
Non-Intrusive Dynamic Application Profiler
for Detailed Loop Execution Characterization

Ajay Nair, Roman Lysecky
Department of Electrical and Computer Engineering

University of Arizona
{ajaynair, rlysecky}@ece.arizona.edu

Abstract
Application profiling – the process of monitoring an application
to determine the frequency of execution within specific regions –
is an essential step within the design process for many software
and hardware systems. In this paper, we present an efficient
innovative, non-intrusive dynamic application profiler (DAProf)
capable of profiling an executing application by monitoring the
application’s short backwards branches and providing detailed
profiling statistics for characterizing loop execution behavior.
DAProf is ideally suited for hardware/software partitioning
approaches in which detailed loop execution information is
needed to provide accurate performance estimates. DAProf
provides a profiling accuracy of greater than 90% with only an
11% area overhead compared to a small ARM9.

Categories and Subject Descriptors
C.4 [Computer Systems Organization] Performance of Systems
– Measurement Techniques.

General Terms: Design, Performance.

Keywords: Profiling, nonintrusive, dynamic optimization,
embedded systems.

1. INTRODUCTION
Application profiling – the process of monitoring an application to
determine the frequency of execution within specific regions – is
an essential step within the design process for many software and
hardware systems. Profiling has long been utilized to identify the
most frequently executed regions of a software application such
that a developer can focus their efforts on optimizing those regions
[13]. Binary translation and dynamic optimization techniques rely
on dynamic profiling to determine frequently executed sequences
of instructions and improve performance by either caching binary
translation results or re-compiling the code sequences
[2][6][10][18]. Profiling has also been utilized to create several
specialized software [5][27] or hardware implementations [19],
from which an application can select at runtime which to execute
to improve performance or reduce power consumption. In
[3][11][21], profiling is used to detect frequent loops to map to a
small loop cache to reduce power consumption.

Profiling is a critical step within hardware/software
partitioning approaches in which an application is partitioned into
software executing on a microprocessor and one or more hardware
coprocessors. Application profiling is often utilized to determine
an application’s frequently executed regions, or critical kernels.
Partitioning these critical kernels to hardware has been shown to
provide application speedups of 10-100X [14][17][22][25]. Such
approaches are effective because many software applications
follow the 90-10 rule of thumb that states 90% of an application’s
execution time is spent executing 10% of the application’s code.

While static profiling is feasible for many applications,
dynamic profiling is essential for most dynamic optimization
techniques. For example, warp processing dynamically and
autonomously re-implements critical software kernels as hardware
coprocessors within an on-chip FPGA [22]. As with many
dynamic optimization approaches, warp processing relies on
accurate dynamic application profiling to determine which
software kernels are potential candidates for hardware
implementation.

Most existing profiling approaches introduce non-negligible
runtime overheads. For embedded systems, especially those with
real-time requirements, this runtime overhead can adversely affect
an application’s execution. In the case of real-time systems, which
are usually designed with very tight timing constraints, the
slightest run time overhead can lead to missed deadlines and
potential system failure. Hence, there is a need for dynamic, non-
intrusive profiling techniques that provide accurate and detailed
profiling statistics suitable for embedded and real-time systems.

In this paper, we present an efficient, non-intrusive dynamic
application profiler (DAProf) capable of profiling an executing
application by monitoring the application’s short backwards
branches and providing detailed loop execution statistics. In
Section 2, we provide an overview of previous profiling
approaches, specifically highlighting the non-intrusive, frequent
loop detection profiler presented in [12]. In Section 3, we present
our dynamic application profiler that provides detailed
information regarding loop execution behavior, including the
breakdown of loop executions versus average iterations per
execution – providing both additional profiling information and
improved accuracy compared to the frequent loop detection
profiler. In Section 4, we highlight the area requirements,
performance, and profiling accuracy of the DAProf design.

2. PREVIOUS WORK
A common software-based approach involves "instrumenting" the
application by adding code to count frequencies of the desired
code regions [13][16]. Software instrumentation is straightforward
and flexible, yet incurs significant runtime overhead, especially if
the granularity of the code regions being profiled is fine. To
reduce runtime overhead, other profiling approaches use statistical
sampling techniques [1][8][29]. Such methods either interrupt the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’08, October 19–24, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-469-0/08/10...$5.00.

23

microprocessor at certain intervals or create an additional software
task for profiling, and then read the program counter and other
internal registers to statistically determine execution behavior.
Again, for embedded systems, especially those with real-time
requirements, the slightest run time overhead can have significant
impact on the application execution.

Other profiling approaches rely on hardware integrated within
the microprocessor to assist software developers in profiling an
executing program [7][23][24][28]. Such hardware-assisted
profiling approaches utilize event counters or branch execution
statistics to identify application hotspots [7] or frequently executed
execution paths [23]. Although these hardware-assisted profiling
approaches may incur lower overheads compared to software-
based profiling methods, the runtimes overheads cannot be
ignored and incur similar ramifications.

