
Execution Context Optimization for Disk Energy

Jerry Hom
jhom@cs.rutgers.edu

Ulrich Kremer
uli@cs.rutgers.edu

Department of Computer Science
Rutgers University

Piscataway, NJ 08854

ABSTRACT
Power, energy, and thermal concerns have constrained em-
bedded systems designs. Computing capability and storage
density have increased dramatically, enabling the emergence
of handheld devices from special to general purpose com-
puting. In many mobile systems, the disk is among the top
energy consumers. Many previous optimizations for disk
energy have assumed uniprogramming environments. How-
ever, many optimizations degrade in multiprogramming be-
cause programs are unaware of other programs (execution
context). We introduce a framework to make programs
aware of and adapt to their runtime execution context.

We evaluated real workloads by collecting user activity
traces and characterizing the execution contexts. The study
confirms that many users run a limited number of programs
concurrently. We applied execution context optimizations to
eight programs and tested ten combinations. The programs
ran concurrently while the disk’s power was measured. Our
measurement infrastructure allows interactive sessions to be
scripted, recorded, and replayed to compare the optimiza-
tions’ effects against the baseline. Our experiments covered
two write cache policies. For write-through, energy savings
was in the range 3–63% with an average of 21%. For write-
back, energy savings was in the range -33–61% with an aver-
age of 8%. In all cases, our optimizations incurred less than
1% performance penalty.

Categories and Subject Descriptors
D.3.3 [Language Constructs and Features]: Frameworks

General Terms
Languages, Experimentation, Measurement

Keywords
Multiprogramming, synchronization, runtime adaptation, user
study

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

1. INTRODUCTION
Processing speed has maintained a growing trend at an

exponential pace. A complementary trend is the shrinking
physical size of transistors. These trends allow for expanding
the functionality of dedicated systems, consolidating func-
tionality, or fitting off the shelf general purpose parts into
embedded systems. Previously dedicated systems, such as
mobile phones, personal digital assistants (PDA), and per-
sonal entertainment devices have gained significant comput-
ing capacity to run a variety of general purpose applications.
For example, the Openmoko, iPhone, and Android projects
[22, 4, 21] have made great strides toward a general purpose
computing platform on mobile phones.

Energy, power, and thermal density are increasingly im-
portant design constraints. A system’s display, processor,
and disk are generally recognized as the top power and en-
ergy consumers. Flash memory is a popular storage choice
for mobile devices mainly for energy considerations. Yet the
choice between flash memory or magnetic disk reduces to a
product design tradeoff for performance, energy, and cost.
For example, the iPod [5], which functions mainly as a me-
dia player, opts for disk storage up to 160 GB. Mobile phone
platforms could feasibly use disk instead of flash storage,
combining general purpose computing with large capacity
storage. Although this research focuses on disk, the energy
optimizations and analysis may be applied to other resources
which support multiple low power operational modes for en-
ergy conservation.

Previous research for disk energy management have gen-
erally focused on uniprogramming models of execution. Yet
most general purpose systems actually use multiprogram-
ming to run multiple programs concurrently. Operating
systems use short time slices to give the illusion of simul-
taneous execution. The OS mediates among programs when
they access various resources, such as the memory and net-
work, giving the illusion of a virtual computing system. The
computing paradigm allows a programmer to develop a pro-
gram without worrying about interference from other pro-
grams. In turn, compilers apply optimizations on a program
without worrying about how they affect other programs.

An energy-aware compiler can reshape a program to en-
able and exploit idle periods. Disk requests should be clus-
tered to maximize idle time and provide opportunities for
hibernating the disk. The strategy works well in unipro-
gramming [10, 16] but may lead to poor overall results in
multiprogramming. A physical resource can hibernate only
when there are no queued requests for a sufficient amount of
idle time. Suppose two programs are accessing a resource.

255

FW

29

1

FO

F

FWO

6

2 165

3

4

29742

Figure 1: Sample user session trace. Bold numbers
indicate order of transitions. Italic numbers indicate
the time in seconds spent in that state. Note that
F is the start (42) and end (297) state.

In the worst case, their accesses alternate such that the re-
source repeatedly wakes up and hibernates. They would do
better by adapting the hibernation policy threshold [12] or
coordinating their accesses. A limited notion of optimiz-
ing programs together [18] was introduced to cluster disk
requests.

This paper explores the opportunities for disk energy op-
timizations in execution contexts. We define an execution
context as a set of running programs. If people mostly use a
single program at a time, then the uniprogramming model
suffices. If people regularly use ten programs at a time, then
maybe systems are pushed to the limits and offer no oppor-
tunity at all. We conducted a user study to gain insight
into actual program usage profiles and serve as a guideline
for optimization. The usage profiles are modeled as a finite
state machine where a state represents an execution context.
A transition between states means a program was started or
exited. The opportunity for saving disk energy is closely
associated with a particular execution context and the in-
teraction between programs. Figure 1 illustrates a sample
session from our user study traces. Bold numbers indicate
order of transitions, while italic numbers indicate the time
spent in that state. The user started by launching Sftp (F),
Firefox (W), and OpenOffice (O) in that order. After nearly
three minutes in the execution context FWO, the user exited
W and O in quick succession but remained in F for another
five minutes before exiting. The popular states, FWO and
F, dominate the overall active time and represent the op-
portunity.

Having opportunity is not enough. Realizing the benefits
of execution context optimization depends on people’s ac-
tual activity. If a user is idle in any execution context, then
maximum energy is saved without anything special. Hence,
programs within an execution context may have large op-
portunities, but the benefits vary according to user activity.
We evaluate the benefits by examining a variety of common
applications and their interactions within a diverse set of
execution contexts.

