
Efficiency and Scalability of Barrier Synchronization on
NoC Based Many–core Architectures

Oreste Villa
Pacific Northwest National

Laboratory,
High Performance Computing,

902 Battelle Boulevard,
99354 Richland (WA), USA
oreste.villa@pnl.gov

Gianluca Palermo
Politecnico di Milano,

Dipartimento di Elettronica e
Informazione,

Via Ponzio 34/5,
20133 Milano, Italy

gpalermo@elet.polimi.it

Cristina Silvano
Politecnico di Milano,

Dipartimento di Elettronica e
Informazione,

Via Ponzio 34/5,
20133 Milano, Italy

silvano@elet.polimi.it

ABSTRACT
Interconnects based on Networks-on-Chip are an appealing
solution to address future microprocessor designs where, very
likely, hundreds of cores will be connected on a single chip.
A fundamental role in highly parallelized applications run-
ning on many-core architectures will be played by barrier
primitives used to synchronize the execution of parallel pro-
cesses. This paper focuses on the analysis of the efficiency
and scalability of different barrier implementations in many-
core architectures based on NoCs. Several message passing
barrier implementations based on four algorithms (all-to-all,
master-slave, butterfly and tree) have been implemented and
evaluated for a single-chip target architecture composed of a
variable number of cores (from 4 to 128) and different net-
work topologies (mesh, torus, ring, clustered-ring and fat-
tree). Using a cycle-accurate simulator, we show the scala-
bility of each barrier for every NoC topology, analyzing and
comparing theoretical with real behaviors. We observed that
some barrier algorithms, when implemented in hardware or
software, show a different scaling behavior with respect to
those theoretically expected. We evaluate the efficiency of
each combination topology-barrier, demonstrating that, in
many cases, simple network topologies can be more efficient
than complex and highly connected topologies.

Categories and Subject Descriptors: C.4 Computer
Systems Organization Performance of Systems

General Terms: Algorithms, Design, Performance

Keywords: Barrier, Efficiency, Manycore, Multicore, NoC,
Scalability, Synchronization

1. INTRODUCTION
Many-core architectures based on NoCs [3, 6] are a promis-

ing solution to tackle modern and future processor design
challenges, as power consumption, scalability and ease of de-
sign reuse. The basic idea is to use on-chip packet switches
as building blocks to create a micro network as interconnect,

Copyright 2007 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

similarly to what appends in traditional large-scale multi-
processors and distributed computing networks. NoC inter-
connects provide a low latency communication layer which
solves physical limitations due to wire latency, providing
when compared to bus based solutions higher bandwidth and
parallelism in the communication. Great attention has been
posed by many researches to find clever topologies and opti-
mized routing algorithms able to meet such expectations [15,
12, 14].

Current NoC based architectures are still in their infancy
and, only few companies (mainly not mainstream oriented)
are starting to develop and to commercialize them, in spe-
cific domains such as transaction intensive applications and
network processing [17, 5]. This is mainly due to the fact
that current manufacturing technologies do not allow to in-
tegrate more than a dozen of cores of medium complex-
ity (i.e. simple pipelines without Out-of-Order capabilities)
while the NoC approach gains in performance and power
(over traditional bus based solutions) when the number of
interconnected units become relevant. However, in the near
future, as predicted by many [4, 2], as CMOS technologies
will continue to shrink and the number cores integrated on
a chip will increase, NoC based interconnects will start –
hopefully– to reach mainstream products. A recent exam-
ple of this trend has been shown with the Polaris test chip
in the Tera-Scale [8] research initiative proposed by Intel
where eighty simple cores are connected by using a bidirec-
tional mesh. This chip, while still unable to execute complex
control structures, is capable to deliver teraflop-level perfor-
mance consuming less than 100 Watts.

One of the key points in multi-processor programming is
that, when multiple processing elements are concurrently
executing the same application, it is necessary to ensure
correctness by adding synchronization points. Compiler-
parallelized and scientific data-intensive applications use col-
lective communication primitives to synchronize parallel ex-
ecution but, as the number of cores increases, their imple-
mentation becomes a challenging task. Conventional tech-
niques require to insert a barrier [18] in a point of the code
where we want that all processes (or a given number of them)
arrive before the elaboration proceeds. Barriers are latency
sensitive global operations which can be realized with many
different techniques (centralized counters, all-to-all global
exchange, etc.) and adopting several algorithms (master
slave, butterfly, tree, etc.). Barriers require low latency com-
munication channels to minimize overall completion time

81

and due to their global nature, if not carefully implemented,
can require thousands of cycles to be completed when hun-
dreds of processes are involved.