Of notable interest, is the frequent loop detection profiler that
non-intrusively monitors the instruction addresses seen on the
memory bus and profiles loop iterations by monitoring short
backwards branches [12]. A short backwards branch is a branch
instruction whose target address has a short negative offset and is
typically used to branch backwards at the end of a loop. Whenever
a short backwards branch occurs, the frequent loop detection
profiler updates a small cache – perhaps just 16 entries – that
stores the frequencies of the short backwards branches. When any
of the registers storing the branch frequencies become saturated,
the profiler shifts all cache entries right by one bit, thereby
maintaining a list of relative branch execution frequencies while
ensuring all branch frequency do not eventually become saturated.

For hardware/software partitioning approaches utilizing
profiling to guide the partitioning process, the frequent loop
detection profiler can provide a relative ranking of loops to guide
the order in which loops are considered for hardware
implementation. However, without further simulation or analysis,
such limited profiling information may lead to suboptimal
hardware/software partitioning results as performance
improvements cannot be accurately estimated using only the
relative execution frequency. The breakdown between loop
executions and iterations per execution can have a significant
impact on performance due to communication and
synchronization requirements.

The speedup (SHW/SW) after partitioning one or more loops to
hardware can be estimated as follows:

()syncInitcomm

commloopHWloopSWSWSWHW

SWHW

SW
SWHW

TTExecsT

TTTTT
T

T
S

+=

++−=

=

*
)()(/

/
/

where, TSW is the software only execution time, THW/SW is the
execution of the partitioned application, TSW(loop) is the software
only execution time of the loops being partitioned to hardware,
THW(loop) is the hardware execution time of the partitioned loops,
and Tcomm is the communication requirements for initializing and
synchronizing with the hardware implementation. The
communication time can be calculated as the number of times the
hardware is executed (Execs) multiplied by the sum of the
initialization time (TInit) and synchronization time (TSync), where
TInit and TSync are the time required to transfer any required data
between the software and hardware before and after the
partitioned hardware loop execution. While the hardware
execution time can be estimated using total loop iterations, the
communication requirements depend on the number of times the

loop is executed and can have a significant impact on overall
speedup. Loops with larger executions and fewer iterations per
execution will have greater communication requirements
compared to similar loops with fewer executions but greater
iterations per execution.

Consider an application in which two potential loops, Loop A
and Loop B, have been identified as candidates for partitioning,
but hardware resources are only available to implement one
partitioned loop. As reported by the frequent loop detection
profiler, Loop A has total iterations of 10,000 whereas Loop B has
total iterations of 12,000. Furthermore, it is known or can be
estimated that Loop A and Loop B account for 33% and 40% of
total application execution time, respectively. Without additional
information, a hardware/software partitioning approach will select
Loop B to implement in hardware, as dictated by Amdahl’s Law.
However, if Loop A executes 5 times and iterates 2,000 times per
execution, and Loop B executes 6,000 times and iterates 2 times
per execution, the communication requirements of Loop B are
1200X greater and may severely impact the overall speedup. As a
result, Loop A may be a better candidate for partitioning. As such,
detailed loop execution information including loops executions
and iterations per execution are essential in order to avoid
suboptimal partitioning results.

3. DYNAMIC APPLICATION PROFILER
(DAPROF)
Figure 1 presents an overview of the dynamic application profiler
(DAProf), highlighting its integration within a microprocessor
based system and its internal profiling architecture. DAProf non-
intrusively monitors the microprocessor’s instruction bus to
determine the address of the currently executed instruction
whenever a short backwards branch is executed. The DAProf
design considers a short backwards branch as a branch instruction
whose target addresses is a negative offset of less than 1024,
which corresponds to small loops containing less than 256
instructions. In comparison, the frequent loop detection profiler
only considered loops with a smaller branch offset of 256, or 64
instructions. However, the most frequently executed loops within
several of the applications considered in this paper are larger than
would be supported by a branch offset of only 256, either as a
result of complex loop functionality or as a result of loops that
have been unrolled manually or during compilation.

While the DAProf could directly decode the instructions seen
on the instruction bus, we currently assume the microprocessor
provides a one bit output, sbb, indicating a short backwards
branch has been executed. Such support would require minor
modification to a microprocessors’ decoding logic. DAProf design
consists of a profiler FIFO for synchronizing between the
microprocessor and profiler, a profile cache that stores all relevant
profile statistics for those loops currently being profiled, and a
profiler controller that analyzes the short backwards branches to
update the profiling statistics within the profile cache.

3.1 Profiler FIFO
DAProf’s profiler FIFO monitors the microprocessor’s instruction
bus and sbb output signal. Whenever a short backwards branch
occurs, the profiler FIFO determines the branch instruction’s
address and offset and stores both values within a small internal
FIFO. The offset is the number of instructions within the identified
loop and is used along with the branch instruction’s address to
represent the beginning and end of each loop within the profiler.

