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Abstract 
Application profiling – the process of monitoring an application 
to determine the frequency of execution within specific regions – 
is an essential step within the design process for many software 
and hardware systems. In this paper, we present an efficient 
innovative, non-intrusive dynamic application profiler (DAProf) 
capable of profiling an executing application by monitoring the 
application’s short backwards branches and providing detailed 
profiling statistics for characterizing loop execution behavior. 
DAProf is ideally suited for hardware/software partitioning 
approaches in which detailed loop execution information is 
needed to provide accurate performance estimates. DAProf 
provides a profiling accuracy of greater than 90% with only an 
11% area overhead compared to a small ARM9. 

Categories and Subject Descriptors 
C.4 [Computer Systems Organization] Performance of Systems 
– Measurement Techniques. 

General Terms: Design, Performance. 

Keywords: Profiling, nonintrusive, dynamic optimization, 
embedded systems. 

1. INTRODUCTION     
Application profiling – the process of monitoring an application to 
determine the frequency of execution within specific regions – is 
an essential step within the design process for many software and 
hardware systems. Profiling has long been utilized to identify the 
most frequently executed regions of a software application such 
that a developer can focus their efforts on optimizing those regions 
[13]. Binary translation and dynamic optimization techniques rely 
on dynamic profiling to determine frequently executed sequences 
of instructions and improve performance by either caching binary 
translation results or re-compiling the code sequences 
[2][6][10][18]. Profiling has also been utilized to create several 
specialized software [5][27] or hardware implementations [19], 
from which an application can select at runtime which to execute 
to improve performance or reduce power consumption. In 
[3][11][21], profiling is used to detect frequent loops to map to a 
small loop cache to reduce power consumption.  

 

Profiling is a critical step within hardware/software 
partitioning approaches in which an application is partitioned into 
software executing on a microprocessor and one or more hardware 
coprocessors. Application profiling is often utilized to determine 
an application’s frequently executed regions, or critical kernels. 
Partitioning these critical kernels to hardware has been shown to 
provide application speedups of 10-100X [14][17][22][25]. Such 
approaches are effective because many software applications 
follow the 90-10 rule of thumb that states 90% of an application’s 
execution time is spent executing 10% of the application’s code.  

While static profiling is feasible for many applications, 
dynamic profiling is essential for most dynamic optimization 
techniques. For example, warp processing dynamically and 
autonomously re-implements critical software kernels as hardware 
coprocessors within an on-chip FPGA [22]. As with many 
dynamic optimization approaches, warp processing relies on 
accurate dynamic application profiling to determine which 
software kernels are potential candidates for hardware 
implementation.  

Most existing profiling approaches introduce non-negligible 
runtime overheads. For embedded systems, especially those with 
real-time requirements, this runtime overhead can adversely affect 
an application’s execution. In the case of real-time systems, which 
are usually designed with very tight timing constraints, the 
slightest run time overhead can lead to missed deadlines and 
potential system failure. Hence, there is a need for dynamic, non-
intrusive profiling techniques that provide accurate and detailed 
profiling statistics suitable for embedded and real-time systems. 

In this paper, we present an efficient, non-intrusive dynamic 
application profiler (DAProf) capable of profiling an executing 
application by monitoring the application’s short backwards 
branches and providing detailed loop execution statistics. In 
Section 2, we provide an overview of previous profiling 
approaches, specifically highlighting the non-intrusive, frequent 
loop detection profiler presented in [12]. In Section 3, we present 
our dynamic application profiler that provides detailed 
information regarding loop execution behavior, including the 
breakdown of loop executions versus average iterations per 
execution – providing both additional profiling information and 
improved accuracy compared to the frequent loop detection 
profiler. In Section 4, we highlight the area requirements, 
performance, and profiling accuracy of the DAProf design. 

2. PREVIOUS WORK 
A common software-based approach involves "instrumenting" the 
application by adding code to count frequencies of the desired 
code regions [13][16]. Software instrumentation is straightforward 
and flexible, yet incurs significant runtime overhead, especially if 
the granularity of the code regions being profiled is fine. To 
reduce runtime overhead, other profiling approaches use statistical 
sampling techniques [1][8][29]. Such methods either interrupt the 
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microprocessor at certain intervals or create an additional software 
task for profiling, and then read the program counter and other 
internal registers to statistically determine execution behavior. 
Again, for embedded systems, especially those with real-time 
requirements, the slightest run time overhead can have significant 
impact on the application execution.  