NoC interconnects seem to meet the demand of low la-
tency, because of the parallel nature of the communication,
but how quantitatively behave typical barrier algorithms in
NoC architectures when up to hundreds of cores are in-
volved? This paper tries to answer to this question by
proposing a quantitative analysis (based on a cycle-accurate
many-core simulator) to understand how different NoC topolo-
gies behave when dealing with different SW/HW barrier im-
plementations.

To achieve this result, we considered a target architec-
ture composed of a variable number of cores (from 4 to 128)
interconnected by five different network topologies (mesh,
torus, ring, clustered-ring, and fat-tree). Then, we present
four barrier algorithms (all to all, master slave, butterfly
and tree [18]), and we show their SW and HW implemen-
tations. In our analysis, we focus on message passing based
barriers neglecting barrier implementations that involve the
main memory (i.e. centralized counters barriers) since they
have already been demonstrated to be less efficient for on-
chip synchronization [10].

In this paper, we investigate the behavior of hardware
and software barrier synchronization in the most likely fu-
ture many-core architectures, when several on-chip network
topologies are taken into account. More in detail, the main
contribution of this paper is to analyze the scalability of dif-
ferent barriers over a set of selected NoC topologies by us-
ing a cycle-accurate simulator. Simulated results have been
compared with theoretical behaviors of barrier performance.
The theoretically expected behavior of barriers (such as the
linear or logarithmic dependency of the latency with respect
to the number of processes) has been confirmed by our simu-
lation results. The scaling behavior among barriers has been
quantified and, in particular, we observed that this behav-
ior is different when barriers are implemented in hardware or
in software and when different network topologies are con-
sidered. This result makes it difficult to identify the best
barrier implementation for the different scenarios, therefore
justifying our trade-off analysis.

Another goal of our analysis is to evaluate, for barrier syn-
chronization, the overhead of the different NoC topologies
with respect to an ideal channel when scaling the number of
processors in the system. One of the most significant results
of this analysis is that, given the high latency of message
passing SW barriers, the impact of NoC topology is not rel-
evant so as the usage of highly connected network topology
is not fully justified in these cases. On the other side, we
proved that NoC topology has a more relevant impact when
dealing with HW barriers.

Finally, we also evaluated the efficiency of each combi-
nation topology/barrier by trading-off the complexity cost
for each NoC configuration with the latency of the barrier
operations. We experimentally demonstrated that complex
topologies behave similarly (in terms of latency) to simpler
topologies for several barriers algorithms.

The paper is organized as follows. Section 2 describes
the related works. Section 3 shows the target architecture
and the network topologies that we consider in our analysis.
Section 4 describes the different barrier algorithms as well
as their SW and HW implementations. Section 5 describes
the experimental setup. Section 6 shows and comments the

results of our experiments, while Section 7 concludes the
paper and points out our future research.

2. RELATED WORK
Traditionally, many researches in the field of High Per-

formance Computing (HPC) have extensively studied the
relation between network topologies and Collective Commu-
nication Operations (CCOs) (such as barriers) in the form of
algorithms and their implementations. In [16], the authors
analyzed how HW and SW based barriers are designed and
implemented in a programmable Network Interface Card
(NIC) and demonstrated that without network contention
the SW and HW approach can be used interchangeably on
a fat-tree topology for systems of 64-128 nodes. Yu et al. [19]
demonstrated that most of the communication latency due
to barriers can be reduced with the use of a collective HW
protocol located in the NIC of the different nodes in large
scale systems. In the field of chip multiprocessors, while Liu
et al. [9] demonstrated the importance and the impact (in
terms of performance overhead and power consumption) of
barrier synchronization, in [10] the authors discuss the use of
a run-time lightweight barrier construct in non cache coher-
ent MPSoC platforms. Finally, in [11] the authors propose a
centralized HW solution to perform barrier synchronization
in embedded systems composed up to 8 cores.