24

In addition, the profiler FIFO is used to synchronize between
the microprocessor and internal DAProf design because the
microprocessor may operate at a higher clock frequency. Short
backwards branches do not occur on every clock cycle. Thus, the
internal DAProf profiler design does not need to operate at the
same frequency of the microprocessor. Any meaningful loop will
at least consist of two instructions in addition to the short
backwards branch. Hence, short backwards branches are expected
to occur no more than once every three instructions, implying the
internal DAProf design can operate at one third the frequency of
the microprocessor. However, the profiler FIFO should be large
enough to accommodate bursts of short backwards branches that
may occur periodically as the application executes. We
experimentally determined that a FIFO with only four entries is
sufficient for the applications considered in this paper.

3.2 Profile Cache
The profile cache is a small cache that maintains the current
profiling results and intermediate information needed for loop
identification, profiling statistics, loop execution monitoring, and
determining which profile cache entry should be replaced when
new loops are executed. We currently consider a 32 entry profile
cache, which is sufficient for profiling the embedded applications
considered within this paper.

3.2.1 Loop Identification
Profiled loops are identified within the profile cache by the
address of the loop’s short backwards branch, which serves as the
Tag entry for the cache, and by the loop’s Offset determined by
the profiler FIFO. Considering a 32-bit ARM processor and byte
addressable memory, the lower two bits for all instructions will be
identical. Hence, the profile cache’s Tag entry is a 30-bit entry
that stores the most significant bits of a loop’s short backwards
branch address. The Offset entry is an 8-bit entry that corresponds
to the number of instructions within the profiles loop. As
described earlier, both the Tag and Offset are determined by the
profiler FIFO and provide the mechanism for identifying the loop
bounds.

3.2.2 Iteration/Execution Statistics
The main profiling information stored within the profile cache
includes loop executions, average iterations per loop execution,
and loop iterations for the current execution.

Loop Executions provide the number of times a loop has been
executed throughout the application execution. As DAProf is
intended to monitor an application over extended execution
periods, regardless of the number of bits used to represent loop
executions, the number of loop executions will eventually become
saturated. DAProf utilizes a 16-bit entry for storing loop

executions that allows 65,536 loop executions to be profiled
without saturations.

The Current Iterations provides the number of times a loop
has iterated for the current loop execution and is stored within the
profile cache as a 10-bit entry. Thus, DAProf can accurately
profile loops with a maximum of 1024 iterations per executions,
which is well suited for most embedded applications.

The Average Iterations stores the average number of times a
loop iterates per loop execution. As many loops do not iterate a
fixed number of times per loop execution, the average iterations
cannot be accurately stored as an integer value. Instead, the profile
cache stores the average iterations as a 13-bit fixed point number
using 10 bits to represent the integer portion and 3 bits for the
fractional part. We note that the number of bits required to
represent the integer portion of the fixed point number is equal to
the number of bits used to store the current iterations.

3.2.3 Loop Execution Monitoring
The profile cache contains a 1-bit InLoop flag that is utilized to
indicate the loop is currently being executed. The InLoop flag is
essential in determining if the execution of a short backwards
branch corresponds to a new loop execution or an additional
iteration for the current execution.

3.2.4 Freshness & Replacement Policy
Although many replacement polices were considered and
analyzed, including least recently used and estimated total
instructions executed, the replacement policy incorporated within
the profile cache uses total loop iterations to determine which
entry within the profile cache will be replaced when a new loop is
executed, where the entry with the lowest total iterations will be
replaced. The total loop iterations are calculated as the product of
the average iterations and executions. While this policy performs
relatively well on its own, newly executed loops may not execute
or iterate quickly enough to avoid being immediately replaced.
We note that the frequent loop detection profiler also utilizes least
total iterations as the replacement policy and exhibits this
detrimental behavior when profiling several of the applications
considered within this paper, as further detailed in Section 4.3.

To solve this problem, DAProf’s profile cache includes a
unique 3-bit loop Freshness value that represents how recently a
loop has been executed or iterated, where a larger freshness
indicates the loop has been more recently executed. The freshness
value is utilized within the replacement policy to only consider
loops for replacement if the loops are not considered fresh – a
loop that is not fresh has a freshness value of zero. A 3-bit
freshness entry allows seven loops to be considered fresh and
allows newly executed loops to be profiled for an extended
duration before their profile cache entry will be considered for
replacement.

Figure 1. Dynamic Application Profiler (DAProf) consisting of Profiler FIFO, Profiler Controller, and Profile Cache. (Bit widths of profile
cache entries shown within parenthesis).

