
Optimus: Efficient Realization of Streaming Applications
on FPGAs

Amir Hor m at i, Manjunat h Kudlur,
Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan - Ann Arbor, MI

{hormati, kvman, mahlke}@umich.edu

David Bacon, Rodric Rabbah
IBM T.J. Watson Research Center

Hawthorne, NY
{bacon, rabbah}@us.ibm.com

ABSTRACT
In this paper, we introduce Optimus: an optimizing synthesis com-
piler for streaming applications. Optimus compiles programs writ-
ten in a high level streaming language to either software or hard-
ware implementations. The compiler uses a hierarchical compila-
tion strategy that separates concerns between macro- and micro-
functional requirements. Macro-functional concerns address how
components (modules) are assembled to implement larger more
complex applications. Micro-functional issues deal with synthesis
issues of the module internals. Optimus thus allows software de-
velopers who lack deep hardware design expertise to transparently
leverage the advantages of hardware customization without cross-
ing the semantic gap between high level languages and hardware
description languages. Optimus generates streaming hardware that
achieves on average 40x speedup over our baseline embedded pro-
cessor for a fraction of the energy. Additionally, our results show
that streaming-specific optimizations can further improve perfor-
mance by 255% and reduce the area requirements by 16% in av-
erage. These designs are competitive with Handel-C implementa-
tions for some of the same benchmarks.

Categories and Subject Descriptors
B.5.1 [Register-transfer-level Implementation]: Design—Data
Path Design; B.5.2 [Register-transfer-level Implementation]: De-
sign Aids—Automatic synthesis

General Terms
Design, Performance

Keywords
Streaming, Compiler, FPGA, Optimization, Heterogeneous, Em-
bedded System

1. INTRODUCTION
In the world of embedded systems, there are many devices that

offer increasingly powerful computing capabilities. It is predicted

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

that mobile computing devices with embedded processors will ulti-
mately change the industry much as laptops supplanted desktops as
the primary commodity processing platform. However, the power
and frequency concerns that plague the microprocessor industry ef-
fectively mean architects have to find new ways to provide increas-
ing performance since conventional frequency scaling methodolo-
gies no longer apply. As a result, there is a significant opportunity
to explore alternate architectures that can enable the next evolution-
ary step in computing.

One significantly promising approach is to provide automatic
customization of hardware according to the applications they run.
An application-customized architecture can offer extremely high
performance with very low power compared to a more general-
purpose design. Furthermore, the increasing availability of recon-
figurable field-programmable gate arrays (FPGAs) as co-processors
and processing ingredients in heterogeneous systems-on-a-chip [1,
2] means emerging architectures can offer enormous flexibility and
adaptability in the face of rapidly changing software standards and
customer needs.

This paper describes a methodology and a set of complemen-
tary optimizations to efficiently realize stream graphs directly in
hardware. Our ultimate goal is to automatically refine a high level
stream program into either software or hardware. In the case of the
former, a program can run on a conventional processor or a multi-
core architecture. In the case of the latter, the application is realized
as an efficient customized circuit design mapped onto FPGAs.

The emphasis on stream programs is self-evident as recent years
have witnessed the proliferation of embedded streaming applica-
tions in many areas including digital signal processing, graphics,
multimedia, network processing, and encryption. There are several
new streaming languages and the area currently commands con-
siderable attention from academia and industry. The stream pro-
gramming paradigm offers a promising approach for programming
multicore architectures. Examples of relatively new streaming lan-
guages include StreamIt [24], Brook [4], CUDA [20], SPUR [27],
Cg [16], Baker [6], and Spidle [7].

We adopt a stream programming model where applications can
be naturally described as dataflow graphs where nodes embody
computation and edges imply communication. Such a streaming
model is attractive from a multicore perspective because it makes
the abundant parallelism inherent to streaming applications quite
explicit. As a result, compilers can more readily derive concur-
rent implementations from high level applications, with relatively
less effort compared to automatic parallelization starting from im-
perative sequential languages such as C [23, 9, 14]. In the same
way, mapping a high-level stream program to hardware (e.g., FP-
GAs) becomes more practical and productive—compared to using
a hardware description language such as Verilog or VHDL, or HDL

41

derivatives of C such as SystemC or Handel-C—if a compiler can
readily generate efficient hardware implementations from the pro-
grams described in a streaming language.

The idea of mapping high level programs directly into hardware
is not a new one. Indeed, there is a lot of work on automatic synthe-
sis of hardware starting from C and its many HDL-oriented deriva-
tives. This work differs from most existing work on the topic of
high level synthesis (Section 2) by shifting the focus from micro-
functional details to macro-functional ones. Specifically, our work
does not focus so much on how individual modules are synthesized
(i.e., micro-functional), but rather on how modules are composed
to assemble an overall design (i.e., macro-functional). As a result,
we can synthesize entire applications into a hardware substrate, and
not just individual loops and kernels as is the case with a lot of ex-
isting work. Thus, our work is complementary to existing work on
high level synthesis while offering new opportunities for efficient
assembly of streaming applications in hardware.

This paper describes Optimus, our optimizing synthesis frame-
work for streaming applications. Optimus uses a canonical inter-
mediate representation to describe streaming programs. A program
is comprised of interconnected filters, derived from the dataflow
graph representation of the program. Each filter is comprised of
blocks that contain statements. The blocks are themselves inter-
connected based on control and dataflow dependences. Our set
of optimizations that deal with inter-filter details address macro-
functional concerns. Similarly, our micro-functional optimizations
address synthesis issues that arise from dataflow dependences be-
tween blocks. The Optimus model allows us to leverage decades of
classic compiler research studied by others in their work to generate
high-quality circuits, while also offering the ability to apply macro-
functional optimizations that are specifically targeted for streaming
applications. Macro-functional optimizations, which address how
filters (modules) are assembled to implement an application tend to
be tedious and time-consuming to perform manually, and require
expertise in hardware design. An important example of a macro-
functional optimization is deciding on how much buffering to allow
between a pair of communicating modules: if too little buffering is
provided, then throughput decreases as modules stall to send or
receive data; whereas too much buffering incurs substantial space
overheads. Macro-functional optimizations require careful consid-
eration of area and performance tradeoffs to judiciously maximize
application throughput at the lowest costs.

