
Compiling Custom Instructions onto
Expression-Grained Reconfigurable Architectures

Paolo Bonzini, Giovanni Ansaloni, and Laura Pozzi
Faculty of Informatics, University of Lugano (USI)

Lugano, Switzerland

{paolo.bonzini, giovanni.ansaloni, laura.pozzi}@lu.unisi.ch

ABSTRACT
While customizable processors aim at combining the flex-
ibility of general purpose processors with the speed and
power advantages of custom circuits, commercially available
processors are often limited by the inability to reconfigure
the application-specific features after manufacturing. Even
though reconfigurable array-based accelerators are available,
their performance is often unacceptable, and comes with
other disadvantages such as the size of the configuration
bitstream. Additionally, compilation support is limited for
existing Coarse Grain Reconfigurable Arrays (CGRAs).

We propose to target a different reconfigurable fabric, the
EGRA (Expression-Grained Reconfigurable Array), to real-
ize custom instructions in a customizable processor. The
EGRA is based on arithmetic processing elements that can
compute entire subexpressions in a single cycle and can be
connected in both combinational or sequential manners. We
present here a compilation flow for this architecture, includ-
ing novel algorithms for subgraph enumeration and schedul-
ing. The compilation flow proposed is used here to efficiently
explore the design space of the EGRA processing element;
furthermore, its modularity and flexibility suggest suitabil-
ity to generic CGRA retargetable compilation.

Categories and Subject Descriptors
B.1.4 [Hardware]: Control structures and Microprogram-
ming—Microprogram design aids; C.1.3 [Computer Sys-
tems Organization]: Processor Architectures—Data-flow
architectures; C.3 [Computer Systems Organization]:
Special-Purpose and Application-Based Systems—Embed-
ded systems, Reconfigurable computing ; D.3.4 [Software]:
Processors—Optimization, Code generation

General Terms
Algorithms, Performance, Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

Keywords
Coarse-grained reconfigurable architectures, Compilers,
Data-flow architectures, Horizontal microprogramming, In-
struction set extensions

1. INTRODUCTION
The aim of customizable processors is to combine the

small price and the flexibility of general purpose proces-
sors, with the speed and power advantages of custom circuits
(ASICs). In such processors, a standard machine language
can be augmented with custom instructions (also known as
instruction set extensions, or ISEs) that execute on separate
application-specific hardware units. Therefore, while retain-
ing the flexibility of processors in terms of programmability,
carefully designed hardware accelerators are able to execute
applications in a spatial way, much like a fully-custom inte-
grated circuit.

The additional ability to exhibit application-specific fea-
tures that are not “set in stone” at fabrication time would
suggest reconfigurable architectures as particularly good
candidates for being integrated in customizable processors.
However, many of the processors that are available in the
market are not based on reconfigurable architectures.

Currently available customizable processors include some
that couple a hard-wired processor with an accelerator based
on FPGA technology. However, they often have disappoint-
ing results in terms of speedups. In fact, on one end of the
spectrum, ASICs provide maximum speed but heavily limit
the flexibility of the solution. At the other end, fine-grained
reconfigurable fabrics (such as the ones in FPGAs) are ex-
tremely flexible, but at a serious performance cost.

Not being able to refine the processor’s customization af-
ter deployment is a limiting factor for many reasons. For
example, even though different applications may be known
to run only in different time frames, the area cost for all of
them has to be paid. Additionally, firmware upgrades are
penalized in their access to the customization features, be-
cause they cannot define new application-specific instruction
set extensions. These two problems would be felt clearly, for
example, in software-defined radios—which would otherwise
be an interesting application for customizable processor be-
cause of the heavy signal-processing tasks they perform.

If, as is often the case, the accelerated computations
need not be expressed as Boolean formulas (e.g. they are
32-bit arithmetic operations), the larger elementary blocks
of Coarse-Grained Reconfigurable Arrays could successfully
implement such applications more efficiently, without un-
dergoing gate-level mapping. For this reason, in [1] we

51

...

...

a) b) c)

Figure 1: a) The structure of a CCA [2]. b) While
smaller in size to limit latency, the RAC has a sim-
ilar structure. c) The EGRA, consisting of a multi-
plicity of RACs.

introduced the Expression-Grained Reconfigurable Array
(EGRA), featuring a new design for the processing element
and enabling implementation of application-specific func-
tional units in a customizable processor.

Similar to an FPGA, the EGRA is based on combina-
tional processing elements (Reconfigurable ALU Clusters, or
RACs) that can be connected either to form a larger com-
binational structure, or in a sequential mode of operation
through a register.

A single RAC can compute entire arithmetic/logic subex-
pressions using multiple wired ALUs. As opposed to single
ALUs, this architecture has several advantages. Cells will
be faster and, even more than in other coarse-grained archi-
tectures, the structure of the interconnect can be simplified.
Compared to FPGAs, the configuration bitstream is shorter;
this shortens reconfiguration times and allows to store mul-
tiple configuration contexts in the array.

However, in order to ascertain the actual gains from this
approach, it is necessary to support the EGRA with compi-
lation technology that can map applications efficiently onto
the new architecture. While compilation support is of capi-
tal importance for all CGRAs in general, albeit often miss-
ing, it is particularly so in the case of the EGRA, because
an EGRA compiler can enable systematic exploration of the
vast RAC design space.