This work is a further step in the study of barrier syn-
chronization: it finds inspiration from the above works and
it tries to address, in the single-chip multiprocessors field,
some issues that are typical of the HPC community. In
many aspects, as the number of cores integrated on a sin-
gle chip increases, the similarities with parallel computers
must be further investigated especially regarding collective
communication operations such as barriers.

3. TARGET ARCHITECTURE
In this Section, we describe what we believe could be a fu-

ture many-core architecture, when potentially hundreds of
cores are integrated on a single chip. Our target architecture
is very similar to the one envisaged by Intel in their Tera-
scale computing research program [8]. Fig. 1 shows our
target platform as composed of N simple cores (CRs) (with
their local and global caches) and M external memory inter-
faces (EMIs) which are the entry/exit point to the off-chip
main memory. All the units are connected together with a
highly scalable NoC interconnect. Although a more general
architecture could contain specialized hardware modules we
do not consider them for the purpose of our analysis.

As pointed out in [4, 2], most of the complexity that we see
in today microprocessors (e.g. deep pipeline, out-of-order
execution, register renaming, dynamic schedulers, complex
branch prediction, reorder buffers) will be partially reduced
or perhaps removed when moving to many-core architec-
tures. Under this assumption, we propose our many-core
building block as the PowerPC 750 [7] architecture. The
PowerPC 750 is a simple out-of-order single-thread proces-
sor capable to issue and to complete up to two instructions
per clock cycle. Its transistor count (without taking into
account the L2 unified cache) of 4.5 Millions makes it a
suitable candidate for future multi-billion transistors chips,
where hundreds of such cores can be integrated. However,
the results that we present in this paper are qualitatively
independent from the selected core’s architecture and are

82

Figure 1: The target many-core architecture

representative of a more general class of architectures with
a complexity comparable to that of the PowerPC 750.

Each PowerPC 750 core is provided with a communication
interface (CI) which allows: (I) to pack and unpack infor-
mation received and injected in the NoC, (II) to manage
message passing communication layer and (III) to embed
the HW implementations of the barrier algorithms that we
will show later. The CI is a memory mapped interface de-
vice with I/O buffers where commands are enqueued and
processed. The interface is able to send and receive up to
8 bytes every clock cycle. Its message passing interface is
accessible directly from the application layer through a non-
blocking send operation (i.e.send(data, NoC address)) and a
blocking receive operation (i.e. data = recv()) which returns
the first value in the CI’s input buffer.

In order to connect the different modules (CRs and EMIs)
we developed five different NoC based topologies (mesh,
torus, ring, clustered-ring and fat-tree) where each build-
ing block is a router with a variable number of bidirec-
tional ports (from 2 to 5). Fig. 2(a) shows a schematic of
the router’s architecture as well as the number of equiv-
alent gates 1 for each configuration. This value is linear
with the number of ports, since area is dominated by I/O
buffers. The router is a 3 stage pipeline, with I/O ports
of 32 bit. The I/O buffers are 16 byte each, the internal
switch is implemented with a small crossbar and the rout-
ing arbitration logic algorithm is static table based. In our
experiments, we also considered a crossbar topology with
zero delay, namely ideal channel. This, more than a possi-
ble real configuration, represent a reference when comparing
to switch based topologies; indeed, due to its point-to-point
nature, the zero delay crossbar gives us the reference latency
to compare switch-based NoCs. Fig. 2 shows the organiza-
tion of the five different NoC topologies. The clustered-ring
topology is realized with rings of size 8 (therefore clustered-
ring and ring are equivalent for topologies with less than
8 modules). The packet injection and ejection ports (I/E
ports) are represented as bidirectional 45◦ arrows. The fat-
tree topology is the only one to have routers with two I/E
ports (see Fig. 2(f)).