DAProf

µP

sbb

iAddr

D$

I$
sbb

iAddr
32

found

foundIndex

replaceIndex

D
AP

Ro
f F

IF
O

 sbb

iAddr

30
iOffset

8

Pr
of

ile
r

C
on

tr
ol

le
r

Profile Cache
Tag
(30)

Offset
(8)

CurrIter
(10)

Execs
(16)

InLoop
(1)

Fresh
(3)

AvgIter
(13)

…

Dynamic Application Profiler

25

3.2.5 Associativity
The Associativity of the profile cache potentially provides tradeoff
between cache size and cache performance with the accuracy of
the profiling results. With a fully associative profile cache, the
replacement policy must compare all entries within the cache to
determine the entry with the smallest total iterations, thereby
requiring large hardware resources and reducing the overall
performance of DAProf. Decreasing the associativity of the profile
cache provides increased performance and smaller area
requirements by reducing the number of entries the replacement
policy must consider. Finally, one must consider the relation
between the profile cache’s associativity and freshness. For a
profile cache with a small associativity and large maximum
freshness, all entries within the same cache set may be considered
fresh and should not be selected for replacement. To avoid this
potential problem, the maximum freshness should be no greater
than one half of the profile cache associativity.

3.3 Profiler Controller
Figure 2 provides pseudocode of the dynamic profiling of
DAProf’s profiler controller. The profiler controller interfaces
with the profiler FIFO and updates the profiling results for the
current loops within the profile cache. The profiler controller
receives the short backwards branch address (iAddr) and offset
(iOffset) from the profiler FIFO in addition to a found, foundIndex,
and replaceIndex signals from the profile cache. The found and
foundIndex signals indicate if the current short backwards branch
is found within the profile cache and at what location. The
replaceIndex provides the index for the loop entry that will be
replaced if the current short backwards branch is not found within
profile cache.

Whenever a short backwards branch is available from the
profiler FIFO, the profiler controller will determine if the loop is
found within the cache. If the loop is found and the loop is
currently executing – as indicated by the loop’s InLoop flag – the
short backwards branch execution indicates a loop iteration has
been detected and the loop’s current iterations are incremented.
Otherwise, if the loop is not currently being executed, a new loop
execution has been detected. For new loop executions, the profile
controller increments the loop’s executions, sets the InLoop flag,
sets the current iterations to one, decrements the freshness for all
other loops, and sets the freshness of the current loop to the
maximum freshness.

Finally, if the profiler controller detects that the loop’s
executions is saturated, the executions for all loops will be divided
by two – thereby handling executions saturations in the same
manner as the frequent loop detection profiler handles total
iteration saturations. However, in contrast to the frequent loop
detection profiler, saturations within DAProf will only affect the
accuracy of the loop executions without affecting the accuracy for
average loop iterations per execution. In addition to ensuring the
executions for any loop never becomes saturated, this approach
provides a mechanism for monitoring the dynamic nature of an
application in which older loops that were previously considered
important may no longer be executed. For example, initially, a
previously executed loop’s high total iterations may ensure the
loop is not replaced during profiling. However, after several
saturations are encountered, the reported total iterations will be
decreased relative to other loops and can be replaced if the loop is
no longer executed.

If a loop’s short backwards branch is not found within the
profile cache, the profiler controller will replace the cache entry
indicated by replaceIndex. The profiler controller initializes the

profile cache entry by setting the Tag and Offset to those of the
newly profiled loop’s, setting the executions to one, setting the
InLoop flag, setting the current iterations to one, decrementing the
freshness for all other loops, and setting the freshness of the newly
executed loop to the maximum freshness.

For all short backwards branches, the profiler controller
checks all entries of the profile cache whose InLoop flag is set to
determine if the application is still executing within those loops. If
a loop is no longer being executed, the profile controller resets the
InLoop flag and updates the loop’s average iterations.

The average iteration calculation has a significant impact on
the profiler’s accuracy, hardware requirements, and performance.
For example, a straightforward method for calculating average
iterations computes the exact average using the equation:

i

iii
i Exec

CurrIterExecAvgIterAvgIter +−=)1(*
,

in which the average iterations are calculated as the previous total
iterations – determined by multiplying the previous average
iterations by the previous executions – plus the current iterations
divided by the current executions. This method for calculating
average iterations provides excellent accuracy across the entire
application execution but requires floating point addition,
multiplication, and division. Such an implementation would be too
costly in terms of area and performance.

Figure 2: Pseudocode for DAProf’s profiler controller.

DAProf (iAddr, iOffset, found, foundIndex, replaceIndex):
1. if (found)
2. if (InLoop[foundIndex])
3. CurrIter[foundIndex] = CurrIter[foundIndex] + 1
4. else {
5. for all i, Fresh[i] = Fresh[i] – 1
6. Execs[foundIndex] = Execs[foundIndex] + 1
7. CurrIter[foundIndex] = 1
8. InLoop[foundIndex] = 1
9. Fresh[foundIndex] = MaxFresh
10. if (Execs[foundIndex] = MaxExecs)
11. for all i, Execs[i] = Execs[i] >> 1
12. }
13. else
14. for all i, Fresh[i] = Fresh[i] – 1
15. Tag[replaceIndex] = iAddr
16. Offset[replaceIndex] = iOffset
17. CurrIter[replaceIndex] = 1
18. AvgIter[replaceIndex] = 0
19. Execs[replaceIndex] = 1
20. InLoop[replaceIndex] = 1
21. Fresh[replaceIndex] = MaxFresh
22. }
23. for all i, if (inLoop[i] && !(iAddr <= Tag[i] &&
24. iAddr >= Tag[i]-Offset[i])) {
25. InLoop[i] = 0
26. AvgIter[i] = (AvgIter[i]*7 + CurrIter[i])/8
27. }