The remainder of this paper is organized as follows. Sec-
tion 2 overviews the architecture of the EGRA, and Sec-
tion 3 details the algorithms we used or developed for this
task; Section 4 presents experimental results. Section 5 ex-
plains how the scheme we developed can be generalized to
a more generic framework for CGRA compilation. Finally,
section 6 presents related work and section 7 concludes the
paper.

2. THE EGRA ARCHITECTURE
The main feature of the target architecture is its attempt

to integrate multiple computational elements in a single cell.
The design of the RAC is modelled on the Configurable Com-
putation Accelerator (CCA) [2], an acyclic array of arith-
metic units that can be used to implement common compu-
tations (Figure 1). Like the CCA, the RAC supports effi-
cient computation of entire subexpressions; however, within
the EGRA its structure is replicated. This way, the array
can better reproduce the spatial execution abilities at which
custom integrated circuits excel.

Each RAC includes a multiplicity of arithmetic elements,
organized as rows of ALUs connected by switchboxes. The
number of rows, the number of ALUs in each row and their

data opcodes flag opcodes
out = A & (B ⊕ flagsext) 0
out = A | (B ⊕ flagsext) 1
out = A⊕ (B ⊕ flagsext) =
out = flag ? A : B 6=
out = A+B + flagzext signed <
out = A+B + flagzext signed ≥
out = A� B unsigned <
out = A�rot B unsigned ≥
out = A�arith B
out = A�logical B
out = A�rot B

Table 1: List of supported opcodes. Note that the
1-bit flag input will be sign- or zero-extended de-
pending on the opcode.

A

B

op1 + op2 + flag

flag ? op1 : op2

1

GEU(A)

BUS input 1

dataout(A)

BUS input 2

constant 0

node opcode flag sourceop1 source op2 source

A

flag op1

op1 op2

B

X Y

0

op2

Figure 2: Programming a RAC. This example shows
how two ALUs can be connected to compute an un-
signed subtract with saturation, X >= Y ? X - Y : 0.
The node computing the subtraction also performs
the comparison. The multiplexer node B uses both
the data output and the unsigned ≥ flag of the sub-
traction node A.

functionality (such as whether they include an adder or a
barrel shifter) can be explored in order to obtain best per-
formance with minimal area cost.

Another characteristic of the RAC is the availability of
three-input operations, such as word-sized 2:1 multiplexers.
This enables efficient implementation of if-conversion, and
allows RACs to evaluate in parallel the two arms of a con-
ditional, and use a multiplexer to choose between the two.

In fact, all operations are extended to have three inputs,
as in table 1. The third input can be hardcoded to 0 or
1, or can come from one of three 1-bit flags. The design
of the flags is inspired by the program status word of most
microprocessors. They are a zero flag, an unsigned ≥ flag
(equivalent to the carry flag of general-purpose processors,
such as the ARM), and a signed < flag (equivalent to N⊕V ,
where N and V are the sign and overflow flags); they can be
either used directly, or complemented. Possibly by exchang-
ing the operands of the comparison, or by complementing
the values of the flags (see table 1), these three flags al-
low to implement all signed and unsigned relational opera-
tions.

The array has input/output connection with the processor
bus, thus allowing it to read and write back data from/to the
register file, only limited by the bandwidth of the register file

52

topology

1 2

3

4

candidate DFG mapped DFG

technology
mapping

cell template

partitioned DFG

retiming

CGRA configuration

enumeration partitioning

candidate DFG mapped DFG

partitioned DFG

place-and-route

application

a) b) c) d)

Figure 3: Overview of the mapping methodology. a) Extracting hot parts of the application to be compiled.
b) Rewriting the DFG to the set of operations supported by the processing element. c) Partitioning the DFG
to allocate the operations to different array cells. d) Placing and routing produces the configuration of the
CGRA.

itself. We assume the presence of 2 read ports and 1 write
port. Therefore, up to two 32-bit values will be distributed
to the cells from the register file, and on every clock cycle
one cell will be able to send one value back to the register
file.

3. MAPPING ON EGRA
The added flexibility of the EGRA cell architecture en-

ables the designer to evaluate different types of RACs. Hun-
dreds of different types can be enumerated by varying the
height of the cell, the width of each row, and the type of
ALU used on each row. In this context it is very important
to perform this evaluation automatically and quickly, using
an efficient compiler to map onto a family of architectures
and estimate the gains of different cell types.

The methodology we propose borrows from work on the
topic of compilation for customizable processors. The tra-
ditional compiler is equipped with an additional phase that
analyzes the program at a certain, pluggable point of the
optimization pipeline and performs hardware-software code-
sign, i.e., identifies portions of the code to be moved to the
CGRA and executed as custom instructions. Up to this
step, the compiler treats each operation in the program sep-
arately; afterwards, the entire data-flow subgraph identified
is collapsed into a single atomic unit.

We split the process of mapping into several phases, as
described in Figure 3. The compiler first identifies candi-
date parts of the program that are suitable for execution
on the accelerator. Based on this list of candidates, it runs
a series of technology mapping tasks repeatedly in order to
find a single best-performing one. These tasks include op-
timizing the subgraph for the chosen accelerator, clustering
nodes of the subgraph that can be mapped onto a single ar-

ray cell, and then transforming these clusters into an actual
implementation of the candidate on the accelerator.

