory Management. Wiley,
Chichester, July 1996. With a chapter on Distributed
Garbage Collection by R. Lins.

[11] Christof Pitter and Martin Schoeberl. Towards a Java
multiprocessor. In Proceedings of the 5th international
workshop on Java technologies for real-time and embedded
systems (JTRES 2007), Vienna, Austria, September 2007.
ACM Press.

[12] Christof Pitter and Martin Schoeberl. Performance
evaluation of a Java chip-multiprocessor. In Proceedings of
the IEEE Third Symposium on Industrial Embedded Systems
(SIES 2008), Montpellier, France, June 2008.

[13] Filip Pizlo, Daniel Frampton, Erez Petrank, and Bjarne
Steensgard. STOPLESS: A real-time garbage collector for
multiprocessors. In Mooly Sagiv, editor, ISMM’07
Proceedings of the Fifth International Symposium on
Memory Management, pages 159–172, Montréal, Canada,
October 2007. ACM Press.

[14] Wolfgang Puffitsch and Martin Schoeberl. Non-blocking root
scanning for real-time garbage collection. In Proceedings of
the 6th international workshop on Java technologies for

97

real-time and embedded systems (JTRES 2008), Santa Clara,
California, USA, September 2008. ACM Press.

[15] Sven Gestegøard Robertz and Roger Henriksson.
Time-triggered garbage collection — robust and adaptive
real-time GC scheduling for embedded systems. In ACM
SIGPLAN 2003 Conference on Languages, Compilers, and
Tools for Embedded Systems (LCTES’2003), San Diego, CA,
June 2003. ACM Press.

[16] Martin Schoeberl. JOP: A Java Optimized Processor for
Embedded Real-Time Systems. PhD thesis, Vienna
University of Technology, 2005.

[17] Martin Schoeberl. Real-time garbage collection for Java. In
Proceedings of the 9th IEEE International Symposium on
Object and Component-Oriented Real-Time Distributed
Computing (ISORC 2006), pages 424–432, Gyeongju,
Korea, April 2006.

[18] Martin Schoeberl and Wolfgang Puffitsch. Non-blocking
object copy for real-time garbage collection. In Proceedings
of the 6th international workshop on Java technologies for
real-time and embedded systems (JTRES 2008), Santa Clara,
California, USA, September 2008. ACM Press.

[19] Martin Schoeberl and Jan Vitek. Garbage collection for
safety critical Java. In Fifth International Workshop on Java
Technologies for Real-Time Systems (JTRES), pages 85–93,
Vienna, Austria, September 2007. ACM Press.

[20] Fridtjof Siebert. Hard real-time garbage collection in the
Jamaica Virtual Machine. In Sixth International Conference
on Real-Time Computing Systems and Applications
(RTCSA’99), Hong Kong, 1999.

[21] Fridtjof Siebert. Eliminating external fragmentation in a
non-moving garbage collector for Java. In Compilers,
Architectures and Synthesis for Embedded Systems
(CASES2000), San Jose, November 2000.

[22] Fridtjof Siebert. Constant-time root scanning for
deterministic garbage collection. In Tenth International
Conference on Compiler Construction (CC2001), Genoa,
April 2001.

[23] David S. Wise and Daniel P. Friedman. The one-bit reference
count. BIT, 17(3):351–9, 1977.

[24] Taichi Yuasa. Real-time garbage collection on
general-purpose machines. Journal of Systems and Software,
11(3):181–198, 1990.

[25] Taichi Yuasa. Return barrier. In Proceedings of the
International Lisp Conference 2002, 2002.

98