Other profiling approaches rely on hardware integrated within 
the microprocessor to assist software developers in profiling an 
executing program [7][23][24][28]. Such hardware-assisted 
profiling approaches utilize event counters or branch execution 
statistics to identify application hotspots [7] or frequently executed 
execution paths [23]. Although these hardware-assisted profiling 
approaches may incur lower overheads compared to software-
based profiling methods, the runtimes overheads cannot be 
ignored and incur similar ramifications.  

Of notable interest, is the frequent loop detection profiler that 
non-intrusively monitors the instruction addresses seen on the 
memory bus and profiles loop iterations by monitoring short 
backwards branches [12]. A short backwards branch is a branch 
instruction whose target address has a short negative offset and is 
typically used to branch backwards at the end of a loop. Whenever 
a short backwards branch occurs, the frequent loop detection 
profiler updates a small cache – perhaps just 16 entries – that 
stores the frequencies of the short backwards branches. When any 
of the registers storing the branch frequencies become saturated, 
the profiler shifts all cache entries right by one bit, thereby 
maintaining a list of relative branch execution frequencies while 
ensuring all branch frequency do not eventually become saturated. 

For hardware/software partitioning approaches utilizing 
profiling to guide the partitioning process, the frequent loop 
detection profiler can provide a relative ranking of loops to guide 
the order in which loops are considered for hardware 
implementation. However, without further simulation or analysis, 
such limited profiling information may lead to suboptimal 
hardware/software partitioning results as performance 
improvements cannot be accurately estimated using only the 
relative execution frequency. The breakdown between loop 
executions and iterations per execution can have a significant 
impact on performance due to communication and 
synchronization requirements.  

The speedup (SHW/SW) after partitioning one or more loops to 
hardware can be estimated as follows:  
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where, TSW is the software only execution time, THW/SW is the 
execution of the partitioned application, TSW(loop) is the software 
only execution time of the loops being partitioned to hardware, 
THW(loop) is the hardware execution time of the partitioned loops, 
and Tcomm is the communication requirements for initializing and 
synchronizing with the hardware implementation. The 
communication time can be calculated as the number of times the 
hardware is executed (Execs) multiplied by the sum of the 
initialization time (TInit) and synchronization time (TSync), where 
TInit and TSync are the time required to transfer any required data 
between the software and hardware before and after the 
partitioned hardware loop execution. While the hardware 
execution time can be estimated using total loop iterations, the 
communication requirements depend on the number of times the 

loop is executed and can have a significant impact on overall 
speedup. Loops with larger executions and fewer iterations per 
execution will have greater communication requirements 
compared to similar loops with fewer executions but greater 
iterations per execution.  

Consider an application in which two potential loops, Loop A 
and Loop B, have been identified as candidates for partitioning, 
but hardware resources are only available to implement one 
partitioned loop. As reported by the frequent loop detection 
profiler, Loop A has total iterations of 10,000 whereas Loop B has 
total iterations of 12,000. Furthermore, it is known or can be 
estimated that Loop A and Loop B account for 33% and 40% of 
total application execution time, respectively. Without additional 
information, a hardware/software partitioning approach will select 
Loop B to implement in hardware, as dictated by Amdahl’s Law. 
However, if Loop A executes 5 times and iterates 2,000 times per 
execution, and Loop B executes 6,000 times and iterates 2 times 
per execution, the communication requirements of Loop B are 
1200X greater and may severely impact the overall speedup. As a 
result, Loop A may be a better candidate for partitioning. As such, 
detailed loop execution information including loops executions 
and iterations per execution are essential in order to avoid 
suboptimal partitioning results.  