Our results (Section 5) using eight streaming benchmarks, in-
cluding FFT, DCT, DES, sorting, and matrix multiplication, show
that we can achieve significant performance advantages compared
to an embedded processor for a fraction of the energy. It is not
surprising that a custom hardware design is better than a general-
purpose processor. We also found that Optimus-generated designs
are performance-competitive and incur small area overhead in com-
parison to some of the benchmarks that we also implemented in
Handel-C.

The primary emphasis of this paper is on the salient macro- and
micro-functional optimizations for streaming programs. We use
the StreamIt programming language as our input language although
other languages that embody the same streaming model are equally
applicable. Optimus compiles StreamIt programs to Verilog. We
then use standard synthesis tools to generate FPGA designs. Opti-
mus uses its own hardware models to characterize space-time trade-
offs, and performs many optimizations including critical path bal-
ancing and memory allocation. It is built on top of the Trimaran
compiler [25], and hence it inherits a rich suite of ILP optimiza-
tions (for micro-functional efficiency). The compiler also admits
profile-guided optimizations to simplify circuit models for stream-

ing applications. Profiling data provides a cheap and practical alter-
native to otherwise difficult and intractable optimization problems.
The core optimizations are described in Section 4, and Section 3 de-
scribes our overall stream-oriented synthesis framework with both
macro- and micro-functional emphasis.

2. RELATED WORK
C is closely linked to the Von Neumann processor model, in

which variables correspond to memory locations and function invo-
cations reside on stacks. C lets users manipulate pointers to mem-
ory and to functions, which does not make sense in an FPGA circuit
model. Thus, any attempt to compile C to FPGA configurations
would encounter problems that derive purely from the C language,
not from the the application itself. Several projects have tried to
address the inadequacies of C with different techniques.

As a result of an extensive amount of research in the area of
high-level synthesis, researchers have introduced several compiler
systems and abstraction languages [13, 18, 21, 17, 12, 8, 3, 11,
10] each of which has some unique capabilities. ROCCC [10] is
a C to hardware compilation project whose objective is the FPGA-
based acceleration of frequently executed loop nests. This compiler
performs extensive compile-time transformations to maximize var-
ious forms of parallelism and minimize the number of off-FPGA
memory accesses. Circuits generated by ROCCC can be used by
Optimus as IP blocks to accelerate the execution of loop nests. An-
other C to hardware compiler is SPARK [11], which takes a subset
of C as input and outputs synthesizable VHDL. Its optimizations
include code motion, variable renaming, FSM state minimization,
etc. Streams-C [8] relies on a CSP model for communication be-
tween processes and can meet relatively high-density control re-
quirements. Researchers in academia and industry have also de-
signed various high-level abstraction languages such as SA-C [19],
Handel-C [5], SystemC [22], etc., to make designing hardware sys-
tems easier for average software developers. SA-C helps compilers
exploit data reuse because of its special constructs (e.g., windows)
and it functional nature. Handel-C is a low level hardware/software
construction language with C syntax that supports behavioral de-
scriptions and uses a CSP-style communication model.

Although all these systems and abstraction languages have proved
useful in various domains, they have different shortcomings. GARP,
Streams-C, and SPARK do not support accesses to two-dimensional
arrays, so image processing applications must be mapped manu-
ally. ROCCC accepts only perfectly nested and constant bound
loops operating on arrays with affine index expressions. Moreover,
all arrays are assumed to be located in the memory and no local
data is allowed. The previous systems and languages do not sup-
port the stream-oriented optimizations that we discuss in this paper.
They also do not provide some of the constructs that are essential
for stream programming such as peeking.

3. FROM STREAMIT TO HARDWARE
Optimus is a compiler and synthesizer that takes as input a stream-

ing application and generates an efficient FPGA (hardware) im-
plementation. We designed a hardware template capable of rep-
resenting fairly optimized circuits for streaming applications. The
template captures the salient properties of streaming codes, and is
malleable enough that it can be used in many different circuit de-
signs we generate. This section details our approach using a simple
example illustrated in Figure 1.

3.1 Input Language
We use the StreamIt language as the input language to the com-

42

Source

Adder 1 Adder 4

Round-Robin Splitter(8,8,8,8)

Adder 3Adder 2

Round-Robin Joiner(1,1,1,1)

Printer

B DC

F

E

A

J

IHG

Source

Adder 1 Adder 4

Round-Robin Splitter(8,8,8,8)

Adder 3Adder 2

Round-Robin Joiner(1,1,1,1)

Printer

B DC

F

E

A

J

IHG

void->void pipeline Minimal {
add Source();
add AddSplitter(8, 4);
add Printer();

}

void->int filter Source() {
int i;
int a[16] = {0, 1, …, 16};
init { i = 0; }
work push 1 {

push(a[i]);
i = (i == 15) ? 0 : (i + 1);

}
}

int->int splitjoin AddSplitter(int addSize, int pFactor) {
split roundrobin(pFactor);
for (int i = 0; i < pFactor; i++)
add AdderFilter(addSize);

join roundrobin(1);
}

int->int filter Adder(int addSize) {
work pop addSize push 1 {

int sum = 0;
for (int i = 0; i < addSize; i++)

sum+ = pop();

push(sum);
}

}

int->void filter Printer() {
work pop 1 { println(pop()); }

}

Figure 1: A sample StreamIt program is shown on the left. The corresponding stream graph with all the filters instantiated is shown
on the right.

piler. StreamIt is an architecture-independent programming lan-
guage for high-performance streaming applications [24]. Programs
in StreamIt are represented as graphs where nodes, called filters en-
capsulate computation, and edges represent FIFO communication.
StreamIt is based on the synchronous dataflow (SDF) [15] model of
computation. Each filter consists of a work function that repeatedly
executes when sufficient data is available on its input FIFO (queue).
The work function reads data from its input queue using pop oper-
ations, and writes data to its output queue using push operations.
The work function can also inspect input without removing them
from the FIFO using a peek operation. Peek operations are crit-
ical for exposing data parallelism in sliding-window filters (e.g.,
FIR filters), as they elide the need for internal filter state. StreamIt
provides three hierarchical stream primitives for composing filters
into larger stream graphs: pipeline, splitjoin, and feedback loop. A
pipeline connects streams sequentially. A splitjoin specifies task
or data parallel streams that diverge from a common splitter and
merge into a common joiner. A feedback loop creates a cycle in the
dataflow graph.

