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ABSTRACT
Detailed or cycle-accurate/bit-accurate (CABA) simulation
is a critical phase in the design flow of embedded systems.
However, with increasing system complexity, full detailed
simulation is prohibitively slower than the hardware being
simulated. In this paper, we present an approach that uses
the sampling technique to speed up the design flow of Multi-
processor System-on-Chip (MPSoC) systems. Based on the
dynamic behavior of the applications running concurrently,
our method dynamically chooses between multiple granular-
ities of the sampling phase. The similarities of the execu-
tion phases for all possible granularities are first analyzed,
then transitions between phase overlaps are discretized. To
facilitate the detection of repetitions, one phase, with an
appropriate granularity, is chosen per process. Unlike most
other proposals, the associated performance is usually ac-
curate enough not to need repeated resampling. The use of
checkpointing in conjunction with our approach is simplified
because the amount of the needed disk space is significantly
reduced. Experimental results show that the simulation of
concurrent heterogeneous applications can be accelerated by
a factor of up to 60x, while maintaining an average perfor-
mance estimation error lower than 5%.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support
Systems; C.4 [Performance of Systems]: measurement
techniques, modeling techniques; B.8.2 [Performance and
Reliability]: Performance Analysis and Design Aids

General Terms
Design, Performance, Measurement
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1. INTRODUCTION
Embedded and mobile system design relies heavily on sim-

ulators to evaluate and validate new platforms before im-
plementation. This process of Design Space Exploration
(DSE), consists in evaluating the performance and the power
consumption of a large possible set of system configurations
at the micro-architectural level. Nevertheless, as technolog-
ical advances allow the realization of more complex circuits,
simulation time is considerably increasing. Consequently,
conventional cycle-accurate simulation tools risk provoking
bottlenecks in the design flow of future high performance
Multiprocessor Systems-on-Chip (MPSoC).

In this paper, we build upon the use of application sam-
pling technique [17, 21] to reduce simulation time for parallel
heterogeneous embedded applications. By “heterogeneity,”
we refer to large differences in the behavior and the per-
formance of applications running concurrently rather than
to the changes in behavior within each application phases.
The basic principle of sampling is to simulate only a small
representative set of the application intervals, called phase
samples, in order to estimate the overall application per-
formance [6, 11, 12, 13, 14]. Intervals with known perfor-
mance estimates are either skipped, thus requiring check-
points of the system state after the skipped intervals, or
simulated with simple fast-forwarding (or functional simu-
lation). Checkpointing is usually associated with large disk-
space overhead, while fast-forwarding is usually associated
with additional simulation cycles.

One of the complexities associated with the use of sam-
pling to accelerate simulation in multiprocessor systems is
the determination of the representative parallel phases that
are executed simultaneously by different processors. As par-
allel phase overlaps depend on the architectural configura-
tion, it is impossible to determine these concurrent appli-
cation phase overlaps a priori. Additionally, phase exe-
cution times depend on the preceding executed phases in
cases of inter-phase dependency. Inter-phase sensitivity is
architecture-dependent and cannot be taken into account
during the static profiling step of the application. For large
samples, this relationship may have small influence on the
simulation accuracy. However, small samples are gener-

217



ally preferred in order to obtain the desired high simulation
speedup to explore a large design space. Such difficulties
mostly arise in MPSoC systems due to the high level of het-
erogeneity in the concurrently running applications.

Among recently proposed approaches, the co-phase matrix
approach [6] relies on sampling overlaps and consequently
every overlap measurement is taken multiple times to achieve
an acceptable level of accuracy. This approach is extended
to support un-simulated overlaps by Biesbrouck et al. [5].
The main difficulty with this approach is the determination
of the percentage of samples needed to achieve an accept-
able level of accuracy. This is especially true for applications
with extremely large behavioral differences.

Another recent approach, adaptive sampling [18] tries to
establish deterministic overlap scenarios by adopting two
complementary mechanisms: 1) discretization of the over-
lap boundaries using simulation barriers that define when
to start and to end overlaps, and 2) detection of repeti-
tion in the simulation by matching multi-phase strings from
each process under consideration. The main objective of dis-
cretizing overlaps of phase strings is to guarantee sampling
accuracy by generating precise overlaps, allowing accurate
estimation of performance for each overlap. One advantage
of this approach is that it does not require the re-sampling
of recurrent overlaps of phase strings because of its precise
performance estimates.