Our framework for execution context optimizations com-
bines compiler and runtime elements. We recognize that
some techniques could be implemented within the OS. In-
deed, the runtime elements would likely be more efficient as
OS services rather than user-space mechanisms. Investigat-
ing OS approaches combined with our compiler techniques
is beyond the scope of this work but certainly an avenue for
future work. The contributions of this paper are:

• A user study to identify program usage patterns, quan-
tify the available opportunity for optimization, and
provide evidence in support of execution context opti-
mization.

• Language extensions {STREAMED, BUFFERED, SYNC_RECV,
SYNC_SEND} to categorize program disk request inter-
actions.

• A measurement and evaluation infrastructure using a
compiler and runtime system approach to implement
execution context optimizations. The infrastructure
allows for repeatable, interactive experiments.

• Physical measurements and evaluation of eight pro-
grams in ten execution contexts. Measured results
from a Hitachi disk showed a range from -33% to 63%
energy savings. An energy model estimates disk en-
ergy savings based on disk access patterns.

2. RELATED WORK
Heath et al. showed that streaming applications can uti-

lize large disk buffers to save energy [16]. The disk buffers
are allocated per program. Prefetching data into the buffer
clusters many disk requests. Hence, physical disk access is
transformed to a bursty pattern while increasing the idle pe-
riod between bursts. This optimization works well in unipro-
gramming environments. However in multiprogramming en-
vironments, even just two programs can negate the benefits
if their bursty access patterns are unaligned [18]. The inter-
fering disk accesses resembles the original problem of unclus-
tered disk requests in uniprogramming. A new scheduling
technique, inverse barrier, was introduced to cluster disk
accesses across applications [17]. The technique is a vari-
ation on barrier scheduling for parallel processing [23] and
combines ideas from implicit co-scheduling for distributed
systems [6] with the slotted ALOHA protocol [2, 25].

We performed a user study which was similar in scope to
Roselli et al.’s efforts to characterize file system workloads
[26]. They instrumented the kernel to capture file system
events and collected months worth of activity traces from
multiple user groups representing different workload pat-
terns. They gained several insights to describe different file
system workloads. We also share the same goal with Gu-
run and Krintz’s work to evaluate energy saving techniques
on real world workloads [15]. They instrumented the Linux
kernel to capture and replay fine-grain event traces while
investigating real-time and interactive applications. They
then evaluated their dynamic voltage scaling technique on
the traces.

Considerable research has been applied to hinting mech-
anisms which involve the OS and compiler. For example,
hints may help ascertain the CPU demand in order to adjust
voltage and frequency levels [1]. Hints have also been use-
ful to aggressively prefetch and cache data from disk while
comparing different cache policies [24, 29]. Another strategy,
called Coop-I/O [28], classifies disk operations as deferrable
or abortable. By deferring operations, the OS may batch
schedule them at a later time when necessary. However, ap-
plications must be manually updated for each I/O function
call. Our technique also involves programmer effort to use
the new keywords, but source code modifications are minor
and limited to tagging file descriptors once when they are
declared rather than modifying every I/O function call.

256

Figure 2: Cumulative user activity by hour.

3. OPPORTUNITY
Execution context optimization is a promising new re-

search area, and the opportunities for saving disk energy
were unknown. Our conjecture is that people tend to use
a small number of programs concurrently for a given task.
Most people do not keep large numbers of programs running
due to resource constraints of the system such as memory.
The opportunities for execution context optimizations are
inherent in the particular combination of programs. For ex-
ample, applications which access the disk sparingly, such as a
calculator, will have little opportunity. Conversely, stream-
ing applications are characterized by periodic disk accesses
and receive the greatest benefits from these optimizations.
We want to investigate how often these opportunities occur.

With the help of department system administrators, 40
machines were instrumented in a style similar to Roselli
et al.’s setup to trace file systems [26]. The systems are
connected to the Computer Science graduate student net-
work; hence, the users are graduate students. The systems
are Pentium 4 class machines running between 2.8–3.4 GHz
with 512–1024 MB main memory and a standard installa-
tion of Fedora Core 3 Linux. The Linux Trace Toolkit next
generation (LTTng) [11] was used for tracing. LTTng is a
kernel module which monitors events (e.g., file system read
and write, signals, process fork and exit). Overall system
performance impact is less than 2%. Monitoring the pro-
cess events exec and exit was sufficient because they mark
when a program starts and exits, effectively describing pro-
gram lifetimes. Screensaver activity indicates user idleness,
and its aggregate time is separated from actual activity time.

We first examined one week’s worth of user login sessions
to determine when peak activity occurs. Figure 2 shows the
cumulative user activity sessions over one week, divided into
one hour blocks. We then decided to use a ten hour period
(10:00–20:00) on a daily basis for the actual tracing facility.
The ten hours capture, on average, 73% of a day’s activity.
We then traced for four weeks across all machines. The total
traced user time was over 860 hours, 12% of which was idle
time, leaving over 760 hours of active time by 73 unique
users. There were over 60 different programs observed.

From the process events, we identified execution contexts
and reconstructed a state graph of program usage. It turns
out that indeed, many people run a small number of pro-
grams at a time. The contexts with 1–3 programs accounted
for 85% of all active time as shown in Figure 3. We observed
a general pattern that programs were used as necessary. For

Figure 3: Percentage of time spent in states accord-
ing to number of concurrent programs.

T 4%Z 4%E 4%

FM 4% WC 3% WE 5% WZ WP6% 4%

WEC 3% WPZ 3%WEZ 3%

WF M 15%2%8%

Figure 4: Most popular execution contexts by per-
centage (at least 2%) of total active time. Edges
between nodes indicate a program was started or
exited.

example, a group of programs would be launched in suc-
cession. The user remains in this execution context until a
task is done. Then the programs are exited in succession.
Another common pattern is having one or two programs
running throughout, such as a web browser or email client.