A simple StreamIt program and its corresponding stream graph
are illustrated in Figure 1. This example consists of five streams:
Minimal, Source, AddSplitter, Adder, and Printer.
Minimal is a top level pipeline with three-stages. The middle
stage, AddSplitter, consists of a splitter, 4 parallel Adder fil-
ters, and a joiner. The splitter distributes data to each of its con-
nected filters in a roundrobin fashion. Each Adder receives eight
data elements at a time. StreamIt allows stream graphs to be de-
scribed programmatically, and affords the compiler the ability to
fully elaborate the graph at compile time by instantiating and con-
necting instances of the filters.

Filters in StreamIt are self-contained, and can only access their
locally declared variables and fields. Hence, data exchange be-
tween filters is accomplished using explicit transfers across inter-
filter FIFOs (queues) using the push and pop operations. StreamIt
filters may be either stateful or stateless. In Figure 1, the Source
filter is stateful; all the other filters are stateless. Source is stateful
because the i field carries a dependence from one execution of the
work function to the next. In addition to the work function, filters
may also define an init function to initialize local fields.

The structured nature of StreamIt programs make them a good

match for realizing streaming code in hardware. We leverage many
of the language features during compilation for FPGAs.

3.2 Synthesizing a Stream Graph
Optimus uses a specialized filter template to synthesize the fil-

ters that appear in the input stream graph. The template is shown
in Figure 2(a). The template consists of five main components:
input queues, output queues, memories, the filter itself, and the
controller. Input and output queues are used to send and receive
data. The template supports an arbitrary number of input and out-
put queues to implement splitters and joiners. Memory modules
are used to store the state for stateful filters. Each filter can be
connected to several memory components. All the memory mod-
ules are local to each filter. For each memory module, there are
dedicated read and write buses between the module and the corre-
sponding filter. The buses are shared between the accessors of the
memory in the filter. The hardware block implementing the filter
consists of the work module and an optional init module. Both init
and work modules will be connected to a memory module in case
that module needs initialization. The controller makes sure that the
init function gets executed only once before the first invocation of
the work function. Depending on the way that the circuit is sched-
uled, the controller may have other responsibilities to orchestrate
the execution.

After instantiating the template for all filters in a stream graph,
the next step is to connect them. This step is straightforward based
on the stream graph and the way data flows through the graph.
Whenever Optimus connects the template for two filters together,
it merges their input and output queues together. In other words,
those two filters will share one FIFO queue for transferring data
between them. Figure 2(b) shows the top-level hardware for the
stream graph in Figure 1. As it is illustrated, the only stateful filter
with memory components is the Source filter. The Source filter
also is the only filter with an init component.

3.3 Synthesizing Filters
Each filter is organized as a control flow graph (CFG) with an

overlayed data flow graph (DFG). Basic blocks (BBs) of instruc-
tions are used as the core building units for each filter. The tem-
plate for the BBs is shown in Figure 3(a). Each BB module has
four sets of input/output signals. The first set includes the control

43

Filter

C
ontroller

M0

Init

M1

…

. . .

i0 i1 ix

OmO0O0

…

Mn

W ork

(a) Specialized filter template

Source

Adder 1 Adder 4

Round -Robin Splitter(8,8,8,8)

Adder 3Adder 2

Round -Robin Joiner(1,1,1,1)

Printer

a[]

i

Init

C
ontroller

C
ontroller

C
ontroller

C
ontroller

C
ontroller

C
ontroller

C
ontroller

C
ontroller

A

B EC

HGF I

J

D

W ork

W ork

W orkW orkW ork

W ork

W ork

W ork

(b) Hardware structure for the example in Figure 1

Figure 2: (a) The specialized template used for synthesizing filters. (b) The complete hardware for the stream graph shown in
Figure 1.

signals. All BBs have one control input signal and one or more
control output signals. A control input signal will activate a BB
as long as the signal is active. A control output signal will be con-
nected to the inputs of the other BBs in order to activate them in the
right order. Connecting these control signals is done based on the
edges in the corresponding CFG. The second set of input/outputs
consist of data signals which carry operand values. Optimus uses
a DFG for connecting these signals. The third set of input/output
signals help each module to communicate with external resources
such as queues, memories, and other types of IP (intellectual prop-
erty) cores. These signals provide a unified interface in which any
IP core can be connected to the hardware. The last set of signals,
marked as Ack in Figure 3(a), is meant for flow control. The Ack
signals are useful when a BB cannot perform its operations in the
associated clock cycle and needs to wait one or more cycles. This
mainly happens when a BB accesses an external resource (e.g.,
memory) and the resource is not ready to respond within the same
cycle.

Generally, each BB ends with one or more registers to store live-
out data and control signals. In the baseline design, it is assumed
that all the live-out values are registered to control the wire latency
in the final design. Since all the live values are latched at the basic
block outputs, one clock cycle is needed to transfer data from one
BB to its successors. In other words, the execution of each BB
takes at least one cycle.

After the hardware module for each BB is generated, Optimus
will connect the modules based on the CFG and DFG for each work
or init function. Connecting the control signals is based on the
CFG. The control outputs of all BBs are connected to the control
inputs of the immediate successor BBs. In case a BB has more than
one control input signal, MUXes are used to select the right control
input signal. The DFG is used for connecting the data signals, such
that the live-out signals of each BB are connected to the live-ins of
the immediate successor. MUXes are again used in case a value
can reach a BB from two different paths.

We will use the Adder filter as an example to clarify the main
points. Figure 3(b) shows the CFG and DFG for Adder. The solid
lines show the control flow and the dashed lines show the data flow
for sum. This graph has four BBs and there is a backedge from BB 3

to BB 2. Based on the DFG, a data signal is needed for transferring
the value for the variable sum from BB 1 to BB 3 through BB 2.
All the control flow signals in the figure are connected based on the
CFG for the Adder filter. Since BB 2 is the target of two branches
(the fall through from BB 1 and the loop target from BB 3), a MUX
is added to its inputs for selecting the appropriate control signal.
The execution of the Adder filter will take 18 cycles (2 cycles for
each of the 8 iterations, and 2 cycles for the rest of BBs).