3. DYNAMIC APPLICATION PROFILER 
(DAPROF) 
Figure 1 presents an overview of the dynamic application profiler 
(DAProf), highlighting its integration within a microprocessor 
based system and its internal profiling architecture. DAProf non-
intrusively monitors the microprocessor’s instruction bus to 
determine the address of the currently executed instruction 
whenever a short backwards branch is executed. The DAProf 
design considers a short backwards branch as a branch instruction 
whose target addresses is a negative offset of less than 1024, 
which corresponds to small loops containing less than 256 
instructions. In comparison, the frequent loop detection profiler 
only considered loops with a smaller branch offset of 256, or 64 
instructions. However, the most frequently executed loops within 
several of the applications considered in this paper are larger than 
would be supported by a branch offset of only 256, either as a 
result of complex loop functionality or as a result of loops that 
have been unrolled manually or during compilation.  

While the DAProf could directly decode the instructions seen 
on the instruction bus, we currently assume the microprocessor 
provides a one bit output, sbb, indicating a short backwards 
branch has been executed. Such support would require minor 
modification to a microprocessors’ decoding logic. DAProf design 
consists of a profiler FIFO for synchronizing between the 
microprocessor and profiler, a profile cache that stores all relevant 
profile statistics for those loops currently being profiled, and a 
profiler controller that analyzes the short backwards branches to 
update the profiling statistics within the profile cache.  

3.1 Profiler FIFO  
DAProf’s profiler FIFO monitors the microprocessor’s instruction 
bus and sbb output signal. Whenever a short backwards branch 
occurs, the profiler FIFO determines the branch instruction’s 
address and offset and stores both values within a small internal 
FIFO. The offset is the number of instructions within the identified 
loop and is used along with the branch instruction’s address to 
represent the beginning and end of each loop within the profiler. 
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In addition, the profiler FIFO is used to synchronize between 
the microprocessor and internal DAProf design because the 
microprocessor may operate at a higher clock frequency. Short 
backwards branches do not occur on every clock cycle. Thus, the 
internal DAProf profiler design does not need to operate at the 
same frequency of the microprocessor. Any meaningful loop will 
at least consist of two instructions in addition to the short 
backwards branch. Hence, short backwards branches are expected 
to occur no more than once every three instructions, implying the 
internal DAProf design can operate at one third the frequency of 
the microprocessor. However, the profiler FIFO should be large 
enough to accommodate bursts of short backwards branches that 
may occur periodically as the application executes. We 
experimentally determined that a FIFO with only four entries is 
sufficient for the applications considered in this paper.  

3.2 Profile Cache 
The profile cache is a small cache that maintains the current 
profiling results and intermediate information needed for loop 
identification, profiling statistics, loop execution monitoring, and 
determining which profile cache entry should be replaced when 
new loops are executed. We currently consider a 32 entry profile 
cache, which is sufficient for profiling the embedded applications 
considered within this paper.  

3.2.1 Loop Identification 
Profiled loops are identified within the profile cache by the 
address of the loop’s short backwards branch, which serves as the 
Tag entry for the cache, and by the loop’s Offset determined by 
the profiler FIFO. Considering a 32-bit ARM processor and byte 
addressable memory, the lower two bits for all instructions will be 
identical. Hence, the profile cache’s Tag entry is a 30-bit entry 
that stores the most significant bits of a loop’s short backwards 
branch address. The Offset entry is an 8-bit entry that corresponds 
to the number of instructions within the profiles loop. As 
described earlier, both the Tag and Offset are determined by the 
profiler FIFO and provide the mechanism for identifying the loop 
bounds. 

3.2.2 Iteration/Execution Statistics 
The main profiling information stored within the profile cache 
includes loop executions, average iterations per loop execution, 
and loop iterations for the current execution.  

Loop Executions provide the number of times a loop has been 
executed throughout the application execution. As DAProf is 
intended to monitor an application over extended execution 
periods, regardless of the number of bits used to represent loop 
executions, the number of loop executions will eventually become 
saturated. DAProf utilizes a 16-bit entry for storing loop 

executions that allows 65,536 loop executions to be profiled 
without saturations.  

The Current Iterations provides the number of times a loop 
has iterated for the current loop execution and is stored within the 
profile cache as a 10-bit entry. Thus, DAProf can accurately 
profile loops with a maximum of 1024 iterations per executions, 
which is well suited for most embedded applications.  