26

Alternatively, the profiler controller could perform the same
calculation using integer multiplication and division. However,
this approach leads to inaccurate profiling. As the number of
executions increases, the denominator of the calculation will
increase to the point that regardless of a loop’s current iterations,
the resulting average iterations will remain unchanged. Figure 3
presents the average iterations calculation for the floating point
exact average iteration calculation, integer exact average iteration
calculation, and the real average iterations over the past 100 loop
executions for a frequently executed loop within the cjpeg
application of the MiBench benchmark suite [15]. As
demonstrated from the real average iterations over the past 100
loop executions, the loop being profiled has significant variation
in iterations per execution. While the floating point exact average
calculation provides the correct average iterations across the entire
application execution, it is unable to provide any means for
detecting or adjusting to such dynamic changes in execution
behavior. On the other hand, the integer exact average iterations
calculation is completely inaccurate. After several loop
executions, the calculated average iterations remain constant for
the remainder of the application execution.

Instead of relying on an exact average iteration calculation,
the DAProf’s profiler controller utilizes a weighted average in
which the previous average iterations accounts for 7/8th and the
current iterations account for 1/8th of the calculated average
iterations, as provided by the following equation:

i
i

i CurrIterAvgIterAvgIter +=
8

*7 ,

in which the average iteration is calculated using a fixed point
representation described earlier. This ratio based average iteration
calculation can be efficiently implemented in hardware while
providing excellent accuracy. Using the 13-bit fixed point
representation to store the average iterations, this calculation is
equivalent to:

8
*7 ii

i
CurrIterAvgIterAvgIter +

=

Figure 3 further presents the 7/8th ratio average iteration
calculation for the selected loop within the cjpeg application. By
providing a weighted average, the ratio average iteration
calculation is able to capture dynamic changes in loop executions
– most closely tracking the real average iterations. Although a
7/8th ratio is utilized within the current DAProf design, other ratios
– such as 15/16th or 31/32nd – may be utilized to control how
quickly or slowly the profiler will adapt to changing loop
execution behavior with anticipated tradeoffs of area, accuracy,
and speed at which the profiler design can adapt to such changes.

4. EXPERIMENTAL RESULTS

4.1 Area and Performance
We consider three alternative profiler implementations including a
fully associative, 16-way associative, and 8-way associative
DAProf designs. DAProf was implemented in Verilog and
synthesized using Synopsys Design Compiler targeting a UMC
0.18 µm technology. For all implementations, the profiler FIFO
has a maximum operating frequency of 934 MHz. Because the
profiler FIFO can only execute three times faster than the profile
cache and controller, DAProf’s overall operating frequency is
limited by profile cache and profiling controller. For a fully
associative implementation, DAProf requires 107,477 gates (1.75

mm2) and can execute at a maximum operating frequency of 415
MHz. The area required for the fully associative DAProf design is
approximately 20% of the area of an ARM9 processor
implemented within the same UMC 0.18 µm technology. The 16-
way associative DAProf design requires 74,744 gates (1.22 mm2)
with a maximum operating frequency of 438 MHz. Finally, the 8-
way associative DAProf design requires only 59,036 gates (0.96
mm2) with a maximum operating frequency of 495 MHz. The 8-
way associative DAProf design requires only 11% of the area of
an ARM9 processor and is 45% smaller and 20% faster than the
fully associative DAProf design.

4.2 Profiling Accuracy
To analyze the accuracy of the DAProf design, we compare the
profiling results of DAProf with that of an accurate simulation
based profiling method capable of fully profiling nested loop
executions and iterations, function calls and executions, as well as
recursive function calls [26]. We profiled the various consumer
electronics applications provided within the MiBench benchmark
suite [15] using the fully associative, 16-way associative, and 8-
way associative DAProf designs.

For the top ten loops of each application, we analyzed the
profiling accuracy in terms of percent error in reported average
iterations, executions, and percentage of total application
execution time, as presented in Figure 4 for a fully associative, 16-
way associative, and 8-way associative DAProf designs.

The percent error in average iterations is calculated as the sum
of differences between the reported and actual average iterations
divided by the sum of the actual average iterations as follows:

∑

∑

=

=

−

= 10

1
)(

10

1
)()(

%

i
actuali

i
actualiDAProfi

error

AvgIter

AvgIterAvgIter

AvgIter

On average, DAProf provided good profiling results with an error
in reported average iterations of 11%, 11%, and 10% for a fully
associative, 16-way associative, and 8-way associative
implementations, respectively. In the best case, a 16-way
associative DAProf design has an error of only 0.5% in reported
average iterations for the application tiffdither. However, across
all applications, the 16-way associative DAProf design has the
lowest accuracy. For the applications mad and tiff2rgba, the

Figure 3. Comparison of floating point exact average calculation,
integer exact average calculation, 7/8th ratio average calculation,
and real average over the past one hundred loop executions for a

frequently executed loop within cjpeg.