The only remaining task is to generate hardware to fill each BB
module based on the operations of that BB. Optimus generates a
function unit (FU), similar to Figure 4(a), for each operation. Each
FU can have multiple inputs and outputs and one predicate input.
If a BB has a conditional branch operation, Optimus will gener-
ate a comparator FU to compute the control output signals. The
data flow graph in each BB determines how the FUs should be con-
nected to each other. At the end of each BB, its control input signal
is used to enable the register module. Figure 4(b) illustrates the FU
and the necessary connectivities for BB 3 of the Adder filter. This
figure does not show all the details of computing control signals
and setting the Ack signal.

3.4 Hardware Orchestration
The final issue is the orchestration of execution for the entire

streaming circuit. We focus on two ways of scheduling the filter
executions: Static and Greedy. In a static schedule, the compiler
dictates the number of executions of each filter, such that it con-
sumes all of its input data and produces sufficient data for its con-
sumers. In this model, the compiler guarantees that a filter will have
a sufficient number of input data available. Hence the execution of
the filter work function will not block on reads (i.e., pops). Sim-
ilarly, the compiler also asserts that the output queue from a filter
is sufficiently empty so that all the writes (i.e., pushes) also suc-
ceed without blocking the filter. In this type of scheduling, double
buffering is used between pairs of filters to provide communication-
computation concurrency. This allows the producer and consumer
to run independent of each other. The size of each individual queue
is typically set to the least common multiple of the pop rate and
push rate of the consumer and procedure filters. We refer to this
form of scheduling and FIFO sizing as “rate-matched”.

44

Basic Block

Register

Control in

Control outs

M
em

ory/Q
ueue ports

Ack

Live data outs
Live data ins

(a) Specialized BB template

sum = 0
i = 0

temp = pop()

sum = sum + temp
i = i + 1
Branch bb2 if i < 8

push(sum)

BB 1

BB 2

BB 3

BB 4

(b) Control and (partial) data flow
graphs for the Adder filter

bb1

bb2

bb3

bb4

Live out D
ata

Live out D
ata

Register

mux mux

Register

Register

Register

FIFO Read

FIFO W rite

C
ontrol T

oken

Control Token

Control Token

A
ck

A
ck

A
ck

(c) Hardware structure for the
Adder filter

Figure 3: (a) The template used for synthesizing basic blocks. (b) Control flow graph and partial data flow graph for the Adder
filter. (c) The complete hardware generated for the Adder filter.

A greedy schedule takes a different approach and does not try
to statically rate-match filters. In this approach, filters execute ea-
gerly, and block when they attempt to read from an empty queue,
or write to a full queue. Since all queue accesses are blocking in
this approach, the size of the queue throttles the execution of the
stream graph. This allows for a tradeoff between the size of the
queue and the overall circuit throughput. Smaller queues take up
less area, but may not be optimal. In our benchmarks, we observed
that it is common that a queue size of one element is sufficient for
correct execution that is also as efficient as a rate-matched static
scheduled. The queue sizing is further discussed in the following
section.

Optimus is capable of generating the necessary hardware for
both schedulers. This choice has implications on the rest of the cir-
cuit in terms of queue sizes, power consumption, execution time,
and allowed hardware sharing. In this paper, the greedy scheduler
is used for all designs. The comparison between the two schedulers
is left for future work.

4. STREAM OPTIMIZATIONS
Streaming languages allow programmers to focus on designing

their applications. Specifically, programmers describe their com-
putation programmatically and algorithmically, and do not need
to commit to specific implementation details related to scheduling,
buffering, synchronization, or the underlying data transport mech-
anisms in their target platforms. This programming practice leads
to code that is easy to maintain and port, but places a burden on the
compiler to derive high-performing implementations.

Optimus applies many of the classical optimizations used in pre-
vious works, and introduces a set of new macro-functional opti-
mizations that specifically target streaming programs. Our com-
piler focus is on improving communication latency and reducing
memory storage requirements (i.e., area). Communication latency
can be optimized by sending larger chunks of data between filters.
Storage can be optimized by intelligently sizing queues between
filters, and allocating output registers to increase spatial reuse. It is
not uncommon in today’s synthesis frameworks to apply many of
these optimizations manually, either directly in the source code or
after the circuit is generated. This process can be time-consuming,
error-prone, and complex for large benchmarks. It also defeats the
purpose of using elegant and practical streaming languages that are

attractive because they promote productive and portable program-
ming.

4.1 Queue Allocation
The queues that connect hardware filters are implemented using

the SRAM structures on the FPGA. FPGAs have limited SRAM
capacity, ranging from 4 KB on the low-end FPGAs to 128 KB on
the high-end ones. The SRAM is also used to implement the lo-
cal arrays and other data structures used by the filters. Thus, for
large stream graphs, the SRAM quickly becomes the bottleneck
resource. The scheduling strategy used to orchestrate the execu-
tion of the filters can significantly impact the storage requirements.
Optimus judiciously calculates the size of each queue to allocate
between filters in order to better utilize the SRAM and maintain
the high throughput achieved by a rate-matched static schedule.

The idea behind our approach is to recognize that a slot in the
queue may be reused if the value that previously occupied the slot
is already consumed. Thus, we can reduce the total storage require-
ment for the inter-filter FIFOs if we can determine the maximum
number of overlapping lifetimes for the values exchanged between
filters.

Figure 5 shows the cycle-by-cycle schedule of a pair of commu-
nicating filters. Only the push and pop operations are shown. The
schedule shows all the cycles in the steady state executions of the
producer-consumer pair. Suppose the producer pushed N items per
execution of its work function, and the consumer popped M items
from the queue every time its work function executes. For the fil-
ters to be rate-matched, the producer must run its work function
LCM(M,N)

M
times, and the consumer LCM(M,N)

N
times. We deter-

mine the maximum number of overlapping lifetimes by simulating
the rate-matched schedule. We use double-buffering during sim-
ulation to provide communication-computation concurrency. The
simulation needs to only cover one steady-state execution of the
filters. In the case a filter peeks at more data than it pops, an initial-
ization schedule is run to prime all the FIFOs.