After these steps are performed for all the candidates (or,
as mentioned before, on a subset thereof), the single best
performing subgraph is chosen.

3.1 Maximal subgraphs as candidates
Our mapping flow can extract parts of a basic block to

the accelerator and leave the rest to the general purpose
processor. Therefore, candidates can be in principle any
subgraph of the basic block.

These subgraphs should satisfy two conditions. First of
all, they should not include operations that are not sup-
ported by the cell. Second, they should be convex; that is,
any path between two nodes in the candidate should only
include nodes that are themselves part of the candidate.
The subgraphs do not need to have any constraint in term
of number of inputs and outputs; in case these exceed the
bandwidth of the register file, it is possible to serialize them
across multiple cycles. In order to limit the search, we add
a third condition, namely we restrict our attention to sub-
graphs that are maximal ; that is, growing them in any way
would violate the two previous conditions.

In order to do so, we employ the enumeration algorithm
presented in [3]. As it reduces maximal subgraph enumera-
tion to clique enumeration, which is a well-known problem
with exponential time complexity, maximal subgraph iden-
tification is also worst-case exponential in the number of
operations in the basic block; in general, however, it will
complete in no more than a few seconds.

The main limitation of the algorithm is that it does not
offer any control on the area of the generated subgraphs.
This is often not a problem, because the algorithm generates
many overlapping candidates and it is rare that none satis-

53

0

A B

0

GEU

0

GEU

a) b) c)

SEL SEL SEL

A B A B

>= - - - -

Figure 4: Lowering a data-flow graph to the set
of operations supported by the cells. This ex-
ample shows a saturating unsigned subtraction.
a) The DFG representing the C source A >= B ?

A - B : 0. b) The comparison is transformed into
a subtraction and the appropriate flag (unsigned
greater-than-or-equal) is tested in the SEL node.
c) Common subexpression elimination merges the
two subtraction nodes into one.

SEL

8

a)

B

A 8

!=

&

0

0

c)

SEL

B

A 8

& 0

NE
SEL

8

b)

B

A 8

&

0

0

XOR

Figure 5: Peephole optimization during lowering.
a) Example is taken from the ADPCM benchmark.
b) Equality and inequality comparisons are con-
verted to exclusive-ORs. c) Comparisons with
zero do not need a separate node, because the
AND node is already computing the right value
of the flags.

fies area constraints; in our experiments, EGRA instruction-
set extensions require around 20 cells.

Each candidate needs further processing before its gain
can be measured. We call this step technology mapping. In
principle, each of the candidate subgraphs discovered in the
first step could go through the technology mapping step.
However, it is better to compute simple lower bounds on
the cycles needed to execute the candidate on the accelera-
tor. For the EGRA, for example, the register file bandwidth
and the number of inputs and outputs (which must be trans-
ferred from/to the processor registers) together provide such
a lower bound. Based on this, upper bounds on the gain can
be estimated and used to avoid executing the expensive steps
for clearly suboptimal subgraphs.

3.2 Operation lowering using graph rewriting
The next step of the compilation flow is operation lower-

ing; its main aim is to effectively use the flags provided by
the EGRA architecture. Flags can be used to implement if-
conversion (see figures 4 and 5), but they will also be used to
implement C logical operations (i.e. using the truth value of
a comparison in an arithmetic operation) and to transform
special nodes that are included in the intermediate repre-
sentation, such as absolute value and minimum/maximum.

In all cases, comparisons must be transformed to an oper-
ation (a subtraction or an exclusive OR) that will compute
flags; users of the comparison can then test a particular
condition on those flags. In addition, operands of the com-
parison can be manipulated in order to support conditions
that the ALUs cannot generate, i.e. > and ≤.

These transformations are implemented using graph
rewriting. In this system, each lowering rule is described
by a pair of graphs—a template to be matched in the candi-
date data-flow graph, and a replacement graph that will be
substituted for it. In [4], the authors use a similar method-
ology, based on term rewriting. Since our compilation flow
is based on data-flow graphs rather than on an imperative
intermediate representation, using graph grammars was a
natural choice.

The system can also perform common subexpression elim-
ination, as in Figure 4c. Simple peephole optimizations are
also performed; for example, Figure 5c shows that compar-

isons with zero can be merged in the node that computes the
other operand of the comparison. The CSE and peephole
optimization phases were also described as graph rewrites.

Graph rewriting is a very powerful technique, and several
libraries are available to program graph rewriting systems.
In particular, we used the GrGen library. [5]. The graph
grammar for lowering is small, consisting of only 10 rules,
and the rules for CSE and peephole optimization had ap-
proximately the same size.

3.3 Partitioning
Technology mapping produces a new DFG, where the set

of used operations matches closely the capabilities of a single
ALU of the EGRA. In other words, technology mapping de-
fines how the array’s ALU will execute each operation in the
data-flow graph. The next step is to coarsen the granularity,
and find a mapping at the RAC level; to this end, the par-
titioning phase clusters operations that will execute in the
same cell. The output is a new graph that collapses these
clusters to a single node; this graph more closely represents
the execution of the candidate DFG on the EGRA.

Covering the candidate with a number of clusters is in turn
a multi-step process, comprising enumeration of the possible
clusters, analyzing their timing characteristics (for example
eliminating those that exceed the chosen cycle time), and
then selecting, among the enumerated and valid ones, a set
of clusters that partitions the candidate.