The Average Iterations stores the average number of times a 
loop iterates per loop execution. As many loops do not iterate a 
fixed number of times per loop execution, the average iterations 
cannot be accurately stored as an integer value. Instead, the profile 
cache stores the average iterations as a 13-bit fixed point number 
using 10 bits to represent the integer portion and 3 bits for the 
fractional part. We note that the number of bits required to 
represent the integer portion of the fixed point number is equal to 
the number of bits used to store the current iterations. 

3.2.3 Loop Execution Monitoring 
The profile cache contains a 1-bit InLoop flag that is utilized to 
indicate the loop is currently being executed. The InLoop flag is 
essential in determining if the execution of a short backwards 
branch corresponds to a new loop execution or an additional 
iteration for the current execution. 

3.2.4 Freshness & Replacement Policy 
Although many replacement polices were considered and 
analyzed, including least recently used and estimated total 
instructions executed, the replacement policy incorporated within 
the profile cache uses total loop iterations to determine which 
entry within the profile cache will be replaced when a new loop is 
executed, where the entry with the lowest total iterations will be 
replaced. The total loop iterations are calculated as the product of 
the average iterations and executions. While this policy performs 
relatively well on its own, newly executed loops may not execute 
or iterate quickly enough to avoid being immediately replaced. 
We note that the frequent loop detection profiler also utilizes least 
total iterations as the replacement policy and exhibits this 
detrimental behavior when profiling several of the applications 
considered within this paper, as further detailed in Section 4.3.  

To solve this problem, DAProf’s profile cache includes a 
unique 3-bit loop Freshness value that represents how recently a 
loop has been executed or iterated, where a larger freshness 
indicates the loop has been more recently executed. The freshness 
value is utilized within the replacement policy to only consider 
loops for replacement if the loops are not considered fresh – a 
loop that is not fresh has a freshness value of zero. A 3-bit 
freshness entry allows seven loops to be considered fresh and 
allows newly executed loops to be profiled for an extended 
duration before their profile cache entry will be considered for 
replacement.  

Figure 1. Dynamic Application Profiler (DAProf) consisting of Profiler FIFO, Profiler Controller, and Profile Cache. (Bit widths of profile 
cache entries shown within parenthesis). 
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3.2.5 Associativity 
The Associativity of the profile cache potentially provides tradeoff 
between cache size and cache performance with the accuracy of 
the profiling results. With a fully associative profile cache, the 
replacement policy must compare all entries within the cache to 
determine the entry with the smallest total iterations, thereby 
requiring large hardware resources and reducing the overall 
performance of DAProf. Decreasing the associativity of the profile 
cache provides increased performance and smaller area 
requirements by reducing the number of entries the replacement 
policy must consider. Finally, one must consider the relation 
between the profile cache’s associativity and freshness. For a 
profile cache with a small associativity and large maximum 
freshness, all entries within the same cache set may be considered 
fresh and should not be selected for replacement. To avoid this 
potential problem, the maximum freshness should be no greater 
than one half of the profile cache associativity.  

3.3 Profiler Controller 
Figure 2 provides pseudocode of the dynamic profiling of 
DAProf’s profiler controller. The profiler controller interfaces 
with the profiler FIFO and updates the profiling results for the 
current loops within the profile cache. The profiler controller 
receives the short backwards branch address (iAddr) and offset 
(iOffset) from the profiler FIFO in addition to a found, foundIndex, 
and replaceIndex signals from the profile cache. The found and 
foundIndex signals indicate if the current short backwards branch 
is found within the profile cache and at what location. The 
replaceIndex provides the index for the loop entry that will be 
replaced if the current short backwards branch is not found within 
profile cache.  

Whenever a short backwards branch is available from the 
profiler FIFO, the profiler controller will determine if the loop is 
found within the cache. If the loop is found and the loop is 
currently executing – as indicated by the loop’s InLoop flag – the 
short backwards branch execution indicates a loop iteration has 
been detected and the loop’s current iterations are incremented. 
Otherwise, if the loop is not currently being executed, a new loop 
execution has been detected. For new loop executions, the profile 
controller increments the loop’s executions, sets the InLoop flag, 
sets the current iterations to one, decrements the freshness for all 
other loops, and sets the freshness of the current loop to the 
maximum freshness.  