We explored each topology connecting from 4 to 128 CRs
and from 2 to 7 EMIs. We define a complexity cost “C” for
each topology which will be used to find its efficiency while
performing barrier operations. The complexity cost is ob-

1
Synthesized with Synopsys and STM 90nm libraries from a VHDL

description.

tained as the sum of the number of ports (Ji) for each of the

L routers in the topology (C =
PL

i=1
Ji). Since the num-

ber of equivalent gates is linearly dependent on the number
of ports (see Fig. 2(a)), the cost “C” is proportional to (i)
the overall size of the NoC (ii) the complexity and length of
the interconnects between routers in the topology (iii) the
leakage power lost in the NoC. Therefore we can assume “C”
as a good estimator of the relative complexity of the differ-
ent NoCs. Table 1 shows the cost “C” for each topology for
different sizes of the system.

Table 1: Complexity cost of the five different topolo-
gies as function of the system size. (CRs = number
of cores, EMIs = External Memory Interfaces)

System Size Network Cost
Clustered

CRs+EMIs Mesh Torus Ring Ring (size 8) Fat Tree
4+2 30 20 18 18 25
8+3 55 41 33 31 65
16+4 100 82 60 66 153
32+5 185 160 111 121 348
64+6 350 316 210 228 788
128+7 675 626 405 439 1776

4. BARRIER ALGORITHMS
The cores of our system can execute only one process at

time, therefore in the rest of the paper we consider processor
and process as equivalent. In a synchronous application, all
the processes are synchronized at regular points. A barrier is
inserted (by the programmer or by a parallel compiler) at the
point, in each process, where it must wait. All processes can
continue from this point only when all the other processes
(or a subset of them) have reached it.

The master-slave barrier (MS) is shown in Fig. 3(a) for
a configuration of 4 processes. It uses a centralized approach
where a master process is responsible to lock and to release
slave processes. Since barriers can be used more than once in
a process, the MS algorithm must avoid that a process enters
the barrier for a second time before previous processes have
left the barrier for the first time. In order to avoid that,
it uses a two phases mechanism: (i)Arrival Phase: Every
process enters this phase and does not leave it until all pro-
cesses have arrived at the same phase, (ii)Departure Phase:
When every process finishes the Arrival Phase, a released
command is given by the master.

The tree barrier (Tr) is shown in Figure 3(c) for a con-
figuration of 8 processes. Similarly to the MS barrier, this
barrier needs arrival and departure phases. Each phase is di-
vided into log2N stages (where N is the process count). For
the example shown in Figure 3(c), there are three stages.
In the first stage: P1 sends message to P0; P3 sends mes-
sage to P2; P5 sends message to P4; P7 sends message to
P6; (when P1,P3,P5,P7 reach their barriers). In the second
stage: P2 sends message to P0; P6 sends message to P4.
In the third stage: P4 sends message to P0 (P0 terminates
arrival phase). Departure phase is based on a reverse tree
construction.

The butterfly barrier (Bf) is shown in Figure 3(d) for 8
processes. Differently from the previous barriers, this barrier
does not need any two phase protocol since it synchronizes
pairs of processes at each stage (as before log2N stages). In
the example, we have in the first stage: P0 sends to P1, P2

83

(a) Router Architecture (b) Mesh (c) Torus

(d) Ring (e) Clustered-ring (f) Fat-tree

Figure 2: The router architecture (with the equivalent gates count for different number of bidirectional ports)
and the five selected topologies where each router shows the number of bidirectional ports.

sends to P3, P4 sends to P5, P6 sends to P7. In the second
stage: P0 sends to P2, P1 sends to P3, P4 sends to P6, P5
sends to P7. In the third stage: P0 sends to P4, P1 sends
to P5, P2 sends to P6, P3 sends to P7.

The all-to-all barrier (A2A) is shown in Figure 3(b) for
4 processes. Differently from the previous barriers, it has
only one phase and one stage making it the fastest barrier in
the selected set. In the example, every process can simulta-
neously send a message to the other processes. However, the
number of messages involved in this implementation grows
quadratically with the number of processes.

Assuming that each core (where the process is running) is
able to send at most one message at a time we can calculate
the theoretical latency of each barrier algorithm based on
the number of stages and phases. Table 2 summarizes the
number of phases, the stages in each phase, the number of
messages sent and the theoretical latency for each barrier
implementation as a function of the number of processes. In
the rest of the paper, we indicate the different barriers as
A2A for all-to-all, MS for Master-Slave, Bf for Butterfly
and Tr for Tree.