0

5

10

15
20

25

30
35

0 2000 4000 6000 8000 10000 12000
Loop Execution

Av
er

ag
e

Ite
ra

tio
ns

Exact (Float) Exact (Int)
Ratio Real (100)

27

reported average iterations exhibit an error of 35% and 30%. As
further discussed in Section 4.4, this profiling inaccuracy is caused
by function call interference that inadvertently results in the
InLoop flag being incorrectly reset.

Because of unavoidable execution saturations, the loop
executions reported by DAProf may not directly correspond to the
actual total number of loop executions. Thus, the percent error in
reported loop executions is calculated as follows:

10

10

1
10

1
)(

)(
10

1
)(

)(

%

∑
∑∑=

==

−

=

i

j
actualj

actuali

j
DAProfj

DAProfi

error

Exec

Exec

Exec

Exec

Exec ,

in which the number of execution for each loop is calculated as
that ratio of the reported loop executions of each loop to the total
loop executions of the top ten loops. On average, the DAProf
design has an error in reported loop executions of only 3% for all
implementations.

Finally, as the percentage of total application execution time is
often utilized to determine the critical kernels of an application,
we estimated the percentage of total application execution time for
each profiled loop using the DAProf profiling results. The percent
error in percentage of application execution time is simply the
average absolute difference between the estimated and actual
percentage application execution time for all top ten loops,
calculated using the following equation:

10

%%

%

10

1
)()(

%

∑
=

−

= i
actualiDAProfi

error

ExecTimeExecTime

ExecTime

While function call interference may lead to errors in reported
average iterations, the combined accuracy of average iterations
and executions results in only a 5% error in the estimated
percentage of application execution time for all DAProf
implementations.

Overall, all three DAProf implementations performed equally
well. While the fully associative design may be beneficial for
some applications, for the applications considered, an 8-way
associative DAProf design achieves similar accuracy with smaller
hardware requirements and higher performance.

4.3 Comparison with Frequent Loop
Detection Profiler
While DAProf provides additional profiling information beyond
that available with the frequent loop detection profiler, the results
from both profilers can be utilized to estimate each loop’s
percentage of total application execution. Figure 5 (a) presents the
percent error in estimated percentage of total application
execution time of an 8-way associative DAProf design compared
to the frequent loop detection profiler for the various embedded
applications considered. Although the frequent loop detection
profiler presented in [12] utilized a short backward branch
distance of 256, we consider a short backwards branch distance of
1024 in these results to provide a fair comparison between the two
approaches. We further note that utilizing a short backward
distance of only 256 would lead to reduced accuracy for the
benchmarks considered. On average, DAProf provides a marginal
increase in profiling accuracy of 95% compared to the frequent

loop detection profiler’s accuracy of 94%, with DAProf providing
better profiling accuracy for all but one application.

More interestingly, Figure 5 (b) presents the percentage of
total application execution time captured by the top ten profiled
loops for an 8-way associative DAProf design compared to the
frequent loop detection profiler for the various embedded
applications considered. On average, DAProf is able to capture
78% of the total application execution time, compared to 62%
captured by the frequent loop detection profiler. This increase is
largely the result of DAProf’s freshness calculation that ensures
recently executed loops are not immediately replaced. For
example, for the application djpeg, the frequent loop detection
profiler does not capture the second most frequently executed

Figure 4. Percent error in average iterations, executions, and
percentage of total application execution time of DAProf for

MiBench consumer electronics applications.

(b) 16-way Associative

0%

10%

20%

30%

40%

lam
e

mad
cjp

eg
djp

eg

tiff
med

ian

tiff
dit

he
r

tiff
2rg

ba

tiff
2b

w

Ave
rag

e

Benchmark

%
 D

iff
er

en
ce

Average Iterations Executions % Execution Time

(c) 8-way Associative

0%

10%

20%

30%

40%

lam
e

mad
cjp

eg
djp

eg

tiff
med

ian

tiff
dit

he
r

tiff
2rg

ba

tiff
2b

w

Ave
rag

e

Benchmark

%
 D

iff
er

en
ce

Average Iterations Executions % Execution Time

(a) Fully Associative

0%

10%

20%

30%

40%

lam
e

mad
cjp

eg
djp

eg

tiff
med

ian

tiff
dit

he
r

tiff
2rg

ba

tiff
2b

w

Ave
rag

e

Benchmark

%
 D

iff
er

en
ce

Average Iterations Executions % Execution Time

28

loop, which accounts for 23% of the total application execution
time. As a result, whereas DAProf captures 94% of the total
execution time for this application, the frequent loop detection
profiler only captures 55% of the total execution time.