A causally correct schedule is obtained by shifting the producer
schedule to occur at time 0, and shifting the consumer schedule
down such that all pops appear at least one cycle after their cor-
responding pushes. Figure 5 shows an example schedule. Such a
schedule reveals the lifetime of every entry in the queue between
the producer and the consumer. The lifetime extends from the cy-
cle at which an entry is pushed and the cycle at which the entry is

45

FU

…

…

i0 im

o0 on

predicate

(a)

ADDADD

CMP

Register

i 1 tem p sum

8

Control out 3

11

1

tem p

Control out 4

Control in

…

(b)

Figure 4: (a) Template for synthesizing operations. (b) Simpli-
fied hardware structure for BB 3 in Figure 3(b).

popped. The maximum number of queue entries whose lifetimes
overlap can be easily calculated from the schedule. In Figure 5, the
maximum number of overlapping lifetimes is 3. Setting the queue
size to a value less than this maximum will stall the filters because
one of the pushes at the producer cannot succeed as it would ap-
pear before the pop of the previous queue entry. Conversely, setting
the queue size to a value more than this maximum would not im-
prove the schedule. Thus, the minimum queue size for a producer-
consumer pair that retains the throughput of the static schedule is
obtained by calculating the maximum number of overlapping life-
times of a rate-matched schedule.

4.2 Queue Access Fusion
A critical factor in streaming applications is sustained through-

put. One of the key issues that can have negative effect on the
throughput of a streaming circuit is communication latency be-
tween different filters. This issue arises from the fact that each
queue or memory access, regardless of data width, takes at least
one cycle. The one cycle access time would have a direct affect
on the latency of the longest path in filters. It can also limit the
filter-level parallelism in splitters and joiners. To overcome these
bottlenecks, we consider bundling similar queue accesses together
to create a single wide access using queue access fusion. This is
conceptually similar to creating SIMD loads and stores. Of course,
to support fused queue accesses, the basic queue structure requires
modifications.

Code motion and loop unrolling are applied to find opportuni-
ties for fusing queue accesses and shortening the longest paths in
a filter. Automatic SIMDization techniques use a similar approach
with one difference: the vector length is known a priori, whereas

push

push

push

push

push

push

push

push

push

push

push

push

pop

pop

pop

pop

pop

pop

pop

pop

pop

pop

pop

pop

M ax overlap = 3

Producer Consum er

Figure 5: Overlapped producer-consumer schedules showing
maximum number of overlapping lifetimes.

we can realize variable vector lengths between producer-consumer
filter pairs. Loop unrolling is applied to loops with queue or mem-
ory operations to expose the operations to the code motion phase.
Optimus needs to consider area constraints while it is performing
the unrolling because unrolling may result in area expansion and
cause the design to overflow the target FPGA. The next step, is to
cluster memory and queue operations via aggressive code motion.
The end result is a several clusters of memory and queue operations
with no other intervening operations. Each cluster of operations is
assigned a vector length according to the number of operations in
the cluster. Subsequently, the compiler determines a single vector
length for the filter by calculating the greatest common divisor of
each cluster’s vector length. For example, if the vector lengths of
the clusters are 8, 12, and 16, then the filter’s vector length is 4.

Figure 6 shows this optimization applied to a filter and a split-
ter from Figure 1. For the Adder filter in Figure 6(a), the loop
is unrolled 4 times and a vector length of 4 is chosen for fusion.
The loop is not fully unrolled because of area constraints. The un-
optimized Adder filter will take 18 cycles to finish (assuming the
value of AddSize is 8), but the optimized one will take only 6
cycles. Figure 6(b) illustrates the effectiveness of the fusion op-
timization for the splitter filter. The unoptimized splitter needs 9
cycles to read 8 data values from its input queue and push them to
the input queue of Adder1. During these 9 cycles, the next filter
in the splitjoin (Adder2) would be idle while it awaits its input
data to arrive. In this case, the access fusion optimization will re-
duce the filter’s idle time to 2 cycles. The optimization in general
reduces the critical path of computation and can reduce execution
time. If the optimization is successful in finding large clusters of
accesses and fusing them, it will also significantly reduce the total
area of the design. If the optimization is not successful, the loop
unrolling would result in area expansion. However, an intelligent
compiler would reverse the unrolling when it is not profitable.

One of the restrictions imposed by the our generated hardware
is that the vector length for all accesses from a filter to a specific
queue has to be the same, although vector lengths to the same FIFO
from different filters may differ. This is realized by incrementing
and decrementing read and write pointers using different constant
offsets. For example, if the read vector length is 1 and the write
vector length is 8, the queue can be viewed as an 8x8 matrix with
the write pointer pointing to the rows and the read pointer point-
ing to individual elements of the matrix. Figure 7 illustrates the
possible configurations.

4.3 Flip-flop Elimination
As it was discussed in Section 3, all live-out data signals, includ-

46

int->int filter Adder(int addSize) {
work pop addSize push 1 {

int sum = 0;
for (int i = 0; i < addSize; i++)

sum+ = pop();

push(sum);
}

}

int->int filter Adder(int addSize) {
work pop addSize push 1 {

int sum = 0;
int t1, t2, t3, t4;
for (int i = 0; i < addSize/4; i++)
{

(t1, t2, t3, t4) = pop4();
sum+ = t1 + t2 + t3 + t4;

}

push(sum);
}

}

(a) Adder

t1 = pop(A)

t2 = pop(A)
push(t1, B)

t1 = pop(A)
push(t2, B)

t2 = pop(A)
push(t1, B)

t1 = pop(A)
push(t2, B)

t2 = pop(A)
push(t1, B)

t1 = pop(A)
push(t2, B)

t2 = pop(A)
push(t1, B)

push(t2, B)

t1 = pop(A)

t8 = pop(A)

t2 = pop(A)

push(t2, B)

push(t1, B)

push(t8, B)

…
…

(t1, …, t8) = pop8(A)

push8(t1, …, t8, B)

…

…

…

(b) Splitter

Figure 6: An example of access fusion using the stream pro-
gram in Figure 1.

ing pass-through live signals, are registered at the end of each basic
block to bound wire delays. The output of memory and queue oper-
ations cannot be registered in the block that issues those operations
because memory (and queues) needs one cycle to respond. There-
fore, the results of those operations are registered in the immediate
successors of the issuing basic block, as well as along all blocks
that transmit the values along to their destinations. The CFG in
Figure 8(a) illustrates the registers added for various operands as
rounded-edge rectangles attached to the basic blocks. Note that
live operands are saved at the end of each basic block regardless of
whether they are passing through or generated in that block. This
register assignment ensures that the critical path in a CFG is not
greater than the maximum of delays through the basic blocks.