4.1 Barrier Implementations
The four selected barrier algorithms have been implemented

in a SW library by using the message passing interface layer
presented in Section 3(based on send() and recv() primi-
tives). Figure 4 shows the SW implementation of the MS

barrier (similar implementations have been done for the other
barriers).

Table 2: Phases, stages in each phase, number of
messages sent and theoretical latency of each bar-
rier as function of the number (N) of processes. The
value of ki is dependent on the barrier implementa-
tion i.

Stages Number of
Barrier Phases x phase Messages
A2A 1 1 N × (N − 1)
MS 2 1 2 × (N − 1)
Bf 1 log

2
N N × log

2
N

Tr 2 log
2
N 2 × log

2
N × (N − 1)

Barrier Theoretical Latency
A2A kA2A × N

MS 2 × kMS × N

Bf kBf × log
2
N

Tr 2 × kTr × log
2
N

For the HW implementations, we used a custom design,
placed in the communication interface of each core. The
basic blocks of our HW implementation are a Barrier State
Buffer (BSB) and a Barrier Logic Unit (BLU). A schematic
view of the communication interface with barrier HW sup-
port is given in Fig. 5.

The HW barrier call (i.e. barrier()), from the SW layer,
adds a barrier command to the output buffer. The command
is trapped by the BLU which starts to execute the barrier

84

(a) Master-slave (b) All-to-All

(c) Tree barrier (d) Butterfly barrier

Figure 3: Master-slave and All-to-All barriers with 4 processes; Tree barrier and Butterfly barriers with 8
processes.

Figure 4: SW implementation of the master-slave
barrier, based on the message passing interfaces.

algorithm. The HW barrier call of the K processor waits
for a “true” on the “K” location (locally spinning or using
a sleep/wake-up mechanisms) of the BSB. The BSB has a
number of entries equal to the number of involved processes.
It is in charge of the BLU to set “true” the value in the “K”
position when the barrier algorithm is completed. In the
meanwhile, data coming from the other processes in the in-
put buffer are trapped by the BLU and added to the BSB
in order to be processed from the barrier algorithm imple-
mented. In Fig. 6 we show the state machine implemented in
the BLU for the MS barrier (similar implementations have
been realized for the other barriers).

5. EXPERIMENTAL SETUP
Our experiments have been carried out with a cycle ac-

curate SystemC [1] simulator. We designed it starting from
ppc750sim2, a SystemC simulator, which has a claimed ac-

2
Available at http://microlib.org

Figure 5: Communication Interface with HW mes-
sage passing and barrier support. On top the appli-
cation layer commands used to access to the device,
on the bottom the pack/unpack unit to communi-
cate over the NoC.

curacy of 10-15% on SPEC CINT 2000 compared to a real
PowerPC 750 microprocessor. We added to the model the
cycle-accurate SystemC description of our memory mapped
communication interface (which implements the HW mes-
sage passing and barrier layer). The router architecture as
well as the different topologies have also been modelled with
SystemC. Finally we used a single clock signal for the overall

85

Figure 6: FSM of the Barrier Logic Unit (BLU) for the master-slave barrier.

system. Our experiments consist of measuring the comple-
tion time (as number of clock cycles) of the different bar-
riers while varying system configurations. Before entering
and after exiting a barrier, each cores randomly accesses the
external memory, with an average injection/ejection in the
NoC of 1 Byte/cycle. This ensures a fair analysis of the NoC
behavior under “normal” traffic conditions. We carefully de-
cided the injection/ejection rate as a good balance between
the 1 Byte/Flops metric normally used in scientific comput-
ing [13] in presence of a balanced memory hierarchy, and
the fact that the PPC750 is able to retire 2 instructions per
clock (single precision floating point). We measured barrier
completion time by using simulator cycle counters, starting
them when processors enter a barrier and stopping them
when they exit. The final completion time is the average
of the completion times for the all processes. We compiled
the barrier libraries as well as the main code with gcc-4.2.0
using optimization flag “-O3”.