Clusters can also be seen as data-flow graphs. The most
important difference between the candidate subgraphs enu-
merated as the first step of the process, and the cluster
graphs considered here, is that clusters are constrained to
the set of computations that a cell can perform. The most
important consequence this has for EGRA mapping is that
the number of outputs of a cluster is limited by the num-
ber of ports of a single cell, and this allows adaptation of
efficient algorithms from the state-of-the-art [6].

After a list of clusters is found, it is possible to find a par-
titioning by using a greedy covering algorithm that tries to
place the deepest available cluster on the critical path. Deep
clusters have higher utilization rates, and minimize the rout-
ing delay on the critical path both within a RAC and in the
entire array. This is a comparatively simple problem, thus

54

1 2

b)

1 2

c)

NE

NE

110

010

001 001

NE

MSB=0

MSB=1

MSB=2

Logic, shift

Logic, add

Logic, add,
shift

001 001

110

010

CBACBA

SEL SEL

a)

Figure 6: Scheduling operations in a RAC. a) A cell template. b) A cluster that has edges spanning multiple
rows. The enumeration algorithm assigns bitmasks to each operation, corresponding to the rows on which
the operation can be executed. c) By placing ops on the row indexed by the MSB, one obtains the as-late-
as-possible schedule; in this case, 2 ALUs must be configured to pass the value through, and 1 must pass the
equality flag.

the rest of this section will concentrate on efficient enumer-
ation and scheduling of the clusters.

3.3.1 Cluster enumeration
Techniques to enumerate subgraphs efficiently are well

known. The basic enumeration technique employs a bi-
nary search space, where each level of the tree represents
a node in the enumerated graph. At each point, two choices
are possible, corresponding to including or not the node in
the graph. A single subgraph of a DFG corresponds to a
leaf. The key to efficient implementation is in bounding the
search, avoiding the exploration of branches that correspond
to an invalid subgraph, and where no valid subgraph may
exist in the branch. Then, the number of search tree points
actually visited will grow relatively slowly with n.

In the case of the EGRA, enumeration should consider
these constraints:

• clusters should be convex;

• clusters should have no more outputs than the RAC
has;

• the maximum depth of the cluster is constrained by
the number of rows in the RAC;

• not all rows of the RAC can execute all operations;

• cluster rows should not be wider than RAC rows.

Compared to the I/O-constrained subgraph enumeration
problem [6], the most obvious difference is the lack of a
constraint on the number of inputs. Instead, the maximum
depth poses a strong limit on valid EGRA clusters.

Algorithms such as [6] are not aware of the depth limit.
Hence, they will needlessly enumerate very large graphs that
cannot fit in an array cell. In fact, Clark [7] reported enu-
meration times well over 10 minutes for large basic blocks;
this would be impractical in the context of architectural ex-
ploration. Therefore, it makes sense to develop an alter-
native enumeration algorithm that can use depth to prune
the search. As we report in section 4, execution of our enu-
meration algorithm took less than one millisecond on the
benchmarks we tried.

Enumeration does not need to provide a “perfect” set of
clusters. It can be conservative and emit clusters that are
invalid (i.e., that cannot map onto an array cell). For this

reason, the clusters are subject after enumeration to a sep-
arate check that does not have false negatives. In the most
general case, the compiler can consider a cluster to be valid,
and at the same time obtain its mapping onto a cell, if it is
a subgraph of the cell template. This subgraph isomorphism
test is used for example by Clark [7].

In our case, enumeration filters successfully the first four
constraints above. The width of the RAC rows is checked
instead after the operations in the cluster are assigned to
the ALUs in the RAC (scheduling).

As in [6], enumeration visits the tree in reverse topologi-
cal order. It propagates information to the predecessors of
each node, and uses it to trim the search when those nodes
are reached. In particular, the algorithm of [6] propagates
information on whether adding a node would violate the con-
vexity constraint, and on the number of successors that are
already part of the subgraph. The latter piece of information
is used as nodes are added or removed from the subgraph,
to quickly update the number of inputs and outputs.

Our algorithm propagates an additional value, namely a
bitmask of rows that can implement an operation in the cell.
This bitmask can be computed beforehand for every opcode
used by the intermediate representation, and its value can
be used to initialize the field when a node is added to the
cluster. We will call this per-opcode bitmask the op-mask.

Since masks are read like binary numbers, the most sig-
nificant bit (corresponding to the bottom line of the RAC)
is written first. So, for the example RAC of Figure 6a, the
op-mask of SEL nodes is 110. In this case, the value 110
includes rows that support logic operations (all three do)
and have a flag input (the two bottom rows). The op-mask
for addition is also 110 (this time, because the top row does
not have an adder) and the op-mask for shifts is 101.

The bitmask of a node is computed from its op-mask and,
if the node has successors in the cluster, from the successors’
bitmasks. If bj is the bitmask of node j, the index MSB(bj)
of the most significant set bit of bj indicates the last RAC
row in which bj can run; predecessors of j will have to be
allocated on a row in the range 0 to MSB(bj) − 1. This
corresponds to ANDing the op-mask with (1�MSB(bj))−
1, and using the result as the bitmask for the newly added
node; if the result is zero the cluster is invalid—and adding
other nodes will not restore its validity, so that an entire
branch of the search tree can be pruned.