Many of these flip-flops are unnecessary and can be removed
without affecting the clock speed. In order to keep the circuit func-
tional, a subset of registers must be maintained. There are two main
situations where flip-flops cannot be removed. First, if an operand
is both live-in and live-out along a backedge, it has to be registered
before or after the backedge to prevent formation of a combina-
tional loop. The second case is more complex. If an operand is the
result of a queue or memory read, it does not have to be registered
because the hardware for the queue and memory hold its output as
long as no other operation has changed its read status. For a read
operation from a queue, a status change occurs when another pop is
issued. In a memory structure, status changes when a store writes
to the same address as a read. When the compiler can determine
that no intervening pops or read/write conflicts occurs, then it can
elide the corresponding registers.

Figure 8 shows a sample CFG and all the data registers before
and after the flip-flop optimization. Based on the rules for flip-flop
elimination and ignoring clock cycle constraints, all the registers
can be removed except X-register in BB 2 and the T-register in
BB 5. The X-Register cannot be removed because there is an inter-

leaving pop operation in BB 2 that can change the status of the input
queue. Note that if the control flows to the right instead of left after
BB 1, then no register is needed because there are no pop operation
along that path. The register for T also cannot be removed because
T is both live-in and live-out along the backedge going from BB 5
to itself.

An issue with flip-flop elimination is the possibility of increas-
ing the critical path length. In general, Optimus tries to balance the
length of the combinational paths by splitting the large basic blocks
and adding registers to the end of each BB. Optimus has an inter-
nal model of the target FPGAs to assess the latency of different
combinational operations. If removing any of the registers in the
flip-flop elimination optimization lengthens the critical path, then
that register is left in place.

5. EXPERIMENTS
We compiled and simulated various applications from different

domains. Our target platform is a Xilinx Virtex-4 (XC4VLX200)
FPGA [26]. ISE Foundation was used for synthesizing the HDL
generated by Optimus. Xilinx Xpower is used to measure the en-
ergy and power consumption of our circuits. For comparison, we
used a 300 mW 300 MHZ embedded PowerPC 405 processor. We
compare our FPGA results to the benchmarks compiled and ex-
ecuted on the PowerPC. We use the StreamIt compiler, and the
same StreamIt source code for the benchmarks, to generate bina-
ries that run on the PowerPC processor. Our benchmarks are FFT
(fast Fourier transform), parallel adder (the example shown in the
paper), bubble sort and merge sort, integer inverse DCT (discrete
cosine transform), DES (data encryption standard), matrix multiply
and its blocked variant. In the case of DES, we used a reference C
implementation of the benchmark instead of the StreamIt version
for the PowerPC measurements. This is because DES performs a
lot of bit-level operations, and tuned implementation can cleverly
carry out the operations in parallel using word-wide masks. In the
case of the FPGA, we compile the StreamIt version of DES down
to HDL.

Performance and Energy Consumption: Figure 9(a) shows
the performance of streaming hardware compared with PowerPC
for various benchmarks. In this experiment, none of the streaming-
specific optimizations are used. Speedup varies from 1.1x to 58x
for different benchmarks. Bubble sort achieves the highest speedup
because it heavily exploits pipeline-level and instruction-level par-
allelism. Parallel adder has the lowest speedup over the baseline
because the communication to computation ratio is high in this
benchmark. Figure 9(b) illustrates the energy consumption of the
circuits generated by Optimus as a fraction of the PowerPC energy
usage. On average, these benchmarks consume 0.7x of the Pow-
erPC energy. The only benchmarks which use more energy on the
FPGA are parallel adder and DES. This again happens due to large
communication to computation ratio in case of the parallel adder.
In DES, the higher energy consumption is due to the inability of
Optimus to efficiently take advantage of the bit-level parallelism in
the stream graph. Considering the fact that the baseline processor
is a 300mW core, these results show that the hardware generated by
the Optimus system is suitable for low-power embedded systems in
terms of both performance and energy consumption.

Queue Allocation: In the designs generated by Optimus, one of
the main components that uses the on-chip memory is the queue
structure. The queue allocation optimization tries to efficiently re-
duce the sizes of the queues without affecting the performance. The
StreamIt compiler generally uses rate matching between the filters
to calculate queue sizes. We used the rate matched queue sizes as
the baseline and show the savings due to the queue allocation al-

47

rrrrrrrr

w

w

w

ww

r

Write Mult. = 1

Read Mult. = 8

Write Mult. = 1

Read Mult. = 1

Write Mult. = 8

Read Mult. = 1

w

r

…

Figure 7: Various configuration of queues used by queue access fusion optimization.

X = pop()

Y = pop() A = load(mem , 0)

T = 0

T = Y + T

Y = Y + 1
X = X + A

1

2 3

4

5

6

X X

X Y T A

X Y T A

(a) Sample control flow graph before
flip-flop elimination

X = pop()

Y = pop() A = load(mem , 0)

T = 0

T = Y + T

Y = Y + 1
X = X + A

1

2 3

4

5

6

X

T

(b) After flip-flop elimination

Figure 8: An example of flip-flop elimination.

gorithm in Figure 10(a). As shown in the figure, this optimization
reduces the queue sizes by an average of nearly 50%. Addition-
ally, after reducing the queue sizes to the new values, no perfor-
mance loss was observed in any of these benchmarks. These re-
sults demonstrate that the queue allocation optimization used by
Optimus is quiet effective in saving the on-chip memory resources.