6. EXPERIMENTAL RESULTS
6.1 Scalability of barriers for different NoC

topologies
Our first goal is to analyze the scalability of the different

barriers (A2A=All-to-All, MS=Master-Slave, Bf=Butterfly,
Tr=Tree) by varying the NoC topologies (Mesh, Torus, Ring,
Clustered-Ring, Fat-Tree) as the number of cores(N) in-
creases (see Fig. 7). We refer to the topology size only by
the number of cores, however the topology takes also into
account the EMIs (External Memory Interfaces) as reported
in Table 1.

For the SW version of the barriers, we report the scal-
ability only for the Mesh topology (see Figure 7(a)), since
for the other topologies the SW barriers behave similarly in
absolute terms. This consideration is also supported by the
results reported in Figure 8 discussed in Section 6.2.

Analyzing Figure 7(a), we can observe that the SW imple-
mentations of the A2A and MS are linearly dependent on N
as theoretically expected (see Table 2). From linear regres-
sion, we estimated a dependency3 of ≈ 74×N and ≈ 48×N

for A2A-SW and MS-SW respectively. This trend corre-
sponds to a ratio of 3:1 between kA2A−SW and kMS−SW .
This ratio is due to the overhead of propagating all the mes-
sages involved in the A2A algorithm from the HW up to the

3Calculated with a linear regression from data in Fig. 7(a).
Regression error less than 1%.

SW layer and vice-versa.

From Figure 7(a), we can also observe that the SW im-
plementations of Bf and Tr follow the logarithmic trend
of the latency as given in Table 2. The logarithmic de-
pendency4 for Bf-SW and Tr-SW are ≈ 170 × log

2
N and

≈ 90 × log
2
N respectively, corresponding to a ratio of 1:1

between kBf−SW and kTr−SW . Globally, Bf-SW results al-
ways the fastest SW barrier, making it the ideal candidate to
perform barrier synchronization regardless system size and
NoC topology when no HW support is provided.

From Figures 7(b) to 7(f), we can see that also all HW bar-
riers follow the theoretical trends shown in Table 2. The ef-
fects of the different NoC topologies on barrier performance
can be quantified by linear regression in terms of the ki co-
efficients.

Comparing Figure 7(a) with Figures 7(b) to 7(f) we can
see that, although the A2A barrier is the slowest SW im-
plementation, the corresponding A2A HW implementation
is one of the fastest, due to its parallel nature (see Figure
3). Except for the Ring topology, where the A2A-HW bar-
rier outperforms the other HW-barrier implementations in-
dependently of the number of cores, for the other topologies
there is always a crossing point between the A2A-HW and
the Bf-HW. More in detail, these crossing points for Mesh,
Torus, Clustered-Ring and Fat-Tree correspond to 32, 64, 80
and 128 cores respectively. The Ring is a particular topology
for which the locality of the communication required by the
barrier algorithm is disrupted. For this reason, sophisticated
barrier algorithms cannot take advantage of Ring topology
and the single-phase brute force of the A2A approach is al-
ways the winning solution making it the ideal candidate for
this network topology.

An opposite SW versus HW behavior can be noted for
the Tree barrier (Tr). In fact, comparing Figure 7(a) with
Figures 7(b) to 7(f), we can see that the Tr-SW is the
fastest SW barrier, however when implemented in HW it
is always the slowest barrier regardless the NoC topology.
The reason for this behavior is that Tr is composed of 2 ×

log
2
N stages, while all other barriers have less stages (see

Figure 3 and Table 2). In this sense, the parallel nature
of the communication over NoCs prefers algorithms with a
smaller number of stages than a smaller number of total
exchanged messages.

Comparing A2A-HW to MS-HW, the HW behavior is dif-
ferent than those noted for the SW: A2A-HW is faster than

4Calculated with a linear regression from data in Fig. 7(a).
Regression error less than 3%.

86

(a) SW barriers on Mesh (b) HW barriers on Mesh

(c) HW barriers on Torus (d) HW barriers on Ring

(e) HW barriers on Clustered-Ring (f) HW barriers on Fat-Tree

Figure 7: Scalability of the different SW barrier for the Mesh topology and of the HW barrier for the five
topologies as the number of cores (N) increases (4, 8, 16, 32, 64, 128).

MS-HW, while we found that A2A-SW is slower than MS-
SW. This is due to the fact that, in the HW implementation,
the incoming messages of the A2A algorithm are elaborated
within the communication interface of each core and only
the final result of the barrier is propagated to the SW layer.