Table 1 lists the most popular programs by percentage of
total active time. The symbols are a shorthand to represent
an application in an execution context as shown in the figure
below. A handful of applications dominated the usage time.
Figure 4 illustrates the most popular execution contexts as a
lattice. The contexts shown represent 70% of all active time.
Each context is labeled with the percentage of time spent in
that state. The states shown are those with at least 2%
active time. Lowering the threshold to 1% would cover 80%
of all active time and reveal nine more contexts. The rows of
the lattice partition the execution contexts into those which
contain the same number of concurrent programs. Contexts
containing Z represent a program not listed in Table 1. Some
programs and execution contexts are clearly more popular
than others and should be candidates for optimization.

4. COMPILER / RUNTIME FRAMEWORK
The compiler aspect of our framework consists of new key-

words in the form of file descriptor attributes. The attributes
categorize a program’s disk requests, and the interaction of
these requests across programs can be used to synchronize
disk accesses. The runtime component includes a synchro-
nization mechanism as well as a file level buffer. The buffer

257

Table 1: Most popular applications by percentage of
total active time. All others individually were less
than 4% but combined were 31%.

Application % Symbol
web browser 62 W

email 34 E
PDF viewer 23 P
text editor 15 T
file transfer 14 F
internet chat 13 C

matlab 7 M
DVI viewer 5 D
openoffice 5 O

other 31 Z

enables clustering of disk requests within a program while
synchronization clusters disk requests across programs.

4.1 File Descriptor Attributes
ANSI C specifies two file type abstractions: streams for

buffered I/O (FILE *) and direct I/O (int). We propose
new keywords to be optionally used before either type. A
file descriptor may be tagged with one of four attributes:
SYNC_SEND, SYNC_RECV, BUFFERED, and STREAMED. The or-
dering has a hierarchical meaning — each attribute carries
all the semantics of the previous attribute. The keywords
inform the compiler as to how the program intends to access
the file and the level of interaction with other programs.

The SYNC_SEND attribute may be used by practically all
programs which have any amount of disk activity. Partici-
pation in the synchronization protocol is optional but help-
ful to other applications. For example, a web browser can
notify other programs about disk activity by sending a mes-
sage after it has read from or written to its disk cache. The
SYNC_RECV attribute is special among the keywords because
it needs extra code by the programmer to take full advan-
tage. This attribute means a program can take useful action
when receiving a synchronization message. For example, a
text editor with auto-save may decide to save early, in com-
bination with another program’s disk access, when receiving
a message. The programmer is tasked with adding a handler
routine, similar to a signal handler, which reacts to receiv-
ing a message. The handler routine is program specific since
only the programmer knows an appropriate action to take.
The BUFFERED attribute is useful for programs which access
large data files sequentially but not periodically in time. For
example, a postscript document can be reasonably large, and
a user may read through the document page by page. As an
interactive application, the amount of time before accessing
the next page is entirely up to the user. When the buffer’s
data is consumed, the buffer prefetches data to refill itself.
Disk accesses are effectively clustered at buffer refill points.
The STREAMED attribute is useful for programs which also
access large data files sequentially and do so periodically.
Some streaming applications, such as audio and video, are
also referred to as real-time, meaning that they try to meet
minimum performance goals by skipping ahead if computa-
tion lags too much. Buffering helps ensure data is ready for
computation, but each time the buffer refills itself, there is a
significant delay waiting for the disk to wakeup on demand
before fetching new data. The delay may be avoided by
knowing the program’s data consumption rate and activat-

Table 2: Test programs studied.
Program Category Description Symbol
mpg123 STREAMED MPEG audio A

mpeg play STREAMED MPEG video V
sftp STREAMED secure FTP F
gv BUFFERED PS viewer G

emacs SYNC_RECV text editor T
ooffice SYNC_SEND spreadsheet O
firefox SYNC_SEND web browser W
xpdf SYNC_SEND PDF viewer P

ing the disk early such that prefetching occurs just-in-time.
Disk accesses are still clustered and application performance
is preserved.

The studied test programs are categorized by keyword and
listed in Table 2. The PDF viewer cannot take advantage of
BUFFERED because the portable document format [3] spec-
ifies an indexed, pointer-based data layout. The data for
a PDF document is stored non-sequentially in the file. All
test programs are written in C and C++. OpenOffice and
Firefox also have extra modules written in Java, but they
were disabled.

4.2 Runtime
Each keyword corresponds to distinct mechanisms for im-

plementing pieces of the runtime framework. The keywords
provide a way for programmers to add cooperation between
programs with minimal effort. One common aspect is a syn-
chronization policy. The synchronization point should occur
after a program has accessed the disk. A group of accesses
may correspond to a single program event such as saving
a file or advancing to the next page of a document. The
compiler must determine where a program’s logical I/O op-
eration ends, but finding the end of a logical operation via
static analysis is an undecidable problem.

A first attempt would look at the Definition-Use chain
of I/O calls and mark a synchronization point after each
call. However, a logical I/O operation often encompasses
several physical accesses in a loop pattern. A second at-
tempt might add the synchronization function outside the
loop, but the first loop block may be enclosed within an-
other loop. Searching through higher nesting levels eventu-
ally leads back to the top-level main function and no closer
to finding the logical end point. However, there are two
problematic cases to consider as illustrated in Figure 5. The
pseudo-code is representative of the programming structure
for logical I/O operations. They generally conform to a loop
pattern and continue until a delimiter has been reached.
If a loop iteration takes longer than the disk’s hibernation
threshold, then Case 1 is appropriate. If a loop iteration
takes shorter, then a second attempt would look at the loop
surrounding the I/O calls and then decide Case 2 would be
better. Yet Case 2 misses the perspective that the loop may
be enclosed within another loop. Searching through higher
nesting levels eventually leads back to the top-level main
function and no closer to finding the logical end point. A
heuristic must be used, and Section 5.3 describes one.