Simulating many heterogeneous applications simultane-
ously using the approaches mentioned above faces several
challenges. For co-phase matrix approach, the sampling
transition increases with the number of overlapping threads,
as shown in Figure 1.a. The overlap periods are also short-
ened as the number of joint scenario increases for the three
consecutive cophases, labeled a1;b1;c1. The idea that each
encountered phase overlap should be taken as representative
of all such overlap scenarios is severely tested. For instance,
the overlap a1;b1;c1, in Figure 1.a, appears four times. All
represent different joint phase scenarios and different num-
ber of simulated instructions; thus, it is not safe to assume
that the execution of a phase is homogeneous or that any
part of the phase is representative of the whole phase. Gen-
erally, SimPoint [17] detects similar phases, based on their
basic block distribution, but cannot guarantee that the be-
havior within a phase is homogeneous. A special case of
phase homogeneity may appear associated with large regu-
lar loops. In general, the more joint scenarios, the more the
samples needed to achieve acceptable accuracy.

On the other hand through, adaptive sampling [18], shown
in Figure 1.b, can easily achieve good levels of accuracy but
the acceleration of simulation is reduced because adaptive
sampling is very conservative when detecting similarity. The
main source of this conservatism is the phase string matching
process that is associated with detecting repeated overlaps.
As the number of threads increases, the phase string length
also increases and thus detecting repeated scenarios becomes
less likely.

In the multigranularity sampling approach (Figure 1.c),
proposed in this paper, we maintain the accuracy of the
process defining discrete overlaps. In this way, we guarantee
the detection of repeated scenarios and we maintain the sim-
plicity by reducing the phase string length. Our approach
involves the following steps: each thread is analyzed offline
for multiple levels of granularity that can be encountered
at runtime. Fine-granularity is usually used as a base and

then coarser granularities are composed and analyzed. This
one-time low-cost offline analysis allows simulation times to
be decreased as follows: at the end of each discrete simula-
tion point, the appropriate sample granularity is chosen for
each process so that only one sample is contributed by each
process while maintaining a perfect overlap of the samples
from all processes. This strategy of one sample per-process
allows repeated behaviors to be detected much more easily.
The simulation time is greatly reduced because all repeated
behaviors are detected. This approach insures a high level of
accuracy because of the discrete overlap of appropriate-size
samples from each application and because of the precise
offline analysis of these multi-granularity samples. Our ap-
proach offers significant gains when simulating large number
of processes, with the expected performance heterogeneity.

To leverage the benefit of our sampling technique, we in-
vestigate minimizing the overhead associated skipping un-
simulated intervals based on checkpointing. We show that
multigranularity sampling allows choosing a few represen-
tative checkpoints, thus reducing the space needed to hold
these checkpoints. In fact, the representative checkpoints
can easily reside in physical memory, due to the small mem-
ory space needed, during simulation instead of having them
on hard-drive. Consequently, the process of restoring the
system state based on the few memory-resident checkpoints
becomes very efficient.

In this paper, we make two main contributions; we define
multi-granularity approach for speeding up the simulation
of concurrent heterogeneous parallel applications; second,
we demonstrate that, by using our method, checkpointing
can be simplified by reducing the overhead associated with
storing system states.

The rest of this paper is organized as follows. An overview
of related work on existing simulation acceleration tech-
niques is presented in Section 2. Then, our multi-granularity
approach sampling is detailed in Section 3. The simplifi-
cation of checkpointing technique based on our approach
is presented in Section 4. The evaluation of the proposed
approach, in terms of estimation accuracy and simulation
speedup, is given in Section 5. In that section, we also com-
pare our approach to the adaptive sampling method. Fi-
nally, we present our conclusions in Section 6.

2. RELATED WORK
Design Space Exploration (DSE) is usually accelerated in

two ways:

1. By reducing the number of architectural alternatives
that need to be evaluated and steering the search to-
wards the most promising configuration part of the
design space using for instance smart heuristics [8, 1],
or

2. By reducing the time needed for performance and power
consumption evaluations associated with each design
alternative.