4.4 Function Call Interference
As previously mentioned, function call execution from within a
loop currently being profiled can lead to profiling interference in
which the InLoop flag of a currently executing loop is incorrectly
reset. As illustrated in Figure 1, consider a loop, Loop A, that calls
a function, Func B, where Func B also contains a loop, Func B.1.
During execution of Loop A, the InLoop flag will initially be set
and will remain set until a short backwards branch is executed
outside of Loop A’s loop bounds. When the loop Func B.1 is
executed, the initial DAProf design will interpret the execution of
Func B.1’s short backwards branch as indicating Loop A is no
longer being executed. This execution behavior results in Loop
A’s InLoop flag being reset and average iterations being updated.
Furthermore, when Func B returns and Loop A iterates again, this
iteration will incorrectly be interpreted as a new loop execution.
Within the application mad, a loop that is affected by function call
interference is incorrectly reported as executing 154 times with
average iterations per execution of 252, whereas the correct loop
executions and average iterations are 2772 and 14, respectively.
Notice that the total loop iterations – calculated as the product of
executions and average iterations – are identical.

While we are currently developing an extended DAProf
design with direct support for function call execution with very
promising initial results, Figure 7 presents the percent error in
average iterations, executions, and percentage of total application
execution time for an 8-way associative DAProf excluding those
loops affected by function call interference. For those loops not
affected by function call interference, the 8-way DAProf design
provides excellent accuracy, with errors of only 4%, 3%, and 5%
for average iterations, executions, and percentage of total
application execution time, respectively.

5. CONCLUSION
The dynamic application profiler (DAProf) provides an efficient,
non-intrusive profiler capable of accurately profiling an
application’s execution. An 8-way associative DAProf can profile
the application execution of a 495 MHz processor requiring only
11% additional area with a profiling accuracy of 90%, 97% and
95% for average iterations, loop executions, and estimated
percentage of total application execution time.

Current and future work includes incorporating support for
monitoring function calls and function returns to overcome the
function call interference briefly mentioned within this paper in
order to improve the overall accuracy of the profiling results with
minimal additional hardware requirements. Initial results indicate
that by monitoring both loop and function execution behavior, the
extended DAProf design can achieve a profiling accuracy of 98%,
97%, and 95% for all profiling metrics. In addition, as many

Figure 5. (a) Percent error in percentage of total application
execution time and (b) percentage of total execution time captured
for an 8-way associative DAProf versus the frequent loop detection

profiler for MiBench consumer electronics applications.

Figure 6. Example of Function Call Interference in which the
execution a loop’s short backward branch within a function will

lead to incorrectly resetting the InLoop flag of any loops in which
that function is called.

Figure 7. Percent error in average iterations, executions, and
percentage of total application execution time (excluding loops
with function interface) for an 8-way associative DAProf for the
top ten loops of the MiBench consumer electronics applications.

0%

10%

20%

30%

40%

lam
e

mad
cjp

eg
djp

eg

tiff
med

ian

tiff
dit

he
r

tiff
2rg

ba

tiff
2b

w

Ave
rag

e

Benchmark

%
 D

iff
er

en
ce

Average Iterations Executions % Execution Time

(a) % Error in % of Total Execution Time

0%

2%

4%

6%

8%

10%

lam
e

mad
cjp

eg
djp

eg

tiff
med

ian

tiff
dit

he
r

tiff
2rg

ba

tiff
2b

w

Ave
rag

e

Benchmark

%
 D

iff
er

en
ce

DAProf Frequent Loop Detection

(b) % of Total Execution Time Captured

0%

20%

40%

60%

80%

100%

lam
e

mad
cjp

eg
djp

eg

tiff
med

ian

tiff
dit

he
r

tiff
2rg

ba

tiff
2b

w

Ave
rag

e

Benchmark

%
 D

iff
er

en
ce

DAProf Frequent Loop Detection

Main() {
 ...

 Loop A {
 ...
 FuncB ();
 ...
 }

 ...
}

FuncB() {
 ...

 Loop FuncB.1 {
 ...
 } // short backwards branch outside of
 // outside of Loop A’s bounds

 ...
 return;
}

29

applications are multitasked and/or multithreaded, context switch
interference will likely have similar detrimental affects of
profiling accuracy. As such, future research efforts also include
investigating efficient, minimally-intrusive, task-aware profiling
methods for multitasked and multithreaded applications.

6. REFERENCES
[1] Anderson, J., et al. Continuous Profiling: Where Have All

the Cycles Gone? 16th ACM Symp. of Operating Systems
Design, 1997.

[2] Bala, V., E. Duesterwald, S. Banerjia. Dynamo: A
Ttransparent Runtime Optimization System, Conf. on
Programming Language Design and Implementation,
2000.

[3] Bellas, N., et al. Energy and Performance Improvements
in Microprocessor Design Using a Loop Cache. ICCD,
1999.

[4] Calder, B., P. Feller, A. Eustace. Value Profiling. MICRO,
1997.

[5] Chung, E.Y., L. Benini and G. De Micheli. Automatic
Source Code Specialization for Energy Reduction.
ISLPED, 2001.