If a file descriptor is tagged with SYNC_SEND, code for send-
ing synchronization messages is inserted at the end of logical
I/O operations. The message is understood by other pro-
grams that the disk has just been accessed. If a file descrip-

258

while (NOT FINISHED) { //

read (file, buffer, n); //

SYNCHRONIZE (); // CASE 1

process (buffer); //

} //

while (NOT FINISHED) { //

read (file, buffer, n); //

process (buffer); // CASE 2

} //

SYNCHRONIZE (); //

Figure 5: Synchronization points should be placed
at the end of a logical I/O operation. Finding such
points is an undecidable problem.

tor is tagged with SYNC_RECV, the compiler gives the same
treatment as with SYNC_SEND and also inserts code to receive
messages. The code will dispatch to a handler function (pro-
vided by the programmer). If a file descriptor is tagged with
BUFFERED, the analysis for finding synchronization points is
changed slightly. The buffer implementation is provided as
a library and mediates between the program and disk for
data requests. The I/O calls using the file descriptor are
trapped and redirected to the buffer. Physical disk access
are transformed to now occur when refilling the buffer. The
buffer has clustered the logical I/O operations. In this case,
the synchronization point is well known. Lastly, if a file de-
scriptor is tagged with STREAMED, the compiler supplies the
enhanced buffer implementation with the added feature of
determining the disk’s bandwidth and the program’s data
consumption rate.

If there are n available programs, there are (2n − 1) pos-
sible execution contexts. Our user study has shown that
optimizing a small subset of these contexts can sufficiently
cover the most popular contexts. Transitions between con-
texts must also be handled by the runtime component so
programs may adapt to their context. For example, in a
context with three programs using BUFFERED, each program
should cooperatively share the available memory, perhaps
by grabbing only a one-third portion. However, in a context
where only one program uses BUFFERED while two programs
use SYNC_SEND, the BUFFERED program may use all available
memory.

The execution contexts can be encoded in each program
as a state diagram. A transition in states corresponds to
a program either starting or exiting. Thus, after a transi-
tion, the extant programs should identify the new state and
adapt to it. For instance, the programs may share a mem-
ory segment, much like a central whiteboard, to indicate the
current execution context. When a program starts or exits,
it reads the old state, computes and writes the new state,
and notifies other programs of the state change.

5. SETUP AND IMPLEMENTATION
The evaluation infrastructure consists of several hardware

and software pieces to automatically control the measure-
ment recording and experiment test sessions. The idea is
to run the baseline and optimized versions of the test pro-
grams while measuring the disk energy. The tests must be
repeatable to assure a fair comparison. However, testing

Table 3: Specifications, operation modes, and power
levels for two Hitachi Travelstar disks. The E7K60
was used in our experiments while the C4K60 is
listed for comparison. Sleep mode was not utilized
during testing. The times and power levels for tran-
sitioning between standby and idle modes are re-
ported as physically measured averages with stan-
dard deviations. Transition times can vary widely.
Specification sheet lists Standby→Idle time as 3.0
seconds (typical) and 9.5 seconds (maximum).

E7K60 C4K60
Form Factor 2.5” 1.8”

Capacity 40 GB 40 GB
Cache 8 MB 2 MB
Speed 7200 RPM 4200 RPM

Supply Voltage 5.0 V 5.0 V
Active 2.5 W 1.5 W
Idle 2.0 W 0.68 W

Standby 0.25 W 0.12 W
Sleep 0.10 W 0.11 W

Standby→Idle
1.6 s (0.4) —
3.1 W (1.0) —

Idle→Standby
0.6 s (0.2) —
2.9 W (2.0) —

Break-Even 3.5 s —

interactive applications is particularly challenging since in-
teractive implies human intervention. While a human could
follow a script of actions, the precision and timing would be
too poor to reliably repeat the tests. A robot who could
emulate a human would be more suitable. Indeed, I will de-
scribe such a robot which greatly improved the precision of
the experiments.

5.1 Hardware
The host computer has an AMD Athlon processor at 1.2

GHz with a default workstation installation of Red Hat 9
Linux. We installed a Hitachi Travelstar E7K60 as our tar-
get disk. The Travelstar product line is commonly referred
to as laptop class disks. They are designed for smaller form
factors and better energy efficiency than desktop class disks.
If we had tested on a desktop disk, energy savings from our
techniques would have been even greater. Although our user
study tracked program workloads on desktop machines, we
expect to see similar workloads on laptops and emerging gen-
eral purpose handheld systems. Disk hibernation strategies
calculate a hibernation or break-even threshold as a func-
tion of a disk’s physical characteristics. The E7K60, along
with the C4K60 for comparison, specifications are listed in
Table 3. The C4K60 model belongs to the 1.8” form fac-
tor family which are commonly found in iPods. We phys-
ically measured the transition times and power levels. A
Tektronix TDS3014 oscilloscope with a Hall effect current
probe is attached to the wire supplying current to the disk.
The host computer supplies power at a constant five volts;
therefore, measuring the supply current readily translates
into the disk’s power consumption. The TDS3014’s max-
imum sampling rate is 1.25 giga-samples per second, and
we chose a reporting resolution of 20 milliseconds. That is,
each data point represents an average of the past 20 mil-
liseconds. Most disks have an onboard cache for data with

259

a small portion reserved for control instructions. The data
portion is further divided between reads and writes, both
with their own policies. It turns out that the read cache has
negligible impact for the workloads in our experiments. Pro-
grams exhibiting spatial locality would have the most benefit
because read caches typically perform sequential prefetch-
ing, except when the working set sizes are greater than the
cache size, such as with multimedia files. Our optimiza-
tions add file level read buffers which are significantly larger
than the cache. The write cache has a choice of policies,
write-through or write-back, to affect data safety and per-
formance. The write-through policy uses synchronous writes
meaning that data is written to disk immediately and en-
sures safety at the cost of performance. The write-back pol-
icy uses asynchronous writes by buffering data and flushing
to disk only when necessary. Disk performance, response
time, and energy consumption is improved because of the
clustering effect. If working set sizes are greater than the
cache size, then the situation is similar to the read case.
The policy’s downside is the risk of losing data if the supply
power is cut before the cache flushes its buffer. User-level
write buffers could have been added as an extension of our
optimizations. Our synchronization optimization achieves
an effect similar to the write-back policy by clustering data
accesses, whether read or write, from multiple programs. We
tested our techniques under both write cache policies.