In this paper, we deal with the second alternative. In this
context, several approaches are possible. In Del Valle et
al. [19] and J. Schnerr et al. [16] simulation are accelerated
by using an FPGA-based emulation framework. Both of
these two works allow a large range of statistics to be ex-
tracted rapidly from the MPSoC components. Moreover,
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Figure 1: Different approaches to multiprocessor sampling. Each block corresponds to a phase of the appli-
cation.

the results obtained are accurate and offer good accelera-
tion factor, but require a long development phase and an
expensive FPGA development environment. Statistical sim-
ulation [15], analytical modeling [10] and transactional level
modeling (TLM) [7, 2] have also been widely studied re-
cently. These approaches have some interesting features but
are very complex to implement for MPSoC. In addition, they
offer generally a reduced speedup factor.

Simulation by application sampling is another approach to
reduce simulation time. In such methods, only a small por-
tion of the application is simulated in detail. The rest of the
application is either skipped or simulated at the functional
level, thus reducing the total simulation time. Two sam-
pling methods, SMARTS [21] and SimPoint [17], are com-
monly used to explore architectural designs. SMARTS relies
on very short periodic samples of detailed simulation. Sim-
Point, on the other hand, uses longer representative sam-
ples of detailed simulation. Each sample corresponds to a
distinct application phase. To determine these phases, the
application’s run is divided into intervals of either a fixed
or variable number [13] of instructions that are classified
according to the similarity of the basic block distribution.
SimPoint accelerates the simulation by exploiting the fact
that intervals classified as similar (same phase) have almost
identical behavior, making it enough to simulate only one
representative sample from each phase in CABA. Kihm et
al. [12] combined the strengths of the above two methods in
a technique called PGSS-SIM. By tracking phase behavior
during simulation, intelligent decisions can be made on the
intervals to perform short periods of detailed simulation. Re-
cently, several studies have applied the sampling technique
to multi-context architectures, such as multi-thread proces-
sors or multi-processor architectures.

The method proposed by Biesbroucky et al. [3], first com-
bines phases into what is called a co-phase, and then sim-
ulates the recurring co-phases once. Because these phases

are not generally homogeneous, overlapping the same couple
of phases results in multiple performance estimates. Multi-
ple samples of co-phase overlap are reportedly needed [6]
to achieve accurate performance predictions. However, for
a given simulation accuracy, it is difficult to determine the
number of samples needed a priori. Namkung et al. [14]
applied this co-phase approach to multi-processor architec-
tures. They also noticed that simulation acceleration di-
minishes when there is a rapid increase in the number of
phase combinations. In their solution, the number of simu-
lation samples is reduced by synthesizing samples from sim-
ilar phase combinations. Kihm et al. [11] extended their
original PGSS-SIM method to multi-context simulation in a
technique called CoGS-sim. The idea behind this technique
is that, each program is fast-forwarded based on its IPC,
measured during the last detailed sample.

In order to eliminate the need of resambling while assur-
ing a high level of accuracy in multiprocessor performance
estimation, Tawk et al. [18] proposed the adaptive sampling
approach. Both multi-granularity sampling and adaptive
sampling try to discretize the overlaps between overlapping
applications running concurrently on the system. This dis-
crete overlap allows accurate performance estimates to be
obtained without resampling the same overlap. The adap-
tive sampling approach consists of the following two steps:

1. Program tracing and phase identification: This
step is accomplished once for all the evaluated configu-
rations in the DSE. The interval size must be specified
by the user, for instance 50K instructions.

2. Generation and use of clusters to accelerate the
simulation: For each processor, consecutive simu-
lated phases are combined together to form a phase
string. A cluster of strings (CS) consisting of p par-
allel strings is generated dynamically, where p is the
number of processor cores. Each new CS executed at
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the CABA level is allocated an entry in the cluster of
string table (CST). The simulation begins by searching
whether or not one entry in the CST corresponds to
the next phases from the program tracing. If a match
is found, then the next CS is skipped. If no match is
found, then a detailed simulation is performed. At the
end of every simulation interval, each processor esti-
mates the remaining cycles so that all other processors
finish their intervals currently in progress. If the num-
ber of cycles remaining is less than a given threshold
for all processors, the processor stops the simulation
and waits at a simulation barrier. These simulation
barriers represent boundaries between clusters.

Clusters containing the same parallel phase strings have the
same behavior and thus give the same performance. In
the next sections, we will compare our proposal with this
scheme.