6.2 Barriers overhead for different NoC
topologies

The objective of this Section is to analyze the impact of
different Noc topologies on the performance of the selected
HW/SW barriers. In particular we will show the barriers
overhead for different NoC topologies with respect to an
ideal channel which provides zero latency for every network
access. Figure 8 shows the overhead on the HW/SW bar-
riers for different NoC topologies with respect to the ideal
channel for systems of 16, 32, 64 and 128 cores.

We can see that the topology does not influence the A2A-
SW and MS-SW barriers, and it has a small impact on
Bf-SW and Tr-SW. This confirms that the rate at which
the SW implementations inject data on the NoC (even rely-
ing on fast HW message passing layer) is so small that any
topology could easily accomplish the task. In other words,
if we are using message passing SW barriers we cannot ex-
pect to see any substantial difference in barrier latency by
adopting an expensive highly connected NoC (e.g. Torus)
with respect to a cheap NoC (e.g. Ring) (see Table 1 for a
cost comparison). For instance, considering 128 cores and
the Tr-SW barrier (the SW barrier with the highest NoC
dependent behavior), in the worst case, the barrier perfor-
mance decreases of 49% going from an ideal channel to a
ring configuration. Considering a clustered-ring (the sec-
ond cheapest NoC topology), the performance decreases is
limited to 16%. A different scenario characterizes HW im-

87

Figure 8: Overhead of the different barriers for the different topologies respect to an Ideal Channel, for system
composed of 16, 32, 64 and 128 cores

plementations. Due to the fast HW protocol, NoC topol-
ogy has a more relevant impact. Highly connected Torus
topologies always provide a reduced overhead with respect to
other topologies (except for Clustered-Ring combined with
Tr-HW for 32 and 128 cores). The performance overhead
introduced by Ring topology is the highest for the consid-
ered configurations. Noticeable is the performance obtained
by Clustered-Ring, which is very close to the one obtained
by Mesh topology, even if its cost is much smaller.

6.3 Latency/Complexity trade-offs of HW
barriers combined with NoC topologies

As final result, we analyze the latency/complexity trade-
offs of HW barriers combined with different NoC topolo-
gies. Figure 9 shows the Pareto points in terms of barrier
latency and NoC complexity cost “C” (shown in Table 1)
by varying the number of cores. Oblique dashed lines have
been added to separate the system sizes from 4 to 128 cores.
Among the Pareto points corresponding to the same num-
ber of cores, we identified as the most efficient combinations
(corresponding to the points closer to the origin) the pair
Clustered-Ring/A2A-HW for system of size up to 64 cores,
while the pair Clustered-Ring/Bf-HW for systems of 128
cores.

7. CONCLUSIONS AND FUTURE WORKS
In this paper, we tried to quantitatively answer to the fol-

lowing questions: Could NoCs represent a low latency chan-
nel for barriers or vice-versa can barriers take advantage of
the low latency and parallel nature of the NoCs? Is it cor-
rect to believe that more we invest in a NoC, more efficiently
we can perform barrier synchronization? Our answer is that
SW barriers (even relying on HW message passing layer)
have so much overhead to under utilize any NoC configura-
tion and that only HW barriers exhibit a relevant topology
dependent behavior capable to fully exploit NoCs. Regard-
less NoC topology and system size, the butterfly algorithm
is the best SW approach due to the small number of ex-
changed messages that must be propagated and processed
in the SW layer. On the other hand, HW barriers with a
small number of stages outperform barriers with small num-

ber of exchanged messages for medium-scale systems (32-64
cores) in almost every NoC topology we studied. However,
as the number of cores increases, there is a number N of
cores (which differs according to the topology) where it is
more convenient to perform barrier synchronization with a
low number of total exchanged messages. Moreover, the
complexity of a NoC topology does not always pay in terms
of efficiency, and “a simple” topology such as the Clustered-
Ring can obtain very interesting results while performing
barrier synchronization. The reason is that, especially when
cores count grows, communication requirements for collec-
tive operations are very different from the requirements im-
posed by large-grain, cache-line-size data movements. We
forecast that the results presented in this paper can be ex-
tended to other collective communication operations which
we are currently studying to extend our work.