5.2 Software
The OS maintains a disk cache per open file via its vir-

tual file system buffer cache. However the default maximum
size at 128 KB is an order of magnitude smaller than the
disk’s onboard cache. For read performance, such a rela-
tively small cache has negligible impact in our experiments.
Any write cache policies will depend upon the file system
type. The default file system, Second Extended File System
[7], supports asynchronous and synchronous writes which are
analogous to the disk cache’s write-back and write-through
policies. Asynchronous writes improve performance and en-
ergy in the exact same style as the disk cache’s write-back
policy. In both read and write cases, any performance and
energy effects of the small file system cache are masked by
the larger disk cache. Thus, we set the file system to use
synchronous writes which matter only when testing with the
disk’s write-back cache policy.

Our software test suite includes interactive programs such
as a web browser. The key for such programs is user inter-
action such as clicking on a link or typing a web address.
Unfortunately, user interaction lends poorly toward repeata-
bility for experiment testing as noted by Crowley [9]. For-
tunately, the X Window System contains extensions, Record
and XTEST [30, 13], which provide hooks to record and re-
play all keyboard and mouse events. One implementation
to utilize the extensions is GNU Xnee. Xnee is dubbed“Not
an Event Emulator” because it records actual X11 protocol
events, such as keyboard and mouse, to a file which may be
used as a script for replay. The replayed events appear to
the X Server as though coming from the physical keyboard
and mouse. Xnee is described by its author as a robot and
suitable as a testing infrastructure [27].

Xnee records events with a time stamp precision of one
millisecond. As a robot, Xnee can be expected to consis-
tently replay events within a margin of ten milliseconds —
the default length for a process time slice. Such precision is

useful for timing sensitive programs, but two issues reduce
the usefulness, particularly for interactive programs. First,
programs which communicate over the network are subject
to latency which varies at any given moment. A repeated
experiment must allow for a range of latency delay between
program events. For example, typing a new website address
comprises several keyboard events, but keyboard events have
insignificant delays due to buffering. Higher-level program
events such as loading a web page require waiting several sec-
onds before the next program event. Second, CPU response
also has a variable delay due to background processes, over-
head, disk latency, and network packet traffic. Xnee does
have a synchronization feature, but this feature was not yet
robust enough to reliably repeat our experiments. We found
that allowing a margin of five seconds before the next sig-
nificant event covers most latency issues during replay. The
timings may be fine-tuned afterward to suit unusual laten-
cies. The coarse granularity also helps to distinguish be-
tween events when analyzing results.

We wrote a control program, running on the data acqui-
sition computer, to coordinate the oscilloscope and the ex-
periments running on the host computer. When the host
computer signals ready, the control program signals the os-
cilloscope to start recording, then runs Xnee with the next
session script. When the session script has finished, the host
computer signals the experiment has ended, and the control
program signals the oscilloscope to stop recording. The host
computer will then flush its disk, file, and memory caches
before signaling ready again.

5.3 Optimization Stages
We used the Low Level Virtual Machine (LLVM) com-

piler infrastructure [19] to implement code transformations
in various passes. Among its many features, LLVM ex-
tends gcc with a new intermediate representation, an anal-
ysis and optimization framework, and several back-ends in-
cluding portable C. Although LLVM robustly compiles many
source codes to binary form, LLVM did not completely han-
dle our eight test programs. Using LLVM exclusively would
have required adjustments to the various makefile scripts.
Since LLVM can emit C source code, we preferred to per-
form source to source code transformations, then compile
normally without changing the build system. However, this
approach also limits our implementation for inter-procedural
analysis. LLVM is designed to perform inter-procedural
analyses during the linking phase when all object code is
available for inspection. We opted to build Definition-Use
chains by hand and direct the compiler at those source files
containing the interesting points. The overall compilation
will be described in two stages as depicted in Figure 6.

For the SYNC_SEND or SYNC_RECV attributes, synchroniza-
tion points must be located. As discussed in Section 4.2,
finding such points is an undecidable problem via static anal-
ysis. Therefore, we developed a heuristic, similar to the work
in [15] for distinguishing interactive sessions, to identify log-
ical I/O operations. Our Stage 1 pass instruments the pro-
gram with profiling code to generate a runtime control flow
trace. The program runs a training phase with a training
set to induce logical I/O operations. In the trace, we group
consecutive disk accesses into the same logical I/O opera-
tion if the inter-arrival time between accesses is less than a
threshold. We used a threshold of ten seconds. The profiling
results identify the synchronization points which are fed to

260

gcc
make binary

LLVM

results
profile

gcc
make binary

profiled
source

LLVM

source +
file descriptor

attributes

EEL
runtime
library

optimized
source

Stage 1

Stage 2

Figure 6: Implementation steps of optimization
stages. Stage 1 is used only for SYNC_SEND and
SYNC_RECV attribute types. Stage 2 can accept re-
sults from Stage 1 to mark synchronization points.
Stage 2 then inserts code to implement program syn-
chronization, buffers, and disk profiling.

Stage 2. A program using BUFFERED or STREAMED will bypass
Stage 1 because the synchronization points are known.