Queue Access Fusion: As discussed in Section 4.2, the goal
of queue access fusion is to increase the throughput of streaming
circuits by fusing multiple queue operations into a single (wider)
operation. Figure 10(b) illustrates the effect of this optimization on
various benchmarks in terms of performance. We limit the max-
imum vector length to 8. This means that the maximum speedup
achievable is 8x. As shown in the figure, the average speedup is
3.2x, and 7.2x in the best case. In some benchmarks, no speedup
is achieved because there was not any opportunity to fuse accesses
in the slowest filters. The slowdowns are typically due to the fact
that the wider queues are marginally slower than normal queues.
In order to understand the area and performance tradeoff between
different queue configurations, we synthesized three queues with
the same size but different read/write widths. As the results in Ta-
ble 1 show, the wider queues are slightly larger than their narrower
counterparts.

Flip-flop Elimination: The goal of this optimization is to iden-
tify and eliminate redundant registers such that the circuit still func-
tions properly and the critical path length does not change. The
results of this optimization are shown in Figure 10(c). Flip-flop
elimination reduces flip-flop utilization by 30% and slice utiliza-
tion by 16%. As shown in the figure, the improvement in flip-flop
use is always greater than slice utilization. This means that there
are many slices used only for latching purposes and not for logic
computation. The area savings due to this optimization vary based

on the number of pops and loads and their arrangement in each
benchmark.

Comparison to Handel-C: We compared our generated circuits
to those generated using Handel-C and its compilation toolchain.
Handel-C is a variant of the C programming language. It is aimed
toward synthesizing hardware from C code. We implemented DES
and DCT in Handel-C and generated their hardware designs. The
Handel-C implementations preserved the overall streaming struc-
ture of the benchmarks. Our area and performance comparisons
show that the Optimus-generated circuits are an average of 5%
faster and 66% larger. Using our stream-specific optimization, we
can further improve the performance of the Optimus-generated cir-
cuits so that they are 12x faster, although the designs are also 90%
larger than the Handel-C designs.

There are several important factors that make the Handel-C de-
signs inefficient in terms of performance. First, Handel-C is not
able to automatically perform the same kind of macro-level opti-
mizations that Optimus carries out. Second, Handel-C does not
try to balance the critical paths between flip-flops to achieve higher
frequency designs. The lack of these optimizations and transforma-
tions is the main reason the Handel-C designs lag in performance
compared to the Optimus-generated ones. The optimizations can be
done manually in the Handel-C code, but that requires more work
for the programmer, and it would obfuscate the streaming nature of
the code.

In terms of area comparisons, the designs in Handel-C are more
area-efficient for two main reasons. First, Handel-C tries to utilize
resources (IPs) that are unique to various families of FPGAs. De-
signs generated in this way are usually more area-efficient. Second,
Handel-C performs some low-level netlist optimizations that im-
prove the area by a large factor. We believe netlist-level optimiza-

48

0

5

10

15

20

25

30

FF
T

Pa
ra

lle
l A

dd
er

Bu
bb

le
 S

or
t

M
er

ge
 S

or
t

D
is

cr
et

e
C

os
in

e
Tr

an
sf

ro
m D

ES

M
at

rix
 M

ul
tip

ly

M
at

rix
 B

lo
ck

M
ul

tip
ly

Sp
ee

du
p

 (x
10

0%
)

~ 58x

(a) Performance Comparison

0

0.2

0 .4

0 .6

0 .8

FF
T

Pa
ra

lle
l A

dd
er

Bu
bb

le
 S

or
t

M
er

ge
 S

or
t

D
is

cr
et

e
C

os
in

e
Tr

an
sf

ro
m D

ES

M
at

rix
 M

ul
tip

ly

M
at

rix
 B

lo
ck

M
ul

tip
ly

Fr
ac

tio
n

of
 P

ow
er

PC
 E

ne
rg

y

~3~1 .4

(b) Energy Consumption Comparison

Figure 9: Figure 9(a) illustrates the speedup comparison between the hardware designs and a 300 mW PowerPC 405 running at
300 MHZ. Figure 9(b) shows the energy consumption of the FPGA as a fraction of PowerPC energy use for various benchmarks.

Queue Configuration Total number of bits Number of Slices Clock (MHZ)
(read width = 128, write width = 16) 4096 70 >300
(read width = 16, write width = 16) 4096 56 >300

(read width = 16, write width = 128) 4096 95 >300

Table 1: Area and delay for different queue configurations

tions should be implemented in the low-level hardware synthesis
tool and not in a high-level compiler. Therefore, Optimus does not
implement any of the low-level optimizations that Handel-C per-
forms to improve the area efficiency.

6. CONCLUSION
Streaming applications are important to embedded systems de-

velopers. Improving the performance of these applications in an
embedded setting is typically accomplished via special purpose
processors and ASICs that are inflexible and invariably expensive
to design. An alternate approach is to use configurable hardware
fabrics such as FPGAs that provide a performance- and power-
competitive platform for their cost. In addition, FPGAs are increas-
ing available as components in heterogeneous systems, and their
versatility makes them attractive platforms in a domain where soft-
ware and consumer requirements change rapidly. Unfortunately,
the complexity of programming FPGAs has limited their benefits
as only system engineers with hardware design expertise are able
to effectively map software down to hardware circuits.

The goal of our work is enable the efficient realization of stream-
ing programs directly in hardware, when appropriate. Our Optimus
compilation methodology allows for streaming programs expressed
in a high-level streaming language such as StreamIt to be auto-
matically refined to hardware and realized as circuits in FPGAs.
The Optimus compiler uses a hierarchical compilation strategy that
separates concerns between macro- and micro-functional require-
ments. Macro-functional optimization are geared to efficiently as-
sembly filter module into larger applications. These optimizations
affect space (area) and time (throughput) characteristics of the ap-
plication circuits. Our goal in this regard is to provide the highest
performance for the lowest area cost. Comparing our generated
designs to an industry-strength compiler shows that we are per-
formance and area competitive although we believe there is much
more to be gained in our framework. Our results are largely en-
abled by stream-specific considerations and optimizations. Micro-
functional optimizations are designed to improve the efficiency of

the filter modules themselves. Our stream-aware optimization im-
prove performance an average of 255% and reduce the area require-
ments by 16% compared to our baseline results.

7. ACKNOWLEDGMENTS
We thank Andrei Hagiescu for providing us with the Handel-

C implementations of DES and DCT. Stephen Neuendorffer from
Xilinx also helped us in using and understanding the Xilinx Syn-
thesis tools. We also extend our thanks to the anonymous reviewers
who provided excellent comments.