If more than one successor is already in the cluster, mask-
ing can be applied to all of them—possibly, each of them will

55

1 2

c)

Logic, add,
shift

Logic, add

Logic only

CBA

SEL

b)

0.2025 0.2025
0.0963

0.1826 0.28880.4217

0.5678

opcode delay

>> 0.1062
+ 0.1329
SEL 0.0764

row mux delay

logic 0.0697
full 0.0963
other 0.0863

a)

0.2292

0.4484

0.5945

Figure 7: Computing the critical path delay. a) Synopsys Design Compiler is used to compute the critical
path delay of the ALU components and of the multiplexer between rows. b) The critical path delay Synopsys
gives for the cell template is the worst-case delay. c) Knowing the actual opcodes allows the compiler to
produce a better estimate of the critical path delay.

further restrict the bitmask of valid rows for the node that
enters the subgraph. Figure 6b shows an example cluster,
together with the bitmasks that were attached to each of its
nodes.

It is important to notice that the algorithm will never
emit clusters whose depth is greater than the cell’s, because
MSB((1�MSB(bj))−1) < MSB(bj). In other words, the
bitmasks become smaller and smaller as the cluster’s latency
increases, and will always be zero if it exceeds the RAC’s
latency. This makes the algorithm effective in enforcing the
third constraint of the above list, too.

This algorithm’s application is not limited to cluster enu-
meration for EGRAs. In fact, because cluster enumeration
is very similar to enumeration of valid configurations of a
CCA [7], it can be used as a conservative check for CCAs
too in order to make the enumeration phase cheaper without
sacrificing its optimality.

3.3.2 Cluster scheduling
The purpose of scheduling is to ascertain the validity of

the cluster and inserting pass-through operations for values
and/or flags, whenever they are needed. This process is
closely related to retiming, because the way operations are
scheduled influences the critical path delay of the RAC, and
consequently the latency of the computation on the EGRA.

As shown in Figure 6c, scheduling uses the bitmask as
hints to prune the search. The simplest possible schedul-
ing algorithm uses the MSB of the bitmask to allocate each
node to a RAC row; this corresponds to as-late-as-possible
scheduling (the strategy used in Figure 6c). In order to per-
form ASAP scheduling, instead, one would visit the cluster
in topological order, and pick the least significant bit that
a) is set, and b) is placed on a row below all the predeces-
sors. Exhaustive search can also be performed by adding
backtracking to the ASAP strategy.

The number of elements needed on each row is computed
by summing the number of computation nodes allocated to
the row, and the pass-through nodes that are added between
the rows. If aj is the row on which node j is allocated, first
of all sj , the maximum row for all the successors of j, is
computed. Then, a pass-through node is needed for rows in
the range (aj , sj). This can also be expressed as a bitmask,
by evaluating (1� sj)− (1� (aj + 1)).

3.4 Candidate retiming
The EGRA architecture may allow a sequence of cells to

execute in the same cycle, as long as the total critical path

delay is shorter than the cycle time. This allows creation of
relatively complex combinational structures and improves
the number of instructions per cycle. However, it also as-
signs to the compiler the additional task of computing the
run-time delays of the EGRA, in order to optimally insert
registers.

The delays computed by Synopsys Design Compiler (as
in Figure 7b) are worst-case values for a particular RAC
design. However, because programming is done in advance,
the switching activity of some arithmetic or logic compo-
nents will not affect the outputs. If these components are
on the critical path, a RAC’s delay at run-time will be better
than the value computed by Design Compiler.

For example, the adder is on the critical path of a
full-featured ALU (supporting logic, add/subtract and
shift/rotate operations). However, in the specific configura-
tion of Figure 7c, we know that the switching activity on the
first row’s adders will not influence the outputs, and there-
fore that the adders’ latency will not affect the critical path!
Since the compiler knows how the RACs are programmed,
it should be able to obtain a refined estimate for each RAC
taking part in the computation.

To achieve this objective, we embedded in the compiler
a simple model of the RAC’s structure. This model splits
the delays in computation delays (that depend on a node’s
opcode) and multiplexer delays (that only depend on the cell
template). These delays can also be computed with Design
Compiler, based on the delays for various pieces of the RAC
datapath; they can then be tabulated as in Figure 7a and
included in the compiler. In the example of Figure 7c, the
configuration-specific delay is 4.5% better than the worst-
case provided by Synopsys (Figure 7b).

After the candidate graph is partitioned into clusters, this
model is applied to each cluster. After the delays are com-
puted, the compiler does not need to know the intercon-
nection within each cluster. Therefore, nodes in the same
partition can be collapsed.

A retiming algorithm is then run on the candidate to in-
sert registers between clusters, using a user-provided cycle
time. Since data-flow graphs are acyclic, we can use a sim-
ple, linear time algorithm [8] to do so.

It is important to note that retiming must be run af-
ter partitioning, because registers cannot be inserted in the
middle of a cluster (i.e., in the middle of a RAC): all cells
participating to the computation must execute in less than
a single cycle, and their execution must lie within a single

56

a) b) d)

logic only logic + shift logic + add logic + shift + add

c)

Figure 8: RAC design of the maximum-speedup Pareto point configuration, for a) rawdaudio; b) rawcaudio;
c) crypto benchmarks (des, sha); d) all four benchmarks.