3. MULTI-GRANULARITY SAMPLING
FOR MPSOC

The multi-granularity sampling approach responds to the
need to execute different number of instructions from con-
current heterogeneous applications during the same simula-
tion cycles. Traditionally for each application, a single phase
trace is generated and a phase classification technique (such
as Simpoint) is used to detect similarity. In our approach,
we extend the analysis to all the granularities that can be en-
countered during runtime. The same start point of program
execution is associated with multiple classifications based on
the granularity of the phase (instruction count), as will be
detailed in the following subsections.

3.1 First step: Phase matrix creation
This first step is realized once during all the DSE process.

It starts by generating a phase-ID traces for each applica-
tion individually using a rapid functional simulation. These
traces are neither dependent on the concurrent processes
on the other processors, nor are they dependent on a spe-
cific MPSoC architectural configuration. This first stage is
realized as follows: Each application is decomposed into in-
tervals of granularity order of 1 (50K instructions in the ex-
periments). For each interval, a basic block vector (BBV),
containing the frequencies of executed basic blocks in the
corresponding interval, is generated. A phase-ID trace is
then generated by examining the similarity between these
BBVs using SimPoint [17] classification. Other classifica-
tion tools can also be used for this stage.

Using the same starting points (i.e, a discretization point
of 50K instructions), overlapping samples of coarser gran-
ularity (100K, 150K, ..., etc) instructions are formed, and
SimPoint is used repeatedly to detect similarity for each
phase granularity. Specifically, for order g granularity, the
basic block vectors (BBVs) of order 1 granularity are com-
bined with the g-1 BBVs that succeed them, by adding
the frequencies of each basic block of the corresponding g
BBVs. Thus, new BBVs corresponding to intervals of g*50K
instructions are generated and then processed to classify
phases of execution.

As shown in Figure 2, the multi-granularity phase matrix
for the application “a” in Figure 1 is generated. Each col-
umn corresponds to a granularity order. Thus, if there are
G granularities, there will be G columns. Each line in the

Table 1: A multi-phase cluster table (MPCT) con-
taining 4 MPCs and their metrics. This MPCT cor-
responds to Figure 2.b and Figure 2.c. “gi” corre-
sponds to the phase granularity (in K inst) for pro-
cessor i.

MPC g0 g1 g2 K-Cycles Energy(mJ) Repetition
a12, b11, c12 100 50 100 280 104 3
a52,b11,c53 100 50 150 487 190 1
a21,b11,c12 100 50 150 277 150 1

multi-granularity matrix corresponds to one starting point
in the program. The matrix element belonging to line i
and column j, corresponds to the phase whose size is j*50K
instructions and whose starting point is the (i-1)*50Kth in-
structions. An example with four orders of granularity is
given in Figure 2.a and Figure 2.b. Figure 2.a shows the
formation of the intervals of each granularity order. Then,
Simpoint is used to detect the similarity in the level of each
granularity in order to generate the phase matrix. Each in-
terval, in Figure 2.a, is represented in Figure 2.b by a phase
which corresponds to the representative interval. For in-
stance the interval a31 which has the granularity of order-1
and starts at the second discretization point is represented
by the phase a11 in the matrix. The corresponding phase a11

belongs to the third line and to the first column in the ma-
trix. The first stage is executed once for all the granularities
expected during runtime and a rapid functional simulation
is used to obtain phase matrices in a few minutes. In our ex-
periments, we consider granularities up to 20. This requires
less than 10 minutes of profiling per application.

3.2 Second step: multi-phase cluster
generation

The second stage uses the multi-granularity phase matri-
ces that have been generated in the first step. Phases that
are executed in parallel by processors are combined together
to form a multi-phase cluster (MPC). These parallel phases
are determined dynamically as follows: An MPC contains p
parallel phases, where p is the number of processors in the
MPSoC. Each new MPC is assigned an entry in the multi-
phase cluster table (MPCT)(see Table 1). MPC containing
the same parallel phases have the same behavior, and thus
can be skipped during simulation after estimating their per-
formance once.

In our approach, we adopted the discretization of the over-
lapping execution phases, as proposed by Tawk [18]. In or-
der to generate the MPCs, the granularity of each of the
p phases is determined dynamically. Whenever a process
reaches the boundary of 50K instructions, a decision is made
as to whether to continue the simulation or to stop to form
an MPC. The number of cycles needed to finish the current
interval for each processor is calculated.