Finally, if the profiler controller detects that the loop’s 
executions is saturated, the executions for all loops will be divided 
by two – thereby handling executions saturations in the same 
manner as the frequent loop detection profiler handles total 
iteration saturations. However, in contrast to the frequent loop 
detection profiler, saturations within DAProf will only affect the 
accuracy of the loop executions without affecting the accuracy for 
average loop iterations per execution. In addition to ensuring the 
executions for any loop never becomes saturated, this approach 
provides a mechanism for monitoring the dynamic nature of an 
application in which older loops that were previously considered 
important may no longer be executed. For example, initially, a 
previously executed loop’s high total iterations may ensure the 
loop is not replaced during profiling. However, after several 
saturations are encountered, the reported total iterations will be 
decreased relative to other loops and can be replaced if the loop is 
no longer executed.  

If a loop’s short backwards branch is not found within the 
profile cache, the profiler controller will replace the cache entry 
indicated by replaceIndex. The profiler controller initializes the 

profile cache entry by setting the Tag and Offset to those of the 
newly profiled loop’s, setting the executions to one, setting the 
InLoop flag, setting the current iterations to one, decrementing the 
freshness for all other loops, and setting the freshness of the newly 
executed loop to the maximum freshness. 

For all short backwards branches, the profiler controller 
checks all entries of the profile cache whose InLoop flag is set to 
determine if the application is still executing within those loops. If 
a loop is no longer being executed, the profile controller resets the 
InLoop flag and updates the loop’s average iterations.  

The average iteration calculation has a significant impact on 
the profiler’s accuracy, hardware requirements, and performance. 
For example, a straightforward method for calculating average 
iterations computes the exact average using the equation: 

i

iii
i Exec

CurrIterExecAvgIterAvgIter +−= )1(*
, 

in which the average iterations are calculated as the previous total 
iterations – determined by multiplying the previous average 
iterations by the previous executions – plus the current iterations 
divided by the current executions. This method for calculating 
average iterations provides excellent accuracy across the entire 
application execution but requires floating point addition, 
multiplication, and division. Such an implementation would be too 
costly in terms of area and performance.  

Figure 2: Pseudocode for DAProf’s profiler controller. 

DAProf (iAddr, iOffset, found, foundIndex, replaceIndex): 
1. if ( found )  
2.    if ( InLoop[foundIndex] )  
3.       CurrIter[foundIndex] = CurrIter[foundIndex] + 1 
4.    else { 
5.       for all i, Fresh[i]  = Fresh[i] – 1 
6.       Execs[foundIndex]  = Execs[foundIndex] + 1 
7.       CurrIter[foundIndex]  = 1       
8.       InLoop[foundIndex]  = 1 
9.       Fresh[foundIndex]  = MaxFresh 
10.       if  ( Execs[foundIndex] = MaxExecs )   
11.          for all i, Execs[i] = Execs[i] >> 1 
12.    } 
13. else  
14.    for all i, Fresh[i]  = Fresh[i] – 1 
15.    Tag[replaceIndex]  = iAddr 
16.    Offset[replaceIndex]  = iOffset 
17.    CurrIter[replaceIndex]  = 1 
18.    AvgIter[replaceIndex]  = 0 
19.    Execs[replaceIndex]  = 1 
20.    InLoop[replaceIndex]  = 1 
21.    Fresh[replaceIndex]  = MaxFresh 
22. } 
23. for all i, if ( inLoop[i] && !(iAddr <= Tag[i] &&  
24.                                                iAddr >= Tag[i]-Offset[i]) ) { 
25.    InLoop[i] = 0 
26.    AvgIter[i] = (AvgIter[i]*7 + CurrIter[i])/8 
27. } 
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Alternatively, the profiler controller could perform the same 
calculation using integer multiplication and division. However, 
this approach leads to inaccurate profiling. As the number of 
executions increases, the denominator of the calculation will 
increase to the point that regardless of a loop’s current iterations, 
the resulting average iterations will remain unchanged. Figure 3 
presents the average iterations calculation for the floating point 
exact average iteration calculation, integer exact average iteration 
calculation, and the real average iterations over the past 100 loop 
executions for a frequently executed loop within the cjpeg 
application of the MiBench benchmark suite [15]. As 
demonstrated from the real average iterations over the past 100 
loop executions, the loop being profiled has significant variation 
in iterations per execution. While the floating point exact average 
calculation provides the correct average iterations across the entire 
application execution, it is unable to provide any means for 
detecting or adjusting to such dynamic changes in execution 
behavior. On the other hand, the integer exact average iterations 
calculation is completely inaccurate. After several loop 
executions, the calculated average iterations remain constant for 
the remainder of the application execution. 