Stage 2 contains three components which are implemented
as separate passes. Pass 1 uses the profiling results from
Stage 1 and inserts code for sending disk synchronizations.
We used the inverse barrier synchronization policy. Inverse
barrier notification was implemented with semaphores to
mimic multicast. A true multicast mechanism with message
queues would have been more elegant. For programs using
BUFFERED or STREAMED, Pass 2 is guided by the Definition-
Use chain to replace I/O calls with our library of I/O func-
tions. Our library implements the self-managed, user-level
buffer. The function signatures and interfaces are compat-
ible with ANSI C I/O functions and transparent to the
original program. Pass 2 also inserts the code for sending
notifications since the synchronization points are explicitly
marked in the buffer code. Programs using STREAMED will
also need to learn a disk’s bandwidth and data consumption
rate to enable just-in-time disk wakeup. Pass 3 inserts code
for that purpose. We developed a profiling mechanism to
sample the program’s actual execution and pass the results
to the buffer. The code inserted from all passes resulted in
less than 1% runtime performance delay. Any performance
overhead was due to processing synchronization messages.

One final mention goes to a non-optimizing pass we wrote.
The SYNC_RECV attribute implies that a program will sup-
ply a handler to respond when receiving a message. The
text editor, Emacs, is categorized under SYNC_RECV, and we
must therefore provide the handler. Our handler responds
by invoking the auto-save routine immediately. The default
criteria in emacs is to count 30 seconds of idleness or 300
keystrokes before auto-saving. Our aggressive auto-save ac-
tion is based on research which models user activity pat-
terns as self-similar or bursty. Several researchers have found
self-similar patterns in ethernet traffic, web traffic, and file
systems [20, 8, 14]. This pattern characterizes inter-arrival
times of user input as either very short or long. If the next
input is short, then immediate auto-save is negligible. If the
next input is long, then immediate auto-save allows maxi-
mum idle time for disk hibernation; otherwise auto-save will
occur at most 30 seconds from now and incur the energy
overhead of waking up and then hibernating the disk.

6. EXPERIMENTS
Our set of experiments investigate the energy and per-

formance impact of execution context optimizations on disk
accesses from concurrently running programs. The experi-
ments were devised by using Xnee to record a session and re-
play it repeatedly while measuring disk energy consumption.
The program binaries could be swapped between the base-
line and optimized versions. Thus the same session script
could be replayed with different program versions. The ses-
sions do not represent all possible real world user behaviors
but illustrate a range of common disk activity interactions
from a mix of popular programs.

We implemented the previously published buffering op-
timizations [16] for the baseline programs. Our optimized
programs are the result of applying all optimizations de-
scribed in Section 5.3. Previous results have shown that
buffer optimizations (with the uniprogramming model) in
multiprogramming environments do save energy vs. unop-
timized programs because unoptimized programs never hi-
bernate the disk. Hence, an optimization with at least one
profitable disk hibernation will save energy.

6.1 Results
From the eight programs under investigation, we formed

ten combinations to represent a diverse range of execution
contexts. From a disk energy standpoint, the contexts are
important in providing opportunities for savings. The ac-
tual program interactions according to the keyword opti-
mizations employed are the direct factors towards realizing
energy savings. The ten execution contexts are labelled in
Figure 7 using compositions of the program symbols listed in
Table 2. Each recorded session was replayed while the disk
energy was measured on the oscilloscope. Figure 7 shows the
results of our experiments when using the write-through and
write-back cache policy. The results in either policy compare
the total energy consumption for each session in two pairs.
The first pair includes the start-up phase while the second
pair contains only the steady state phase. Each pair rep-
resents the baseline vs. optimized version. The results are
averaged over nine runs.

We first emphasize that the possible disk energy savings
depends highly upon the actual activity workload. These
ten experiments are synthetic traces to illustrate disk activ-
ity interactions between programs. Our user study does not
delve deeply enough to characterize user activity and formu-
late representative traces. A more detailed user study is a
monumental task left for future work. The experiments show
that with mostly interactive programs such as WP, the op-
portunity for energy savings is small. Conversely, streaming
programs such as AF offer plenty of opportunity for savings.
Some contexts have moderate opportunity for savings, such
as AWT, though the actual activity did not demonstrate all
of the potential savings. We avoided biasing the choice of
experiments towards those contexts offering the largest po-
tentials. Using the write-through policy, the average savings
was 21% with a range of 3% to 63%. Using the write-back
policy, the average savings was 8% with a range of -33% to
61%.

With the write-back policy, there were three sessions in
which our techniques performed poorly. Of the three, two
had small negative effects while one was greatly affected by
consuming 33% more energy. Those three sessions all in-
volved small writes. There were three other sessions with

261

Figure 7: Experiment results when using write-through or write-back cache policies. An execution context
represents the set of active programs. Each experiment group compares between the Uniprogramming and
Multiprogramming versions. The steady state (SS) results trim away start-up transition phases.

small writes, but the results showed little or no appreciable
energy savings. Of the remaining four sessions, the results
are similar to the write-through policy. The negative results
under the write-back policy are due to the write semantics
our techniques employ. Synchronizing disk accesses across
programs enforces a synchronous write operation whereas
the write cache allows for asynchronous operation. How-
ever, if working set sizes were larger than the write cache,
then the write cache would have behaved as in a synchronous
manner. In addition, our techniques could be extended to
add a file level write buffer which may be more efficient than
the disk’s write cache. The flexibility of these options can be
extended further by potentially adjusting the disk’s memory
allocation between read and write caches. That is, depend-
ing on workload and execution context optimizations, the
disk’s cache may allocate more toward the read cache in-
stead of the traditional 50%.