If the maximum number of cycles is less than a certain
predefined threshold TWSS1, then the approach enters the
cluster formation mode, in which each process tries to finish
the current phase and then waits for the other processes.
As the IPCs (Instructions Per Cycles) of each application
executing in parallel are not the same, the number of in-
structions executed by each processor in an MPC is gener-

1Threshold Waiting at Simulation Synchronization is de-
noted by TWSS.
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Figure 2: Multigranularity Phase matrix generation for the application a executed by processor P1 (Fig. 2.A
and Fig. 2.B) and the simulation acceleration for three applications a, b, and c (Fig. 2.C).

ally different but the number of instructions executed is a
discrete multiple of the base granularity size. Phase identi-
fication is dependent on the starting point of the simulation
and the number of instructions simulated. The 5th MPC
of Figure 2.c in the level of P1, starts at the 8th discetiza-
tion point (after the execution of fours phases belonging to
order-2) and the number of instructions executed is equal to
the interval size of order-1. Thus the phase of P1 in that
MPC is a21 belonging to line 9 and column 1 in the matrix.
In the MPCT, the combined phase identifiers, which are ex-
ecuted in parallel, represent a unique MPC identifier and
MPCs with the same identifiers are predicted to have the
same performance. Once a new MPC is simulated, a new
entry in the MPCT is created for it. The metrics for the
new MPC (e.g., the number of instructions executed or the
granularity order for each processor, the number of cycles,
the energy consumed, memory traffic, internal bus traffic
and cache miss rate ...) are then recorded in this table.

After each skipped or simulated MPC, all the entries in
the MPCT are checked against the multi-granularity phase
matrices to find a match with the next application phases in
the phase matrices. For each simulated MPC in the MPCT,
only one access is realized to each phase matrix. If a match
is found for an MPC in the MPCT and the successive phases
in the matrices, the search is stopped. Then each phase of
the MPC is skipped by the corresponding processor and the
corresponding repetition entry in the MPCT (see Table 1)
is incremented. If no match is found, a detailed simulation
is performed until a new MPC is formed. As two MPCs
containing the same phases are assumed to have the same
performance, the metrics of these MPCs are associated with
the metrics of the first simulated MPC. Thus, the perfor-

mance of the whole application can be estimated based on
the metrics of the simulated MPCs and their relative contri-
bution to the applications’ execution. In Table 1, after sim-
ulating the first MPC (a12;b11;c12), this MPC recurs. Since
it already exists in the MPCT, the repetition entry is simply
incremented, and the repeated MPCs are not simulated in
details.

4. CHECKPOINTING FOR SYSTEM
IMAGE CONSTRUCTION

To obtain a high simulation speedup, the sampling tech-
nique must not only reduce the number of instructions sim-
ulated in the detailed mode but must also reduce the time
needed to move the simulation through skipped intervals
to the beginning of the next sample to simulate. Thus, a
technique to construct the system image (or context) at the
beginning of the detailed simulation mode is needed.

In our case, the system image includes both the archi-
tectural state (called also sample starting image) and the
micro-architectural state (called also sample warm-up). The
architectural state is represented by the data values stored
in the registers and in the shared memory. These data rep-
resent the application contexts and are independent from
the processor configuration. The micro-architectural state
encompasses cache and branch predictor table contents [20,
4]. As the ARM7 processor cores that we used during ex-
periments implements “not-taken branch prediction”, states
relative to branch predictors are not included in the check-
points and the micro-architectural state is represented only
by the cache contents.

Both of these states can be constructed either by fast-
forwarding the simulation or by checkpointing. Fast-for-
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warding simulation aims at reaching a point of interest in
the application’s instruction stream as fast as possible using
simple execution model that ignores most of the architec-
tural details of the system. This kind of simulation helps in
constructing a correct program state at the point of interest,
while the micro-architectural state may requires some addi-
tional warm-up. Generally, the speed of fast-forwarding (or
functional simulation) limits the potential acceleration of a
sampling technique. Alternatively, checkpointing tends to
minimize the simulation time by eliminating the time spent
fast-forwarding [20] the instructions between samples exe-
cuted in the CABA mode. In the context of simulation ac-
celeration, checkpointing consists in storing the program’s
image right before the simulation starts. If during simu-
lation a certain image is needed, this image is restored by
loading the checkpoint.

Checkpoints are generated once for all the DSE by simu-
lating the whole applications. Traditionally, checkpoints for
application intervals need to be stored on disk. Thus, a large
number of intervals could be prohibitively costly in terms of
disk space. In contrast, applying the checkpointing tech-
nique in conjunction with our multi-granularity approach
reduces the required disk space.