Instead of relying on an exact average iteration calculation, 
the DAProf’s profiler controller utilizes a weighted average in 
which the previous average iterations accounts for 7/8th and the 
current iterations account for 1/8th of the calculated average 
iterations, as provided by the following equation: 

i
i

i CurrIterAvgIterAvgIter +=
8

*7 , 

in which the average iteration is calculated using a fixed point 
representation described earlier. This ratio based average iteration 
calculation can be efficiently implemented in hardware while 
providing excellent accuracy. Using the 13-bit fixed point 
representation to store the average iterations, this calculation is 
equivalent to: 

8
*7 ii

i
CurrIterAvgIterAvgIter +

=  

Figure 3 further presents the 7/8th ratio average iteration 
calculation for the selected loop within the cjpeg application. By 
providing a weighted average, the ratio average iteration 
calculation is able to capture dynamic changes in loop executions 
– most closely tracking the real average iterations. Although a 
7/8th ratio is utilized within the current DAProf design, other ratios 
– such as 15/16th or 31/32nd – may be utilized to control how 
quickly or slowly the profiler will adapt to changing loop 
execution behavior with anticipated tradeoffs of area, accuracy, 
and speed at which the profiler design can adapt to such changes. 

4. EXPERIMENTAL RESULTS 

4.1 Area and Performance  
We consider three alternative profiler implementations including a 
fully associative, 16-way associative, and 8-way associative 
DAProf designs. DAProf was implemented in Verilog and 
synthesized using Synopsys Design Compiler targeting a UMC 
0.18 µm technology. For all implementations, the profiler FIFO 
has a maximum operating frequency of 934 MHz. Because the 
profiler FIFO can only execute three times faster than the profile 
cache and controller, DAProf’s overall operating frequency is 
limited by profile cache and profiling controller. For a fully 
associative implementation, DAProf requires 107,477 gates (1.75 

mm2) and can execute at a maximum operating frequency of 415 
MHz. The area required for the fully associative DAProf design is 
approximately 20% of the area of an ARM9 processor 
implemented within the same UMC 0.18 µm technology. The 16-
way associative DAProf design requires 74,744 gates (1.22 mm2) 
with a maximum operating frequency of 438 MHz. Finally, the 8-
way associative DAProf design requires only 59,036 gates (0.96 
mm2) with a maximum operating frequency of 495 MHz. The 8-
way associative DAProf design requires only 11% of the area of 
an ARM9 processor and is 45% smaller and 20% faster than the 
fully associative DAProf design.  

4.2 Profiling Accuracy 
To analyze the accuracy of the DAProf design, we compare the 
profiling results of DAProf with that of an accurate simulation 
based profiling method capable of fully profiling nested loop 
executions and iterations, function calls and executions, as well as 
recursive function calls [26]. We profiled the various consumer 
electronics applications provided within the MiBench benchmark 
suite [15] using the fully associative, 16-way associative, and 8-
way associative DAProf designs.  

For the top ten loops of each application, we analyzed the 
profiling accuracy in terms of percent error in reported average 
iterations, executions, and percentage of total application 
execution time, as presented in Figure 4 for a fully associative, 16-
way associative, and 8-way associative DAProf designs.  

The percent error in average iterations is calculated as the sum 
of differences between the reported and actual average iterations 
divided by the sum of the actual average iterations as follows:  
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On average, DAProf provided good profiling results with an error 
in reported average iterations of 11%, 11%, and 10% for a fully 
associative, 16-way associative, and 8-way associative 
implementations, respectively. In the best case, a 16-way 
associative DAProf design has an error of only 0.5% in reported 
average iterations for the application tiffdither. However, across 
all applications, the 16-way associative DAProf design has the 
lowest accuracy. For the applications mad and tiff2rgba, the 

Figure 3. Comparison of floating point exact average calculation, 
integer exact average calculation, 7/8th ratio average calculation, 
and real average over the past one hundred loop executions for a 

frequently executed loop within cjpeg.  
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reported average iterations exhibit an error of 35% and 30%. As 
further discussed in Section 4.4, this profiling inaccuracy is caused 
by function call interference that inadvertently results in the 
InLoop flag being incorrectly reset.  