Secondly, these optimizations performed well overall in
reducing disk energy consumption yet with negligible per-
formance costs. The most harmful cases occur when extra
disk accesses are triggered via prefetch and the data is not
used, when the disk is repeatedly accessed at short inter-
vals, or when small writes trigger early accesses. The last
case is harmful only when using a write-back policy. An
adversary could perform such activity, but our user study
indicates that this is not typical behavior. User activity
does follow a Pareto or bursty distribution. In all experi-
ment runs, the overhead of synchronization communication
between programs delayed total session execution times by
no more than 1%. For real-time programs with buffering,
just-in-time wakeup is necessary to maintain performance
and the quality of result; previous uniprogramming opti-
mizations are insufficient. Overall, these optimizations are
beneficial for saving disk energy with insignificant perfor-
mance penalty.

6.2 Energy Model
Our optimizations save disk energy via two forms of clus-

tered disk accesses. User level file buffers cluster accesses
from each program while synchronization clusters accesses
across multiple programs. Both forms appear identical to
the physical disk and are modeled as operational power
modes over time. Figure 8 illustrates the disk activity of
a typical access. Intuitively, the energy savings comes from
eliminating wakeup (E↗) and hibernate (E↘) transitions
and combining the active periods together. The energy

Time

wakeup

Po
w

er

standby

hibernate

active

Figure 8: Disk power behavior during typical access
request from standby and returning to standby.

saved is proportional to the transition costs of a given disk.
Laptop class and smaller disks are designed for fast transi-
tions with lower energy costs then desktop or server class
disks. The transition costs are

Etransition = E↗ + E↘

The baseline energy consumption with M accesses is

Ebase = M × Etransition + Eactive + Estandby

The energy reduction by eliminating N transitions is

∆E = N × (Etransition − Estandby)

Suppose we have an activity trace and an estimate of which
disk accesses can be clustered. We choose a time period
over which to compute ∆E. In this short trace with seven
accesses, we choose the entire trace. With a longer trace,
we may choose some activity patterns to represent aver-
age activity in the trace. Finding representative patterns
is challenging because Eactive and Estandby can have wide
variances. Longer time periods will increase accuracy, par-
ticularly since M and N are restricted to integral numbers.

A complete energy model would account for times when
the disk is in idle mode or has different activity patterns
than the typical pattern in Figure 8. For instance, a web
browser may encounter network latency such that its logical
I/O operation (writing to cache after loading all page ob-
jects) stalls, keeping the disk in idle mode. We used the pa-
rameters from Table 3 to analyze two traces, OPG and AF.
These traces had the least variation in activity patterns.1

1Measured current flow reveals large fluctuations and er-
ror margins, particularly when considering low power disks.
Measured activity is in line with manufacturer’s measure-
ments.

262

For OPG and AF, the model estimates energy savings of
2.6% and 55% compared to measured savings of 3.1% and
63%, respectively. The error rates are within one standard
deviation.

Lastly, we used our energy model to estimate energy sav-
ings of our user study traces. Only some of our experiment
contexts can be compared with the user study contexts. Re-
ferring back to Figure 4, the contexts F and FM are charac-
terized by streaming applications and are similar to AF from
our experiments. The opportunity for energy savings from
streaming applications is high and limited mainly by the
buffer size. Our experiments with AF used moderate buffer
sizes — not so large to buffer the entire file and not so small
that the disk must immediately wakeup to refill the buffer.
The optimized AF was able to save 63% energy. The con-
texts WP and WPZ of Figure 4 are characterized as a mix of
reading PDF documents and web pages. They correspond
most directly to WP from our experiments where the activ-
ity consisted of visiting a web page, reading an eight page
PDF document (scrolling at regular intervals) linked from
that web page, and visiting another web page. This context
carries little opportunity for synchronizing disk requests but
was able to cluster two accesses into one and save 7% energy.
The four contexts {F, FM, WP, WPZ} accounted for 21%
of the active time, and if optimized, may have saved about
9% energy over the 730 hours. If the workloads of emerg-
ing mobile systems include more multimedia applications,
they may find greater advantage from streaming execution
context optimizations.

7. SUMMARY
Mobile systems are typically resource limited and rely on

battery power. With increasingly multiprogramming envi-
ronments, execution context optimizations are beneficial to
prolong battery life and the usability of the device. This
paper has demonstrated that execution context optimiza-
tions can be an effective technique to save disk energy for
many workloads including a mix of interactive and stream-
ing applications. We introduced a disk request classifica-
tion system in the context of a compiler and runtime frame-
work to implement optimizations for disk energy consump-
tion. Taking advantage of these optimizations requires the
programmer to tag file descriptors, run the code profiling
phase, and if using SYNC_RECV, supply a synchronization
handler routine. The runtime mechanisms for buffering and
synchronization are then automatically supplied. The pro-
gramming model for implementing large file buffering and
inter-process synchronization communication is thus simpli-
fied for the programmer.

The opportunities to save disk energy are related to the
execution contexts and the program interactions within a
context. We used LTTng to collect traces (760 hours) from
graduate students to validate observations about program
usage profiles and explore the value in these optimizations.
We used Xnee to develop a robust measurement infrastruc-
ture suitable for repeatable experiments on interactive pro-
grams. Ten experiment sessions show that execution con-
text optimizations are applicable across a wide range of pro-
grams. The measured energy savings are in proportion to
the opportunities available (up to 63%) and can be substan-
tially greater over previous best optimizations. The over-
head from these optimizations impacts performance by less
than 1%. Lastly, we formulated a simple model to estimate

energy savings based on a disk’s specifications, a disk ac-
cess profile, and expected program interactions. Applying
our model to compare our synthetic traces with execution
contexts from the user study, at least 9% disk energy could
have been saved. This work is a first analysis at real world
multiprogramming workload opportunities and benefits for
disk energy execution context optimizations.