Analyzing multi-granularity phase matrix of an applica-
tion reveals a lot of similar rows. This similarity can be ex-
ploited by storing representative checkpoints instead of stor-
ing all the possible checkpoints for all the intervals. Since all
the phases on the same matrix line have the same starting
point, checkpointing can be done at the starting point of the
first occurrence of each group of similar rows encountered in
the matrix. During simulation, when a cluster has to be sim-
ulated, the checkpoint associated with the first occurrence
of the row is loaded. At this point, both the architectural
and the micro-architectural states are restored at that point.
Thus, instructions belonging to a phase in the first row of
group of similar lines will be used as a representative of sim-
ilar rows.

For instance, considering application “a” in Figure 2.b, if
the simulator is at the start 7 and decide to skip an order-
2 granularity of instructions, then it will need to load the
system state at start 9. Noting that the classifications of
the system state for start 2 and start 9 are the same for
all orders of granularity, the simulator can load the start 2
state as an equivalent state of the start 9. Similarly all start
point with equivalent classification for all orders of granular-
ity can be represented by only one checkpoint, thus saving
the checkpoint storage requirement as will be shown in Sec-
tion 5.3. Figure 2.b shows (in cylinders) the starting points
that require checkpointing, for this particular example.

5. EXPERIMENTAL RESULTS
The accuracy and the efficiency of the proposed multi-

granularity sampling approach have been evaluated using
five benchmarks taken from the MiBench suite [9]: adpcm,
rijndael (noted as rj), fft, gsm, and blowfish (noted as bf).
These benchmarks have been chosen because they produce
imbalanced long clusters. During the experiments, the num-
ber of processor cores varied from 4 to 12. Both the“encode”
and the “decode” versions of the five benchmarks have been
ported to our MPSoC platform. When the number of proces-
sors is greater or equal to 4, the same benchmark/version is
executed by more than one processor. The simulation frame-
work that is used during our experiments is the MPARM [3].

This framework is composed of several ARM7 cores con-
nected to shared RAM modules via a standard shared AMBA
bus. The simulated ARM7 cores have a 4-way set-associative
data cache of 4KB and a direct mapped instruction cache
of 8KB. All these components are simulated in MPARM at
cycle-accurate and bit-accurate levels (CABA) using Sys-
temC.

In this paper, we define simulation speedup as the ratio of
the total number of executed instructions by all the proces-
sors in full detailed mode divided by the number of executed
instructions by all processors when sampling is used. During
the experiments, we used an interval size of 50K instructions
as the order-1 granularity. On our simulation platform, a full
detailed simulation requires several days. For instance, the
full detailed simulation of 12 parallel applications with Ri-
jndael and Blowfish, on 12 processors required about 6 days
on a 3GHz Pentium-4 host.

5.1 Simulation acceleration of
multi-granularity sampling

In this section, we present the simulation speedup based
on the proposed multi-granularity approach and we compare
the results with the adaptive sampling approach. Figure 3
gives the simulation acceleration for 5 different benchmark
combinations, for 4 to 12 processors using adaptive sampling
(AS) method with and multi-granularity sampling (MGS)
method. To have a good acceleration vs. accuracy tradeoff,
TWSS was empirically set to 20%.

Considering four concurrent applications with the multi-
granularity approach, the simulation speedup for multigran-
ularity sampling ranges between 14x (for rijndael&gsm) and
52x (for rijndael and blowfish). The average simulation
speedup is 28x for all the studied applications. The rijn-
dael&blowfish combinations produce the greatest speedup.
This result is due to the almost identical behavior of rijndael
and blowfish, with which phases of the same small granular-
ity orders overlap to form MPCs. Additionally, the num-
ber of detected phases for rijndael and blowfish is very low
(both of them are highly regular). The rijndael&gsm combi-
nations produces the lowest speedup value for two reasons.
First, rijndael and gsm have extremely different behaviors;
rijndael has high cache miss rate, thus almost 50K rijndael
instructions are needed to overlap with 1M gsm instructions
in each MPC. The number of instructions executed in each
MPC is relativeley large. The low number of the generated
MPCs reduces the chance of having similar MPCs. Addi-
tionally, when gsm is executed in parallel with rjindael, gsm
frequently changes the granularity order to overlap with rijn-
dael due to its irregularity. Figure 4 shows that both versions
of gsm (i.e., encode and decode) have seven different gran-
ularities (from 10 up to 20). Thus when gsm and rijndael
are executed concurrently, in addition of having relatively
few MPCs, these MPCs are distinct from each other, thus
reducing the speedup.