Because of unavoidable execution saturations, the loop 
executions reported by DAProf may not directly correspond to the 
actual total number of loop executions. Thus, the percent error in 
reported loop executions is calculated as follows:  
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in which the number of execution for each loop is calculated as 
that ratio of the reported loop executions of each loop to the total 
loop executions of the top ten loops. On average, the DAProf 
design has an error in reported loop executions of only 3% for all 
implementations.  

Finally, as the percentage of total application execution time is 
often utilized to determine the critical kernels of an application, 
we estimated the percentage of total application execution time for 
each profiled loop using the DAProf profiling results. The percent 
error in percentage of application execution time is simply the 
average absolute difference between the estimated and actual 
percentage application execution time for all top ten loops, 
calculated using the following equation: 

10

%%

%

10

1
)()(

%

∑
=

−

= i
actualiDAProfi

error

ExecTimeExecTime

ExecTime  

While function call interference may lead to errors in reported 
average iterations, the combined accuracy of average iterations 
and executions results in only a 5% error in the estimated 
percentage of application execution time for all DAProf 
implementations. 

Overall, all three DAProf implementations performed equally 
well. While the fully associative design may be beneficial for 
some applications, for the applications considered, an 8-way 
associative DAProf design achieves similar accuracy with smaller 
hardware requirements and higher performance.  

4.3 Comparison with Frequent Loop 
Detection Profiler 
While DAProf provides additional profiling information beyond 
that available with the frequent loop detection profiler, the results 
from both profilers can be utilized to estimate each loop’s 
percentage of total application execution. Figure 5 (a) presents the 
percent error in estimated percentage of total application 
execution time of an 8-way associative DAProf design compared 
to the frequent loop detection profiler for the various embedded 
applications considered. Although the frequent loop detection 
profiler presented in [12] utilized a short backward branch 
distance of 256, we consider a short backwards branch distance of 
1024 in these results to provide a fair comparison between the two 
approaches. We further note that utilizing a short backward 
distance of only 256 would lead to reduced accuracy for the 
benchmarks considered. On average, DAProf provides a marginal 
increase in profiling accuracy of 95% compared to the frequent 

loop detection profiler’s accuracy of 94%, with DAProf providing 
better profiling accuracy for all but one application.  

More interestingly, Figure 5 (b) presents the percentage of 
total application execution time captured by the top ten profiled 
loops for an 8-way associative DAProf design compared to the 
frequent loop detection profiler for the various embedded 
applications considered. On average, DAProf is able to capture 
78% of the total application execution time, compared to 62% 
captured by the frequent loop detection profiler. This increase is 
largely the result of DAProf’s freshness calculation that ensures 
recently executed loops are not immediately replaced. For 
example, for the application djpeg, the frequent loop detection 
profiler does not capture the second most frequently executed 

Figure 4. Percent error in average iterations, executions, and 
percentage of total application execution time of DAProf for 

MiBench consumer electronics applications. 
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(c) 8-way Associative 

0%

10%

20%

30%

40%

lam
e

mad
cjp

eg
djp

eg

tiff
med

ian

tiff
dit

he
r

tiff
2rg

ba

tiff
2b

w

Ave
rag

e

Benchmark

%
 D

iff
er

en
ce

Average Iterations Executions % Execution Time

(a) Fully Associative 

0%

10%

20%

30%

40%

lam
e

mad
cjp

eg
djp

eg

tiff
med

ian

tiff
dit

he
r

tiff
2rg

ba

tiff
2b

w

Ave
rag

e

Benchmark

%
 D

iff
er

en
ce

Average Iterations Executions % Execution Time

28



loop, which accounts for 23% of the total application execution 
time. As a result, whereas DAProf captures 94% of the total 
execution time for this application, the frequent loop detection 
profiler only captures 55% of the total execution time. 