8. REFERENCES
[1] SystemC 2.0 User’s Guide5.
[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,

P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick. The landscape
of parallel computing research: A view from berkeley.
Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[3] L. Benini and G. D. Micheli. Networks on Chip: A new SoC
paradigm. IEEE Computer, 35(1):70–78, January 2002.

[4] T. Bjerregaard and S. Mahadevan. A survey of research
and practices of network-on-chip. ACM Computing
Surveys, 38(1), 2006.

[5] Cavium. Octeon plus cn58xx multi-core mips64. Available
at: http://www.cavium.com/OCTEONPlus_CN58XX.html.

[6] W. J. Dally and B. Towles. Route packets, net wires:
on-chip inteconnectoin networks. In DAC’01: Proceedings
of the 38th conference on Design automation, pages
684–689, New York, NY, USA, 2001. ACM Press.

[7] IBM. PowerPC 750 RISC microprocessor technical
summary. Available at:
http://www-3.ibm.com/chips/techlib/techlib.
nsf/techdocs/750_ts.pdf, January 1998.

[8] Intel. From a few cores to many: A tera-scale computing
research overview. Available at:

5Available at www.systemc.org

88

Figure 9: Pareto points in terms of HW-barrier latency and NoC complexity cost by varying the number of
cores from 4 to 128.

ftp://download.intel.com/research/platform/
terascale/terascale_overview_paper.pdf.

[9] C. Liu, A. Sivasubramaniam, M. Kandemir, and M. J.
Irwin. Exploiting barriers to optimize power consumption
of cmps. In IPDPS ’05: Proceedings of the 19th IEEE
International Parallel and Distributed Processing
Symposium (IPDPS’05) - Papers, page 5.1, Washington,
DC, USA, 2005. IEEE Computer Society.

[10] A. Marongiu, L. Benini, and M. Kandemir. Lightweight
barrier-based parallelization support for non-cache-coherent
mpsoc platforms. In CASES ’07: Proceedings of the 2007
international conference on Compilers, architecture, and
synthesis for embedded systems, pages 145–149, New York,
NY, USA, 2007. ACM.

[11] M. Monchiero, G. Palermo, C. Silvano, and O. Villa.
Efficient synchronization for embedded on-chip
multiprocessors. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 14(10):1049–1062, October
2006.

[12] R. D. Mullins, A. F. West, and S. W. Moore. Low-latency
virtual-channel routers for on-chip networks. In Proc. of the
31st Annual Intl. Symp. on Computer Architecture
(ISCA), pages 188–197, 2004.

[13] R. Murphy, A. Rodrigues, P. Kogge, and K. Underwood.
The implications of working set analysis on supercomputing
memory hierarchy design. In ICS ’05: Proceedings of the
19th annual international conference on Supercomputing,
pages 332–340, New York, NY, USA, 2005. ACM.

[14] G. Palermo and C. Silvano. PIRATE: A framework for
power/performance exploration of network-on-chip
architectures. In PATMOS-04: Proceedings of International

Workshop on Power and Timing Modeling, Optimization
and Simulation, September 2004.

[15] M. Palesi, R. Holsmark, S. Kumar, and V. Catania. A
methodology for design of application specific deadlock-free
routing algorithms for NoC systems. In Proc. Intl. Conf. on
Hardware-Software Codesign and System Synthesis, Seoul,
Korea, Oct. 2006.

[16] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie.
Hardware- and software-based collective communication on
the quadrics network. In NCA ’01: Proceedings of the
IEEE International Symposium on Network Computing
and Applications (NCA’01), page 24, Washington, DC,
USA, 2001. IEEE Computer Society.

[17] Tilera. Tile64 processor family. Available at:
http://www.tilera.com/pdf/ProBrief_Tile64.pdf.

[18] B. Wilkinson and M. Allen. Parallel programming:
techniques and applications using networked workstations
and parallel computers. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1999.

[19] W. Yu, D. Buntinas, R. L. Graham, and D. K. Panda.
Efficient and scalable barrier over quadrics and myrinet
with a new nic-based collective message passing protocol.
ipdps, 09:182b, 2004.

89