8. REFERENCES
[1] AMD torrenza architecture, 2008.

http://enterprise.amd.com/us-en/AMD-
Business/Technology-Home/Torrenza.aspx.

[2] Intel quickassist technology, 2008.
http://www.intel.com/technology/platforms
/quickassist/index.htm.

[3] K. Bondalapati et al. DEFACTO: A design environment for
adaptive computing technology. In Proc. RAW, pages
570–578, Apr. 1999.

[4] I. Buck et al. Brook for GPUs: Stream computing on
graphics hardware. ACM Trans. Gr., 23(3):777–786, Aug.
2004.

[5] Celoxica. Handel-C language overview, 1996.
http://www.celoxica.com.

[6] M. Chen, X. Li, R. Lian, J. Lin, L. Liu, T. Liu, and R. Ju.
Shangri-la: Achieving high performance from compiled
network applications while enabling ease of programming.
In Proc. ’05 PLDI, pages 224–236, June 2005.

[7] C. Consel et al. Spidle: A DSL approach to specifying
streaming applications. In Proc. 2nd GPCE, pages 1–17,
2003.

[8] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski.

49

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F
F

T

P
ar

al
le

l A
d

d
er

B
u

b
b

le
 S

o
rt

M
er

g
e

S
o

rt

D
is

cr
et

e
C

o
si

n
e

T
ra

n
sf

ro
m D
E

S

M
at

ri
x

M
u

lt
ip

ly

M
at

ri
x

B
lo

ck
M

u
lt

ip
ly

A
ve

ra
g

e

R
el

at
iv

e
Q

u
eu

e
S

iz
e

A
ft

er
 O

p
ti

m
iz

at
io

n

(a) Queue Allocation Optimization

0

1

2

3

4

5

6

7

8

F
F

T

P
ar

al
le

l A
d

d
er

B
u

b
b

le
 S

o
rt

M
er

g
e

S
o

rt

D
is

cr
et

e
C

o
si

n
e

T
ra

n
sf

ro
m D
E

S

M
at

ri
x

M
u

lt
ip

ly

M
at

ri
x

B
lo

ck
M

u
lt

ip
ly

A
ve

ra
g

e

S
p

ee
d

u
p

 (
x1

00
%

)

(b) Queue Access Fusion Optimization

0

10

20

30

40

50

60

F
F

T

P
ar

al
le

l A
d

d
er

B
u

b
b

le
 S

o
rt

M
er

g
e

S
o

rt

D
is

cr
et

e
C

o
si

n
e

T
ra

n
sf

ro
m D
E

S

M
at

ri
x

M
u

lt
ip

ly

M
at

ri
x

B
lo

ck
M

u
lt

ip
ly

A
ve

ra
g

e

P
er

ce
n

t
Im

p
ro

vm
en

t

Im provem ent in Slice Usage

Im provem ent in Flip-flop Usage

(c) Flip-flop Elimination

Figure 10: Performance improvements and area savings due to different optimizations performed by Optimus.

Stream-oriented FPGA computing in the Streams-C high
level language. In Proc. 8th FCCM, pages 49–56, Apr. 2000.

[9] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting
coarse-grained task, data, and pipeline parallelism in stream
programs. In 12th ASPLOS, pages 151–162, 2006.

[10] Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers. Optimized
generation of data-path from c codes for fpgas. In Proc. 2005
DATE, pages 112–117, Washington, DC, USA, 2005. IEEE
Computer Society.

[11] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: A
high-level synthesis framework for applying parallelizing
compiler transformations. In Proc. 16th Intl. Conf. on VLSI
Design, pages 461–466, Jan. 2003.

[12] J. R. Hauser and J. Wawrzynek. GARP: A MIPS processor
with a reconfigurable coprocessor. In Proc. 5th FCCM, pages
12–21, Apr. 1997.

[13] Impulse-CoDeveloper. http://www.impulsec.com/.
[14] M. Kudlur and S. Mahlke. Orchestrating the execution of

stream programs on multicore platforms. In Proc. ’08 PLDI,
pages 114–124, June 2008.

[15] E. Lee and D. Messerschmitt. Synchronous data flow. Proc.
IEEE, 75(9):1235–1245, 1987.

[16] W. Mark, R. Glanville, K. Akeley, and J. Kilgard. Cg: A
system for programming graphics hardware in a C-like
language. In Proc. 30th SIGGRAPH, pages 893–907, July
2003.

[17] O. Mencer, H. Hubert, M. Morf, and M. J. Flynn. Stream:
Object-oriented programming of stream architectures using
pam-blox. In Proc. 10th FPL, pages 595–604, London, UK,
2000. Springer-Verlag.

[18] Mentor. Catapult C. http://www.mentor.com/products/esl/
high_level_synthesis/catapult_synthesis/.

[19] W. A. Najjar, W. Bohm, B. A. Draper, J. Hammes, R. Rinker,
J. R. Beveridge, M. Chawathe, and C. Ross. High-level
language abstraction for reconfigurable computing. IEEE
Computer, 36(8):63–69, 2003.

[20] J. Nickolls and I. Buck. NVIDIA CUDA software and GPU
parallel computing architecture. May 2007.

[21] S. Sirowy, G. Stitt, and F. Vahid. C is for circuits: capturing
fpga circuits as sequential code for portability. In Proc. 16th
FPGA, pages 117–126, New York, NY, USA, 2008. ACM.

[22] SystemC-Consortuim. SystemC language overview, 2000.
http://www.systemc.org.

[23] M. Taylor et al. Evaluation of the Raw microprocessor: An
exposed-wire-delay architecture for ILP and streams. In
Proc. 31st ISCA, pages 2–13, June 2004.

[24] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt:
A language for streaming applications. In Proc. 02 CC,
pages 179–196, 2002.

[25] Trimaran. An infrastructure for research in ILP, 2000.
http://www.trimaran.org/.

[26] Xilinx. Virtex-4 data sheets, 2004.
http://www.xilinx.com/support/documentation/virtex-4.htm.

[27] D. Zhang, Z. Li, H. Song, and L. Liu. A programming model
for an embedded media processing architecture. volume
3553 of Lecture Notes in Computer Science, pages 251–261,
July 2005.

50

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