 1

 1.2

 1.4

Figure 8a Figure 8b Figure 8c Figure 8d

sp
ee

du
p

RAC type

rawdaudio rawcaudio des sha

Figure 9: Speedups obtained by four RAC config-
urations

0

250000

500000

750000

1000000

Figure 8a Figure 8b Figure 8c Figure 8d

ar
ea

RAC type

rawdaudio rawcaudio des sha

Figure 10: Area needed for the best speedup (in
µm2) on four RAC configurations

cycle. This is easily achieved by running retiming after the
clusters have been collapsed to a single node.

4. EXPERIMENTAL RESULTS
In order to assess the computational feasibility of the map-

ping algorithms presented in section 3, we used them to
analyze benchmark performance over a wide range of RAC
designs.

The algorithms have two kinds of input. First, bench-
mark DFGs are used to choose candidates and are later
partitioned into RACs; in our experimental platform, the
DFGs for each benchmark are extracted with a GCC-based
compiler front-end. In addition, the retiming phase needs
to know the latency characteristics for the components on a
RAC datapath, and uses them to estimate the latency of the
programmed RAC configurations (see Section 3.4). These
values are the same for all input programs, and were esti-
mated using Synopsys Design Compiler and TSMC 90nm
front-end libraries.

We ran our compiler on four MiBench [9] benchmarks,
testing 872 different configurations of the RAC for each
benchmark; these configurations have a depth varying from
one to three rows, and the biggest one has 5 ALUs on the
first row, 4 ALUs on the second, and 2 on the third. On
a PowerPC G4 processor running at 1.5 GHz, running this
procedure took approximately 15 minutes to explore the de-
sign space on one program; on average, this corresponds to
a run time of one second for each RAC configuration.

We did not observe substantial differences in the run-time
for different benchmarks; also, for all benchmarks most of
the time was spent performing maximal subgraph enumer-
ation. For bigger benchmarks, it would be beneficial to run
it separately from the rest of the flow, because its output
only depends on the capabilities of the most powerful ALU
in the architecture. For the EGRA design, in particular,
four runs of the maximal subgraph enumeration algorithm
are sufficient to test any number of configurations.

The enumeration algorithm described in section 3.3.1 is
extremely fast. By incorporating most of the feasibility
checks, it removes the need for a separate checking step (such
as subgraph isomorphism in [7]), and uses the information to
prune the search space effectively. The time needed to per-
form enumeration was below 1 millisecond in all executions
of the algorithm. An important feature of our algorithm is
that this time grows very slowly with the size of the basic
block and with the range of operations supported by the
RAC; it only grows substantially if the depth of the RAC
is increased. This however is not a problem because RAC
depth is also limited by factors such as clock speed.

We also present estimated speedup results for the four
benchmarks. We derived four “optimal” RAC designs from
the result of the exploration. These are drawn in Figure 8.
The first two represent the configuration of the maximum-
speedup Pareto point, i.e. achieves the maximum speedup
at minimal area cost, for each of the audio benchmarks;
the third achieves maximum speedup on both crypto bench-

57

marks; the last finally performs well on all benchmarks but
costs noticeably more area than specialized cells. It is im-
portant to note that trivially merging the features of the
cells in Figures 8abc would use more area than Figure 8d,
without improving performance.

Estimated clock cycle savings and area occupation for the
four configurations are found in Figures 9 and 10. Note
that not all RACs of Figure 8 will provide speedup on all
benchmarks. For some benchmarks, indeed, the designs of
Figures 8a and 8c are not well suited; correspondingly, prof-
itable ISEs are not found by the compiler and the EGRA is
simply not used. These cases correspond to points with a
speedup of 1 and an area of 0 in Figures 9 and 10).

It is interesting to note that all four optimal designs use
two rows. This is the same depth used for the data path
in [10], but much smaller than the examples of Configurable
Computation Accelerator presented by Clark [2]—despite
the apparent similarity between the design of the RAC and
the CCA. The reason is that RACs can be connected to form
combinational structures. This feature puts smaller cells to
an advantage, since they will usually have higher utilization
rates without sacrificing speed.

5. TOWARDS A GENERAL FRAMEWORK
The complexity of designing a compiler for a coarse-

grained reconfigurable array has been an obstacle to research
on this kind of accelerator hardware. Architectures that
were studied present a huge variability, and this makes it
hard to develop well-founded building blocks, that compil-
ers could use to analyze programs and retarget them on a
CGRA. In turn, the major differences between compilers
for different kinds of processing elements and interconnects
make it very hard to reproduce published results and to
compare architectures.

We believe that the collection of mapping algorithms that
we described in Section 3 can be generalized to a framework
for CGRA compilation. Of course this generic scheme will
need tuning to target all the peculiarities of coarse-grained
architectures. On the other hand, studying the possible spe-
cializations of this framework will also allow development,
evaluation and comparison of different schemes for mapping
on the same architecture.

The four steps proposed in this paper’s framework are can-
didate enumeration, technology mapping, partitioning and
place and route.

Candidate enumeration. The first step for the compiler
is to find a set of candidate data-flow subgraphs—see Fig-
ure 3a. As explained in Section 3.1, these are the minimal
unit that will possibly be chosen for execution on the ac-
celerator. While we used an algorithm from the field of
customizable processors [3], in the simplest case the candi-
dates may be hot inner loops whose execution can entirely
be moved to the CGRA. While this will be possible only
if the array includes local memory elements, or can access
the system bus, this simple case is not so uncommon. In
particular, if the compiler is to perform software pipelining
(including modulo scheduling) [11], all possible candidates
are of this kind.