In contrast, the blowfish&adpcm combinations have a high
simulation speed in spite of the different behavior of blow-
fish and adpcm. The L1 miss rate of blowfish is higher than
that of adpcm. So almost 50K instructions of blowfish cover
500K instructions of adpcm in the generated MPCs. This
heterogeneity does not impact the simulation speedup be-
cause these benchmarks have a periodical behavior and the
number of distinct MPCs is small.
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Figure 4: Percentage of the different numbers of
phases per string. The benchmark combinations are:
adpcm&(i)fft and rijndael&gsm executed on 4 pro-
cessors with TWSS=20%. All the strings for rijn-
dael encode and decode have one phase.

As shown in Figure 3, the acceleration of the simulation
decreases as the number of processors increases. Increasing
the number of processes simulated concurrently reduces the
simulation speedup significantly for some applications, such
as gsm&fft, from 18x for 4 processes to 5x for 12 processes.
The decrease in acceleration is due to the decrease in the
number of repeated MPCs.

For Adaptive Sampling approach, the obtained speedup
depends on the number of phases per string. The smaller
the number of phases per string is, the higher the probability
of having repeated strings and the greater the simulation ac-
celeration. The combinations of rijndael&blowfish produces
the greatest acceleration (about 10x) for two reasons. First,
the number of detected phases is small. Second, the identi-

cal behavior of rijndael and blowfish generates small phase
string in each generated CS. Thus, many CSs are generated,
which increases the probability of repeated CS. The acceler-
ation factor of the other benchmark combinations is close to
1.5x (Figure 3). This low acceleration for adaptive sampling
is due to the difficulty that this approach faces in detecting
similarity of string of phases overlaps.

Figure 4 shows the number of phases in the generated
strings when 2 applications are executed in parallel on 4
processors using the adaptive sampling. In this figure, the
parallel applications are, on one side, adpcm with fft and,
on the other side, rijndael with gsm. As shown, multiple
gsm.decode phases (up to 20) are generally needed to cover
only one rijndael encode or decode phase. This length dis-
parity between applications reduces the recurrences of the
same CS in adaptive sampling. In addition, Figure 4 shows
the number of different generated string lengths for each pro-
cessor, which is quite small. For instance, while executing
adpcm and fft in parallel, two string lengths are detected for
adpcm.enc (62% of the generated strings contain 2 phases
and 38% contain between 3 and 5 phases).

It is clear that the adaptive sampling approach is ineffi-
cient in the case of heterogeneous parallel applications. In
this situation, long phase strings are generated, thus re-
ducing the number of similar phases strings. Our multi-
granularity sampling approach circumvents this problem by
analyzing different possible granularities of the samples of-
fline to allow fast and accurate matching of phases during
simulation.

5.2 Performance estimation accuracy with
multi-granularity sampling

In multi-granularity sampling approach, the IPC estima-
tion error has two sources. The first source corresponds to
the added waiting cycles that are injected into the different
processors at simulation discretization points. These cycles
lower the IPC because no instructions are committed during
the wait period. The second source of error is the associa-
tion of the IPC of recurring MPCs with the IPC of the first
simulated MPC. This is due to the fact that intervals classi-
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Figure 5: Estimated IPC error for 15 combinations. The number of processors varies from 4 to 12. The
TWSS is set at 20%.

fied as similar (same phase) may not have exactly the same
performance.

However, injecting the waiting cycles causes the IPC to be
underestimated. In order to reduce the error due to the first
source, we propose a corrected IPC (Formula 1), which esti-
mates the IPC by eliminating the average waiting cycles, de-
noted Avrwait−cyc, from the total estimated cycles, denoted
Totcycles. The average waiting cycles, denoted Avrwait−cyc,
is estimated using Formula 2. The estimated waiting cycles
denoted Estwait−cyci in Formula 2 corresponds to the num-
ber of cycles injected during the simulation of a given MPC.
The Freqi corresponds to the frequency of the MPC, Nbproc

corresponds to the number of processors and NbMPC corre-
sponds to the total number of uniquely generated MPCs.