[6] Chernoff, A. Herdeg, M. Hookway, R. Reeve, C. Rubin,
N. Tye, T. Bharadwaj Yadavalli, S. Yates, J. FX!32 A
Profile-Directed Binary Translator, IEEE Micro, Vol 18,
No. 2, pp. 56-64, 1998.

[7] Conte, T. M., Patel, B. A., Menezes, K. N., and Cox, J. S.
1996. Hardware-based profiling: an effective technique for
profile-driven optimization. International Journal of
Parallel Programming, Vol. 24, No. 2, pp. 187-206, 1996.

[8] Dean, J., et al. ProfileMe: Hardware Support for
Instruction-Level Profiling on Out-of-Order Processors.
MICRO, 1997.

[9] Diaconescu, A., A. Mos, J. Murphy. Automatic
Performance Management in Component Based Software
Systems, International Conference on Autonomic
Computing, May 2004.

[10] Ebcioglu, K., E. Altman, M. Gschwind, S. Sathaye.
Dynamic Binary Translation and Optimization.
Transactions on Computers, Vol 50, June 2001.

[11] Gordon-Ross, A., S. Cotterell, F. Vahid. Exploiting Fixed
Programs in Embedded Systems: A Loop Cache Example.
IEEE Computer Architecture Letters, January 2002.

[12] Gordon-Ross, A., F. Vahid. Frequent Loop Detection
using efficient Non-Intrusive On-Chip Hardware. IEEE
Transaction on Computers, Vol 54, October 2005.

[13] Graham, S.L., P.B. Kessler, M.K. McKusick. gprof: a Call
Graph Execution Profiler. Symposium on Compiler
Construction, 1982.

[14] Guo, Z., Buyukkurt, B., Najjar, W., Vissers, K. Optimized
Generation of Data-Path from C Codes. Design
Automation and Test in Europe Conference (DATE), pp.
112-117, 2005.

[15] Guthaus, M., J. Ringenberg, D. Ernst, T. Austin, T.
Mudge, R. Brown. MiBench: A Free, Commercially
Representative Embedded Benchmark Suite. Workshop
on Workload Characterization, 2001.

[16] Hazelwood, K., A. Klauser. A Dynamic Binary
Instrumentation Engine for the ARM Architecture. Conf.
on Compiler, Architecture and Synthesis for Embedded
Systems (CASES), 2006.

[17] Keane, J., C. Bradley, C. Ebeling. A Compiled Accelerator
for Biological Cell Signaling Simulations. International
Symposium on Field-Programmable Gate Arrays (FPGA),
pp. 233-241, 2004.

[18] Klaiber, A. The Technology Behind Crusoe Processors.
Transmeta Corporation, http://www.transmeta.com, 2000.

[19] Lakshminarayana, G., et al. Common-Case Computation:
A High-Level Technique for Power and Performance
Optimization. Design Automation Conference (DAC),
1999.

[20] Larus, R. James, Schmarr Eric. EEL: Machine
Independent Executable Editing. Conference on
Programming Language Design and Implementation,
1995.

[21] Lee, L.H., Moyer, B., Arends, J. Instruction Fetch Energy
Reduction Using Loop Caches for Embedded
Applications with Small Tight Loops. Intl. Symp. on Low
Power Electronics and Design, 1999.

[22] Lysecky, R., G. Stitt, F. Vahid. Warp Processors. ACM
Transactions on Design Automation of Electronic Systems
(TODAES), Vol. 11, No. 3, pp. 659 - 681, 2006.

[23] Merten, M. C., Trick, A. R., George, C. N., Gyllenhaal, J.
C., and Hwu, W. W. 1999. A hardware-driven profiling
scheme for identifying program hot spots to support
runtime optimization. SIGARCH Computer Architecture
News, Vol. 27, No. pp. 136-147, 1999.

[24] Sprunt, B. Pentium 4 Performance Monitoring Features.
IEEE Micro, Vol. 22, July 2002.

[25] Venkataramani, G., W. Najjar, F. Kurdahi, N.
Bagherzadeh, W. Bohm. A Compiler Framework for
Mapping Applications to a Coarse-grained Reconfigurable
Computer Architecture. Conf. on Compiler, Architecture
and Synthesis for Embedded Systems, 2001.

[26] Villarreal, J., R. Lysecky, S. Cotterell, F. Vahid. Loop
Analysis of Embedded Applications. UCR Techn. Report
UCR-CSE-01-03, 2001.

[27] Yellin, D. M. Competitive Algorithms for the Dynamic
Selection of Component Implementations, IBM Systems
Journal, Autonomic Computing, Vol. 42, 2003.

[28] Zagha, M., B. Larson, S. Turner, M. Itzkowitz.
Performance Analysis Using the MIPS R10000
Performance Counters. Supercomputing, Nov. 1996.

[29] Zhang, X., et al. System Support for Automatic Profiling
and Optimization. Intl. Symp. on Operating Systems
Principles, 1997.

30