Technology mapping. The technology mapping step takes
data-flow graphs, expressed in the compiler’s intermediate
representation, and lowers them to the exact set of oper-
ations that are supported by the target architecture. The

implementation of this step is obviously different for every
target, but all do share a common gist. In particular, the
presented technique based on data-flow graph transforma-
tions can be adapted easily.

Partitioning. After technology mapping, the operations
in the candidate must be partitioned into different cells of
the array (see Figure 3c). This expresses the given data-
flow graph in terms of cells (CGRA processing elements).
Because of the variety of CGRA designs, the shape of the
clusters may be very different depending on the architecture.
In the case of a VLIW architecture with n instruction per
bundle, for example, the clusters will be convex subgraphs
consisting of up to n disconnected nodes.

Inter-cell scheduling. Scheduling the flow of data between
the cells that compose the array is the final step in com-
pilation for a coarse-grained architecture. Depending on
the interconnect between the cells, this problem can pose
very different challenges. For some technologies, inter-cell
scheduling is more akin to modulo scheduling [11]. In other
architectures, this phase should also allocate shared buses
and multipliers; in this case, it can be solved with a combi-
nation of heuristics and ILP [12].

6. RELATED WORK
As we mentioned in the introduction, the challenge of

mapping applications onto coarse-grained reconfigurable ar-
rays has not been tackled systematically so far. Most of
the previous work concentrated on particular architectures,
and the potential for generalization was actually pointed out
rarely, even if this was the case.

For example, DRESC [11] is a compiler for coarse-grained
reconfigurable architectures that performs modulo schedul-
ing and place-and-route for topologies with an arbitrary in-
terconnect. DRESC works on target architectures that use
VLIW functional units, and is not easily adaptable to other
kinds of processing element. Of particular interest is the
representation of the target architecture as a routing graph
modeling elements such as functional units, register files,
multiplexers and buses.

On the other hand, their technique is limited to homoge-
neous coarse-grained reconfigurable architectures, and the
retargetability of the intermediate representation is also not
clear. To avoid the latter problem, we propose a specific
step in the compiler flow whose purpose is to convert com-
putations to a reduced set of operations supported by the
target architecture.

Yoon and Ahn [12, 13] studied different approaches for
mapping applications onto possibly heterogeneous CGRAs.
Besides providing an ILP formulation of CGRA place-and-
route, they propose two efficient algorithms for the same
problem: one first groups elements into columns, and then
lays out the nodes on the grid; the other uses techniques
from planar graph drawing. These strategies are very flex-
ible and can use cells as routing elements—the former [12]
only in special cases, while the latter in much more flexible
ways [13].

Guo [14] presents an algorithm to extract templates and
find them in an application. This technique is not necessar-
ily related to coarse-grained reconfigurable systems, and is
subsumed by the cluster enumeration step of our technique.

One of the reasons for the lack of a comprehensive base for
CGRA compilation is the high variability between architec-

58

tures, not only in terms of processing element functionality,
but also for the level of integration between the reconfig-
urable fabric and the rest of the architecture. A common
implementation is that of a coprocessor, used for example in
Morphosys [15]; other works couple the CGRA and the pro-
cessor more tightly, as is the case for ADRES [16], the archi-
tecture targeted by DRESC. The case study we present uses
the reconfigurable fabric in order to implement instruction-
set extensions, and as such is closer to the latter family of
architectures.

Great differences exist also in the kind of processing el-
ement used in the array, and in the topology. Regarding
the topology, the choice ranges from the 1D topology of
PipeRench to the powerful 8-way interconnection (plus one
shared bus for each row and column of the array) of Mor-
phoSys cells [17]. One peculiarity of the MorphoSys is a
SIMD machine where all the cells in a row or column share
the same context. This makes its architecture very complex
to program with a compiler; our study is more suitable to
MIMD architectures.

Regarding the PEs, there are several notable example of
complex cells, i.e. cells containing more than one ALU, in
the state-of-the-art. In particular, the PACT-XPP cells [18]
(like the RAC we overview in Section 2) support conditional
operations within one clock cycle, and the Flexible Compu-
tational Component [10], while targeted more specifically to
DSP kernels, is similar to the RAC in size and set of allowed
operations.

Other accelerators that have been proposed are similar to
CGRA processing elements, but with only one occurrence
of them existing in each processor. The EGRA’s processing
element is inspired by a stand-alone accelerator, the CCA,
that was proposed in [2]. Even though the replication of
the structure had important consequences on the design (for
example, the ability to build combinational functions from
multiple processing elements) some of the techniques pre-
sented in Section 3 could indeed be applied also to Clark’s
accelerator architecture.

7. CONCLUSION
In this paper, we have proposed a set of techniques that

can be used for mapping applications to a particular coarse-
grained reconfigurable architecture, the EGRA. These in-
clude a novel algorithm for subgraph enumeration, that is
also suitable for other accelerators such as Clark’s Config-
urable Computation Accelerator.

We also overviewed how the scheme of our EGRA com-
pilation flow can be generalized into a framework that can
be adapted to other accelerators. This generalization could
fruitfully lead to the development of a framework for CGRA
compilation, reducing the amount of work needed to retar-
get a compiler and making it possible to perform stronger
and more reproducible comparisons between architectures.