CorIPC = Totinstr/(Totcycles − Avrwait−cyc) (1)

Avrwait−cyc = (

NbMP C∑

i=1

Estwait−cyci ∗ Freqi)/Nbproc (2)

Figure 5 shows both the IPC raw estimation error and
the corrected IPC estimation error for the benchmark com-
binations in Figure 3. This figure demonstrates that the
estimated IPC error is smaller than 13% (6% on average)
while the corrected IPC error is smaller than 10% (3% on
average), as shown in Figure 5. For some benchmark com-
binations (such as bf&adpcm) the correction can reduce the
estimation error by up to 90%. Power consumption estima-
tion error, not shown in this work, is smaller than the IPC
estimation error.

5.3 Checkpointing storage and
multi-granularity sampling

In this section, we quantify the amount of saving in check-
pointing storage when multi-granularity sampling is used.
We consider two checkpoints at two starting points of the
program as similar if phases for all possible granularities
at these start points are classified by simpoint as identical.
As detailed earlier in Section 4, in this case the two cor-
responding rows in the multi-granularity phase matrix look
identical.

Figure 6 shows the number of checkpoints when the num-
ber of the granularity orders increases from 5 to 20. For the
base case in Figure 6, row similarity is not exploited and
checkpoints for all phase starts are taken. Thus, the base
case corresponds to the situation where AS is applied. In
general, the number of checkpoints increases slightly as the
number of the granularity orders increases in the phase ma-
trix, i.e., when there is a disparity between the concurrent
applications in term of IPC. In this case, the number of sim-
ilar rows in the phase matrix decreases. We can conclude
that the number of checkpoints needed to be stored is much
smaller than the base case. The number of checkpoints is re-
duced by 99.13% when the concurrent applications requires
a granularity orders of up to 20. This value is the largest
observed granularity for MiBench application combinations.

We conducted several experiments (using tools such as
perfmon) in order to compare the fast-forwarding time over-
heads to checkpointing time overheads. Intuitively, check-
pointing is more profitable when a large number of intervals
must be skipped between two consecutive simulated clus-
ters and when the architecture state (especially memory)
is minimized. This feature makes checkpointing attractive
for embedded system DSE. In order to reduce even more
checkpoint sizes, we adopted the two techniques proposed
by Biesbrouck et al. [4].

Using the Memory Hierarchy Sate (MHS) technique, cache
contents are created from the largest reference cache (64KB
in our case), and applying the Touched Memory Image (TMI)
allowed reducing the maximal size of the architectural state
to 550KB. As the number of checkpoints per application is
smaller than 100, we need a maximum of 55 MB to store
all the checkpoints. The advent of fewer checkpoints al-
lows holding all of them on the physical memory instead of
retrieving them from the hard-drive. Using the checkpoint-
ing technique, we measured that 10 million host cycles are
needed to load one checkpoint, in order to build the architec-
tural and micro-architectural states per processor. Assum-
ing that the fast-forwarding technique is 100x faster than the
detailed simulation, fast-forwarding 50K instructions will
need approximately 61 million host cycles in our simula-
tion environment. Consequently, skipping phases (even with
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small interval size of 50K instructions) with checkpointing
is much faster than fast-forwarding them.

6. CONCLUSIONS
In this paper, we present a novel analysis approach of

the application that allows efficient prediction of the perfor-
mance of simulating concurrent heterogeneous applications.
We analyze each application behavior for multiple granular-
ities of sampling offline and we create a table of exhibited
similarity. At runtime, we form discrete overlaps of phases
from the applications running concurrently. We simulate
in details only the overlaps that did not show up earlier in
simulation.

The simulation speedup, based on our approach reaches
60x. The performance estimation error of our approach is
less than 10%, which is acceptable to a wide range of ap-
plications. We also devised a corrective formula for the es-
timated IPC based on our observation of the bias of our
technique to underestimate the performance. The proposed
IPC correction formula can decrease the error by up to 90%.
We showed a technique to reduce the disk storage needed for
checkpointing when used in conjunction with our multigran-
ularity approach.

An important advantage of our approach is that the simu-
lation acceleration adapts to the heterogeneous applications
interactions without the intervention of the system designer,
while maintaining accuracy of performance predictions. Our
approach can be applied to a wide class of DSE in embedded
systems to reduce the time to market.
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