4.4 Function Call Interference 
As previously mentioned, function call execution from within a 
loop currently being profiled can lead to profiling interference in 
which the InLoop flag of a currently executing loop is incorrectly 
reset. As illustrated in Figure 1, consider a loop, Loop A, that calls 
a function, Func B, where Func B also contains a loop, Func B.1. 
During execution of Loop A, the InLoop flag will initially be set 
and will remain set until a short backwards branch is executed 
outside of Loop A’s loop bounds. When the loop Func B.1 is 
executed, the initial DAProf design will interpret the execution of 
Func B.1’s short backwards branch as indicating Loop A is no 
longer being executed. This execution behavior results in Loop 
A’s InLoop flag being reset and average iterations being updated. 
Furthermore, when Func B returns and Loop A iterates again, this 
iteration will incorrectly be  interpreted as a new loop execution. 
Within the application mad, a loop that is affected by function call 
interference is incorrectly reported as executing 154 times with 
average iterations per execution of 252, whereas the correct loop 
executions and average iterations are 2772 and 14, respectively. 
Notice that the total loop iterations – calculated as the product of 
executions and average iterations – are identical.     

While we are currently developing an extended DAProf 
design with direct support for function call execution with very 
promising initial results, Figure 7 presents the percent error in 
average iterations, executions, and percentage of total application 
execution time for an 8-way associative DAProf excluding those 
loops affected by function call interference. For those loops not 
affected by function call interference, the 8-way DAProf design 
provides excellent accuracy, with errors of only 4%, 3%, and 5% 
for average iterations, executions, and percentage of total 
application execution time, respectively. 

5. CONCLUSION 
The dynamic application profiler (DAProf) provides an efficient, 
non-intrusive profiler capable of accurately profiling an 
application’s execution. An 8-way associative DAProf can profile 
the application execution of a 495 MHz processor requiring only 
11% additional area with a profiling accuracy of 90%, 97% and 
95% for average iterations, loop executions, and estimated 
percentage of total application execution time.  

Current and future work includes incorporating support for 
monitoring function calls and function returns to overcome the 
function call interference briefly mentioned within this paper in 
order to improve the overall accuracy of the profiling results with 
minimal additional hardware requirements. Initial results indicate 
that by monitoring both loop and function execution behavior, the 
extended DAProf design can achieve a profiling accuracy of 98%, 
97%, and 95% for all profiling metrics. In addition, as many 

Figure 5. (a) Percent error in percentage of total application 
execution time and (b) percentage of total execution time captured 
for an 8-way associative DAProf versus the frequent loop detection 

profiler for MiBench consumer electronics applications.  
 

Figure 6. Example of Function Call Interference in which the 
execution a loop’s short backward branch within a function will 

lead to incorrectly resetting the InLoop flag of any loops in which 
that function is called.  

Figure 7. Percent error in average iterations, executions, and 
percentage of total application execution time (excluding loops 
with function interface) for an 8-way associative DAProf for the 
top ten loops of the MiBench consumer electronics applications. 
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(a) % Error in % of Total Execution Time 

0%

2%

4%

6%

8%

10%

lam
e

mad
cjp

eg
djp

eg

tiff
med

ian

tiff
dit

he
r

tiff
2rg

ba

tiff
2b

w

Ave
rag

e

Benchmark

%
 D

iff
er

en
ce

DAProf Frequent Loop Detection

(b) % of Total Execution Time Captured 

0%

20%

40%

60%

80%

100%

lam
e

mad
cjp

eg
djp

eg

tiff
med

ian

tiff
dit

he
r

tiff
2rg

ba

tiff
2b

w

Ave
rag

e

Benchmark

%
 D

iff
er

en
ce

DAProf Frequent Loop Detection

Main() { 
   ... 
 
   Loop A { 
      ... 
      FuncB ();
      ... 
   } 
 
   ...  
} 

FuncB() { 
   ... 
 
   Loop FuncB.1 { 
      ... 
   } // short backwards branch outside of  
     // outside of Loop A’s bounds      
 
   ... 
   return;                  
} 
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applications are multitasked and/or multithreaded, context switch 
interference will likely have similar detrimental affects of 
profiling accuracy. As such, future research efforts also include 
investigating efficient, minimally-intrusive, task-aware profiling 
methods for multitasked and multithreaded applications. 
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