8. REFERENCES
[1] G. Ansaloni, P. Bonzini, and L. Pozzi, “Design and

architectural exploration of expression-grained reconfigurable
arrays,” in Proceedings of the 6th Symposium on Application
Specific Processors, Anaheim, CA, June 2008.

[2] N. Clark, M. Kudlur, H. Park, S. Mahlke, and K. Flautner,
“Application-specific processing on a general-purpose core via
transparent instruction set customization,” in MICRO 37:
Proceedings of the 37th Annual International Symposium on
Microarchitecture. Washington, DC, USA: IEEE Computer
Society, Dec. 2004, pp. 30–40.

[3] A. K. Verma, P. Brisk, and P. Ienne, “Rethinking custom ISE
identification: A new processor-agnostic method,” in
Proceedings of the International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems, Salzburg,
Austria, Oct. 2007, pp. 125–134.

[4] C. Morra, J. a. M. P. Cardoso, and J. Becker, “Using rewriting
logic to match patterns of instructions from a compiler
intermediate form to coarse-grained processing elements,” in
Proceedings of the 2007 IEEE International Parallel and
Distributed Processing Symposium, 2007, Mar. 2007, pp. 1–8.

[5] R. Geiß, G. V. Batz, D. Grund, S. Hack, and A. Szalkowski,
“GrGen: A fast SPO-based graph rewriting tool,” in
Proceedings of the 3rd Internatial Conference on Graph
Transformations, Natal, Brazil, Sept. 2006.

[6] K. Atasu, L. Pozzi, and P. Ienne, “Automatic
application-specific instruction-set extensions under
microarchitectural constraints,” in Proceedings of the 40th
Design Automation Conference, Anaheim, Calif., June 2003,
pp. 256–61.

[7] N. Clark, A. Hormati, S. Mahlke, and S. Yehia, “Scalable
subgraph mapping for acyclic computation accelerators,” in
Proceedings of the International Conference on Compilers,
Architectures, and Synthesis for Embedded Systems, Seoul,
South Korea, Oct. 2006, pp. 147–157.

[8] P. Y. Calland, A. Mignotte, O. Peyran, Y. Robert, and
F. Vivien, “Retiming DAG’s,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 17, no. 12, pp. 1319–25, Dec. 1998.

[9] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge,
and R. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the IEEE 4th
Annual Workshop on Workload Characterization, Dec. 2001,
pp. 3–14. [Online]. Available: http:
//www.eecs.umich.edu/mibench/Publications/MiBench.pdf

[10] M. Galanis, G. Theodoridis, S. Tragoudas, and C. Goutis, “A
high-performance data path for synthesizing DSP kernels,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 25, no. 6, pp. 1154–1162, June 2006.

[11] B. Mei, S. Vernalde, D. Verkest, H. De Man, and
R. Lauwereins, “DRESC: A retargetable compiler for
coarse-grained reconfigurable architectures,” in Proceedings of
the IEEE International Conference on Field-Programmable
Technology, Dec. 2002, pp. 166–173.

[12] M. Ahn, J. Yoon, Y. Paek, Y. Kim, M. Kiemb, and K. Choi,
“A spatial mapping algorithm for heterogeneous coarse-grained
reconfigurable architectures,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition.
European Design and Automation Association 3001 Leuven,
Belgium, Belgium, Mar. 2006, pp. 363–368.

[13] J. W. Yoon, A. Shrivastava, S. Park, M. Ahn, R. Jeyapaul, and
Y. Paek, “SPKM: A novel graph-drawing based algorithm for
application mapping onto coarse-grained reconfigurable
architectures,” in Proceedings of the Asia and South Pacific
Design Automation Conference, Seoul, Korea, Jan. 2008.

[14] Y. Guo, G. J. Smit, H. Broersma, and P. M. Heysters, “A
graph covering algorithm for a coarse-grain reconfigurable
system,” in Proceedings of the 2003 ACM Conference on
Languages, Compilers, and Tools for Embedded Systems.
New York, NY, USA: ACM, July 2003, pp. 199–208.

[15] H. Singh, L. Ming-Hau, L. Guangming, F. J. Kurdahi,
N. Bagherzadeh, and E. M. Chaves Filho, “Morphosys: An
integrated reconfigurable system for data-parallel
computation-intensive applications,” IEEE Transactions on
Computers, vol. 49, no. 5, pp. 465–481, May 2000.

[16] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev,
“Architectural exploration of the ADRES coarse-grained
reconfigurable array,” in Reconfigurable Computing:
Architectures, Tools and Applications, ser. Lecture Notes in
Computer Science. Berlin: Springer, June 2007, vol. 4419, pp.
1–13.

[17] M.-H. Lee, H. Singh, G. Lu, N. Bagherzadeh, F. J. Kurdahi,
E. M. C. Filho, and V. C. Alves, “Design and implementation
of the MorphoSys reconfigurable computing processor,”
Journal of VLSI Signal Processing Systems, vol. 24, no. 2–3,
pp. 147–164, Mar. 2000.

[18] PACT XPP Technologies, Inc., “XPP-III processor overview,”
2006. [Online]. Available: http://www.pactxpp.com/main/
download/XPP-III overview WP.pdf

59