8. REFERENCES
[1] N. AbouGhazaleh, D. Mossé, B. Childers, R. Melhem,

and M. Craven. Collaborative operating system and
compiler power management for real-time
applications. In Real-Time and Embedded Technology
and Applications Symposium, pages 133–143, Los
Alamitos, CA, May 2003.

[2] N. Abramson. The ALOHA system — another
alternative for computer communications. In
Proceedings of the Fall Joint Computer Conference,
pages 281–285, 1970.

[3] Adobe. PDF Reference. Adobe Systems Incorporated,
sixth edition, Oct. 2007.

[4] Apple Incorporated. iPhone. <http:// www.apple.com
/ iphone>.

[5] Apple Incorporated. iPod. <http:// www.apple.com /
ipodclassic>.

[6] A. Arpaci-Dusseau, D. Culler, and A. Mainwaring.
Scheduling with implicit information in distributed
systems. In Proceedings of the Conference on
Measurement and Modeling of Computer Systems,
pages 233–243, Madison, WI, June 1998.

[7] R. Card, T. Ts’o, and S. Tweedie. Design and
implementation of the second extended filesystem. In
Proceedings of the Dutch International Symposium on
Linux, Amsterdam, Netherlands, Dec. 1994.

[8] M. Crovella and A. Bestavros. Self-similarity in world
wide web traffic: Evidence and possible causes.
IEEE/ACM Transactions on Networking,
5(6):835–846, Dec. 1997.

[9] C. Crowley. TkReplay: Record and Replay for Tk. In
USENIX Annual Tcl/Tk Workshop, pages 131–140,
Toronto, Canada, July 1995.

[10] V. Delaluz, M. Kandemir, N. Vijaykrishnan, M. Irwin,
A. Sivasubramaniam, and I. Kolcu. Compiler-directed
array interleaving for reducing energy in multi-bank
memories. In Proceedings of the Conference on VLSI
Design, pages 288–293, Jan. 2002.

[11] M. Desnoyers and M. Dagenais. The LTTng tracer: A
low impact performance and behavior monitor for
GNU/Linux. In Proceedings of the Ottawa Linux
Symposium, volume 1, pages 209–223, Ottawa,
Canada, July 2006.

[12] F. Douglis, P. Krishnan, and B. Bershad. Adaptive
disk spin-down policies for mobile computers.
USENIX Computing Systems, 8(4):381–413, 1995.

[13] K. Drake. XTEST Extension Protocol. X Consortium
Standard, 1994. Version 2.2.

[14] S. Gribble, G. Manku, D. Roselli, E. Brewer,
T. Gibson, and E. Miller. Self-similarity in file
systems. In Proceedings of the Conference on
Measurement and Modeling of Computer Systems,
pages 141–150, Madison, WI, June 1998.

263

[15] S. Gurun and C. Krintz. AutoDVS: An automatic,
general-purpose, dynamic clock scheduling system for
hand-held devices. In Proceedings of the Conference on
Embedded Systems Software, Jersey City, NJ, Sept.
2005.

[16] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and
R. Bianchini. Code transformations for energy-efficient
device management. IEEE Transactions on
Computers, 53(8):974–987, Aug. 2004.

[17] J. Hom and U. Kremer. Inter-program compilation for
disk energy reduction. In B. Falsafi and
T. Vijaykumar, editors, Power-Aware Computer
Systems, volume 3164 of Lecture Notes in Computer
Science, pages 13–25. Springer, 2004.

[18] J. Hom and U. Kremer. Inter-program optimizations
for conserving disk energy. In Proceedings of the
International Symposium on Low Power Electronics
and Design, pages 335–338, San Diego, CA, Aug. 2005.

[19] C. Lattner and V. Adve. LLVM: A compilation
framework for lifelong program analysis &
transformation. In Proceedings of the International
Symposium on Code Generation and Optimization,
Palo Alto, CA, Mar. 2004.

[20] W. Leland, M. Taqqu, W. Willinger, and D. Wilson.
On the self-similar nature of ethernet traffic. In
D. Sidhu, editor, ACM SIGCOMM, pages 183–193,
San Francisco, CA, 1993.

[21] Open Handset Alliance. Android. <http://
www.openhandsetalliance.com>.

[22] Openmoko Incorporated. Openmoko. <http://
openmoko.org>.

[23] J. Ousterhout. Scheduling techniques for concurrent
systems. In Proceedings of the Conference on
Distributed Computing Systems, Miami, FL, Oct. 1982.

[24] A. Papathanasiou and M. Scott. Energy efficient
prefetching and caching. In USENIX Annual Technical
Conference, pages 255–268, Boston, MA, June 2004.

[25] L. Roberts. ALOHA packet system with and without
slots and capture. Computer Communications Review,
5:28–42, Apr. 1975.

[26] D. Roselli, J. Lorch, and T. Anderson. A comparison
of file system workloads. In Proceedings of the
USENIX Annual Technical Conference, pages 41–54,
San Diego, CA, June 2000.

[27] H. Sandklef. Testing applications with xnee. Linux
Journal online, Jan. 2004. <http://
www.linuxjournal.com / article / 6660>.

[28] A. Weissel, B. Beutel, and F. Bellosa. Cooperative I/O
— a novel I/O semantics for energy-aware
applications. In Proceedings of the Conference on
Operating Systems Design and Implementation,
Boston, MA, Dec. 2002.

[29] Q. Zhu, F. David, C. Devaraj, Z. Li, Y. Zhou, and
P. Cao. Reducing energy consumption of disk storage
using power-aware cache management. In Proceedings
of the Symposium on High Performance Computer
Architecture, pages 118–129, Madrid, Spain, Feb. 2004.

[30] M. Zimet. Record extension library specification:
Version 1.10 public review draft. The X Resource,
14(1):177–193, Feb. 1995.

264

